Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
1.
J Exp Biol ; 227(19)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39246153

ABSTRACT

Understanding the processes that guide carnivores in finding and selecting prey is a fundamental, unresolved challenge in sensory biology. To our knowledge, no published work has yet revealed the complete structural identities of compounds that cue preferences by generalist predators for different prey species. With this research imperative in mind, we determined the chemistry driving consumer preferences for live intact prey using two generalist predatory species (sea stars, Pisaster ochraceus; whelks, Acanthinucella spirata), along with two foundation prey species (mussels, Mytilus californianus; barnacles, Balanus glandula), inhabiting rocky, wave-swept shores. Each prey species is known to secrete either a 29.6 kDa (named 'KEYSTONEin') or a 199.6 kDa (named 'MULTIFUNCin') glycoprotein as a contact-chemical cue. Here, experimental manipulations utilized faux prey consisting of cleaned barnacle or mussel shells infused with KEYSTONEin, MULTIFUNCin or seawater (control) gels. Whelks exhibited a strong penchant for MULTIFUNCin over KEYSTONEin, irrespective of shell type. In contrast, sea stars generally preferred KEYSTONEin over MULTIFUNCin, but this preference shifted depending on the experimental context in which they encountered physical (shell) and chemical (glycoprotein) stimuli. This study ultimately demonstrates clear and contrasting chemical preferences between sea stars and whelks. It highlights the importance of experimental setting in determining chemical preferences. Finally, it shows that prey preferences by these predators hinge only on one or two contact-protein cues, without the need for quality coding via fluid-borne compounds, low-molecular-weight substances or mixture blends.


Subject(s)
Predatory Behavior , Thoracica , Animals , Thoracica/physiology , Echinodermata/physiology , Cues , Bivalvia/physiology , Glycoproteins/chemistry , Mytilus/physiology
2.
Proc Biol Sci ; 291(2031): 20241038, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39288805

ABSTRACT

Climate change is causing increased coastal freshening in Antarctica, leading to reduced salinity. For Antarctica's endemic echinoderms, adapted to the stable polar environment, the impact of rapid reductions in coastal salinity on physiology and behaviour is currently unknown. Six common Antarctic echinoderms (the sea urchin Sterechinus neumayeri; the sea star Odontaster validus; the brittle star Ophionotus victoriae; and three sea cucumbers Cucumaria georgiana, Echinopsolus charcoti and Heterocucumis steineni), were directly transferred from ambient salinity (34.5‰) to a range of salinity dilutions (29-9‰) for 24 h. All species showed reduced activity and the establishment of a temporary osmotic gradient between coelomic fluid and external seawater. Most species exhibited a depression in oxygen consumption across tolerated salinities; however, at very low salinities that later resulted in mortality, oxygen consumption increased to levels comparable to those at ambient. Low salinity tolerance varied substantially between species, with O. victoriae being the least tolerant (24 h LC50 (lethal for 50% of animals) = 19.9‰) while E. charcoti and C. georgiana demonstrated the greatest tolerance (24 h LC50 = 11.5‰). These findings demonstrate the species-specific response of Antarctica's endemic echinoderms to short-term hypoosmotic salinity events, providing valuable insight into this phylum's ability to respond to an underreported impact of climate change.


Subject(s)
Climate Change , Echinodermata , Salinity , Animals , Antarctic Regions , Echinodermata/physiology , Salt Stress , Oxygen Consumption , Starfish/physiology , Seawater/chemistry
3.
Nat Ecol Evol ; 8(8): 1505-1521, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39030276

ABSTRACT

Species within nearly all extant animal lineages are capable of regenerating body parts. However, it remains unclear whether the gene expression programme controlling regeneration is evolutionarily conserved. Brittle stars are a species-rich class of echinoderms with outstanding regenerative abilities, but investigations into the genetic bases of regeneration in this group have been hindered by the limited genomic resources. Here we report a chromosome-scale genome assembly for the brittle star Amphiura filiformis. We show that the brittle star genome is the most rearranged among echinoderms sequenced so far, featuring a reorganized Hox cluster reminiscent of the rearrangements observed in sea urchins. In addition, we performed an extensive profiling of gene expression during brittle star adult arm regeneration and identified sequential waves of gene expression governing wound healing, proliferation and differentiation. We conducted comparative transcriptomic analyses with other invertebrate and vertebrate models for appendage regeneration and uncovered hundreds of genes with conserved expression dynamics, particularly during the proliferative phase of regeneration. Our findings emphasize the crucial importance of echinoderms to detect long-range expression conservation between vertebrates and classical invertebrate regeneration model systems.


Subject(s)
Echinodermata , Genome , Regeneration , Animals , Regeneration/genetics , Echinodermata/genetics , Echinodermata/physiology , Extremities/physiology , Transcriptome
4.
Proc Biol Sci ; 291(2023): 20232832, 2024 May.
Article in English | MEDLINE | ID: mdl-38747704

ABSTRACT

Asexual reproduction by means of splitting, also called fissiparity, is a common feature in some asterozoan groups, especially in ophiactid brittle stars. Most fissiparous brittle stars show six instead of the usual five rays, live as epibionts on host organisms, and use clonal fragmentation to rapidly colonize secluded habitats and effectively expand the margins of their distribution area. While the biology and ecology of clonal fragmentation are comparatively well understood, virtually nothing is known about the evolution and geological history of that phenomenon. Here, we describe an exceptional fossil of an articulated six-armed brittle star from the Late Jurassic of Germany, showing one body half in the process of regeneration, and assign it to the new species Ophiactis hex sp. nov. Phylogenetic inference shows that the fossil represents the oldest member of the extant family Ophiactidae. Because the Ophiactis hex specimen shows an original six-fold symmetry combined with a morphology typically found in epizoic ophiuroids, in line with recent fissiparous ophiactid relatives, we assume that the regenerating body half is an indication for fissiparity. Ophiactis hex thus shows that fissiparity was established as a means of asexual reproduction in asterozoan echinoderms by the Late Jurassic.


Subject(s)
Echinodermata , Fossils , Phylogeny , Reproduction, Asexual , Animals , Fossils/anatomy & histology , Echinodermata/anatomy & histology , Echinodermata/physiology , Biological Evolution , Germany
5.
Front Neural Circuits ; 17: 1258370, 2023.
Article in English | MEDLINE | ID: mdl-37841894

ABSTRACT

Echinoderms are a phylum of marine deterostomes with a range of interesting biological features. One remarkable ability is their impressive capacity to regenerate most of their adult tissues, including the central nervous system (CNS). The research community has accumulated data that demonstrates that, in spite of the pentaradial adult body plan, echinoderms share deep similarities with their bilateral sister taxa such as hemichordates and chordates. Some of the new data reveal the complexity of the nervous system in echinoderms. In terms of the cellular architecture, one of the traits that is shared between the CNS of echinoderms and chordates is the presence of radial glia. In chordates, these cells act as the main progenitor population in CNS development. In mammals, radial glia are spent in embryogenesis and are no longer present in adults, being replaced with other neural cell types. In non-mammalian chordates, they are still detected in the mature CNS along with other types of glia. In echinoderms, radial glia also persist into the adulthood, but unlike in chordates, it is the only known glial cell type that is present in the fully developed CNS. The echinoderm radial glia is a multifunctional cell type. Radial glia forms the supporting scaffold of the neuroepithelium, exhibits secretory activity, clears up dying or damaged cells by phagocytosis, and, most importantly, acts as a major progenitor cell population. The latter function is critical for the outstanding developmental plasticity of the adult echinoderm CNS, including physiological cell turnover, indeterminate growth, and a remarkable capacity to regenerate major parts following autotomy or traumatic injury. In this review we summarize the current knowledge on the organization and function of the echinoderm radial glia, with a focus on the role of this cell type in adult neurogenesis.


Subject(s)
Echinodermata , Ependymoglial Cells , Animals , Echinodermata/physiology , Neuroglia/metabolism , Neurons , Neurogenesis/physiology , Mammals
6.
Proc Biol Sci ; 290(1995): 20230092, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36987636

ABSTRACT

Owing to their remarkable physical properties, cellular structures, such as triply periodic minimal surfaces (TPMS), have multidisciplinary and multifunctional applications. Although these structures are observed in nature, examples of TPMS with large length scales in living organisms are exceedingly rare. Recently, microstructure reminiscent of the diamond-type TPMS was documented in the skeleton of the modern knobby starfish Protoreaster nodosus. Here we report a similar microlattice in a 385 Myr old crinoid Haplocrinites, which pushes back the origins of this highly ordered microstructure in echinoderms into the Devonian. Despite the low Mg2+/Ca2+ ratio of the 'calcite' Devonian sea, the skeleton of these crinoids has high-Mg content, which indicates strong biological control over biomineralogy. We suggest that such an optimization of trabecular arrangement additionally enriched in magnesium, which enhances the mechanical properties, might have evolved in these crinoids in response to increased predation pressure during the Middle Palaeozoic Marine Revolution. This discovery illustrates the remarkable ability of echinoderms, through the process of evolutionary optimization, to form a lightweight, stiff and damage-tolerant skeleton, which serves as an inspiration for biomimetic materials.


Subject(s)
Biological Evolution , Echinodermata , Animals , Echinodermata/physiology , Starfish
7.
J Exp Biol ; 226(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36651231

ABSTRACT

As the climate continues to change, it is not just the magnitude of these changes that is important - equally critical is the timing of these events. Conditions that may be well tolerated at one time can become detrimental if experienced at another, as a result of seasonal acclimation. Temperature is the most critical variable as it affects most aspects of an organism's physiology. To address this, we quantified arm regeneration and respiration in the Australian brittle star Ophionereis schayeri for 10 weeks in response to a +3°C warming (18.5°C, simulating a winter heatwave) compared with ambient winter temperature (15.5°C). The metabolic scaling rate (b=0.635 at 15.5°C and 0.746 at 18.5°C) with respect to size was similar to that of other echinoderms and was not affected by temperature. Elevated temperature resulted in up to a 3-fold increase in respiration and a doubling of regeneration growth; however, mortality was greater (up to 44.2% at 18.5°C), especially in the regenerating brittle stars. Metabolic rate of the brittle stars held at 18.5°C was much higher than expected (Q10≈23) and similar to that of O. schayeri tested in summer, which was near their estimated thermotolerance limits. The additional costs associated with the elevated metabolism and regeneration rates incurred by the unseasonably warm winter temperatures may lead to increased mortality and predation risk.


Subject(s)
Arm , Echinodermata , Animals , Seasons , Australia , Echinodermata/physiology , Temperature , Acclimatization/physiology , Oceans and Seas
8.
Zoolog Sci ; 38(4): 352-358, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34342956

ABSTRACT

A new species of brittle star, Ophiodelos okayoshitakai, is described from two specimens collected in Sagami Bay, central-eastern Japan. Photographic examination of the holotype specimen of the sole other congener, Ophiodelos insignis Koehler, 1930, indicates that Ophiodelos okayoshitakai sp. nov. is distinguished from O. insignis by i) the disc stumps covering on the dorsal side of the disc, ii) the dorsal and ventral arm plates being separated from each other on the proximal arm regions, iii) the dorsal arm plate being smooth, iv) the arm spines at proximal portion of the arm being six in number and smooth in shape, and v) the number and shape of the tentacle scales at proximal portion of the arm being up to two and spine-shaped adradially and oval abradially. Detailed morphological observations of this new species suggest the inclusion of Ophiodelos, whose familial affiliation remains unclear, in the suborder Ophiacanthina. More than 10 juveniles of various sizes were found in the disc of Ophiodelos okayoshitakai sp. nov., indicating a brooding reproduction. This is the first report of the genus Ophiodelos from Japanese waters. We also provided a nucleotide sequence for part of the cytochrome c oxidase subunit I (COI) gene in O. okayoshitakai sp. nov. for future studies of DNA barcoding and phylogeny.


Subject(s)
Echinodermata/physiology , Reproduction/physiology , Animals , Japan , Pacific Ocean
9.
BMC Biol ; 19(1): 9, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33461552

ABSTRACT

BACKGROUND: Regeneration is the ability to re-grow body parts or tissues after trauma, and it is widespread across metazoans. Cells involved in regeneration can arise from a pool of undifferentiated proliferative cells or be recruited from pre-existing differentiated tissues. Both mechanisms have been described in different phyla; however, the cellular and molecular mechanisms employed by different animals to restore lost tissues as well as the source of cells involved in regeneration remain largely unknown. Echinoderms are a clade of deuterostome invertebrates that show striking larval and adult regenerative abilities in all extant classes. Here, we use the brittle star Amphiura filiformis to investigate the origin and differentiation of cells involved in skeletal regeneration using a combination of microscopy techniques and molecular markers. RESULTS: Our ultrastructural analyses at different regenerative stages identify a population of morphologically undifferentiated cells which appear in close contact with the proliferating epithelium of the regenerating aboral coelomic cavity. These cells express skeletogenic marker genes, such as the transcription factor alx1 and the differentiation genes c-lectin and msp130L, and display a gradient of morphological differentiation from the aboral coelomic cavity towards the epidermis. Cells closer to the epidermis, which are in contact with developing spicules, have the morphology of mature skeletal cells (sclerocytes), and express several skeletogenic transcription factors and differentiation genes. Moreover, as regeneration progresses, sclerocytes show a different combinatorial expression of genes in various skeletal elements. CONCLUSIONS: We hypothesize that sclerocyte precursors originate from the epithelium of the proliferating aboral coelomic cavity. As these cells migrate towards the epidermis, they differentiate and start secreting spicules. Moreover, our study shows that molecular and cellular processes involved in skeletal regeneration resemble those used during skeletal development, hinting at a possible conservation of developmental programmes during adult regeneration. Finally, we highlight that many genes involved in echinoderm skeletogenesis also play a role in vertebrate skeleton formation, suggesting a possible common origin of the deuterostome endoskeleton pathway.


Subject(s)
Echinodermata/physiology , Gene Expression , Regeneration/physiology , Animals , Echinodermata/genetics , Echinodermata/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Regeneration/genetics , Transcription Factors/genetics
10.
J Morphol ; 282(2): 205-216, 2021 02.
Article in English | MEDLINE | ID: mdl-33159480

ABSTRACT

Basket stars, that is, Ophiuroidea in Echinodermata, exhibit distinctive morphological characteristics with their complicatedly branched arms that can regenerate immediately after mutilation. Although, in brittle stars, that is, ophiuroids with nonbranched arms, the arm regeneration process following accidental trauma or autotomy have been morphologically and histologically observed in several species, few studies have so far been carried out on the regeneration of branched arms in basket stars. In this study, the developmental and morphological features of arm regeneration in Astrocladus dofleini (Gorgonocephalidae, Euryalida, Euryophiurida), one of the most common basket star species in Japanese waters, was anatomically and histologically investigated. Results clearly showed the following phases during the arm regeneration: (a) repair phase, (b) early regenerative phase, (c) intermediate regenerative phase, (d) advanced regenerative Phase I, and (e) advanced regenerative Phase II. The morphogenetic process during the arm regeneration in the basket star showed similar patterns to those of nonbranched arms observed in other ophiuroids. However, differences were also seen between the two ophiuroid types, that is, there were some developmental features specific to the basket star. In the early regenerative phase, branching of coelomic cavities was observed prior to the formation of other tissues, probably inducing the later morphogenesis of branched arms. In addition, hard skeletal ossicles form rapidly at the advanced regenerative Phase II. These developmental features may have led the evolution of bizarre morphologies seen in basket stars, probably contributing to the adaptation to shallow waters from deep-sea habitats.


Subject(s)
Echinodermata/anatomy & histology , Echinodermata/physiology , Morphogenesis , Animals , Echinodermata/cytology , Musculoskeletal System/anatomy & histology , Regeneration
11.
Sci Rep ; 10(1): 15147, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934271

ABSTRACT

Echinoderms exhibit remarkable powers of autotomy. For instance, crinoids can shed arm and stalk portions when attacked by predators. In some species, it has been reported that the autotomized arms display vigorous movements, which are thought to divert the attention of predators. This phenomenon, however, has not been well explored. Here we present results of experiments using the shallowest water species of living stalked crinoid (Metacrinus rotundus) collected at 140 m depth. A wide range of movements of detached arms, from sluggish writhing to violent flicks, was observed. Interestingly, autotomized arms produce distinct traces on the sediment surface. They are composed of straight or arched grooves usually arranged in radiating groups and shallow furrows. Similar traces were found associated with detached arms of the oldest (Early Triassic) stem-group isocrinid (Holocrinus). This finding may suggest that the origins of autotomy-related thrashing behaviour in crinoids could be traced back to at least the Early Triassic, underscoring the magnitude of anti-predatory traits that occurred during the Mesozoic Marine Revolution. A new ethological category, autotomichnia, is proposed for the traces produced by thrashing movements of shed appendages.


Subject(s)
Behavior, Animal , Echinodermata/physiology , Extremities/physiology , Fossils , Movement , Predatory Behavior , Animals , Biological Evolution , Biomechanical Phenomena
12.
Zoolog Sci ; 37(5): 496-503, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32972090

ABSTRACT

We describe Obesostoma crinophilum sp. nov. (Ostracoda: Podocopida: Paradoxostomatidae) obtained from the body surface of the feather star Antedon serrata A. H. Clark, 1908 (Crinoidea: Comatulida: Antedonidae). This is the first report of Ostracoda associated with Crinoidea. None of the highly specialized appendages and/or carapace that are related to a commensal lifestyle were observed in O. crinophilum sp. nov. Therefore, the relationship between O. crinophilum sp. nov. and A. serrata must be transient rather than obligatory. However, O. crinophilum sp. nov. has a more developed hook-like distal claw on the antenna in comparison with four previously known Obesostoma species. The relatively well-developed distal claw of the antenna in O. crinophilum sp. nov. should indicate its intimate association with feather stars, though the feeding habit is still unknown.


Subject(s)
Crustacea/classification , Echinodermata/physiology , Symbiosis , Animals , Crustacea/anatomy & histology , Female , Male , Species Specificity
13.
PLoS One ; 15(5): e0232981, 2020.
Article in English | MEDLINE | ID: mdl-32396580

ABSTRACT

Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.


Subject(s)
Echinodermata/physiology , Receptors, Notch/physiology , Regeneration/physiology , Animal Structures/drug effects , Animal Structures/physiology , Animals , DNA Transposable Elements , Dipeptides/pharmacology , Down-Regulation/drug effects , Echinodermata/drug effects , Echinodermata/genetics , Receptors, Notch/antagonists & inhibitors , Receptors, Notch/genetics , Regeneration/drug effects , Regeneration/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/physiology , Transcriptome/drug effects , Up-Regulation/drug effects
14.
Sci Rep ; 10(1): 3348, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32098989

ABSTRACT

Sea cucumbers lack vision and rely on chemical sensing to reproduce and survive. However, how they recognize and respond to environmental cues remains unknown. Possible candidates are the odorant receptors (ORs), a diverse family of G protein-coupled receptors (GPCRs) involved in olfaction. The present study aimed at characterizing the chemosensory GPCRs in sea cucumbers. At least 246 distinct GPCRs, of which ca. 20% putative ORs, were found in a transcriptome assembly of putative chemosensory (tentacles, oral cavity, calcareous ring, and papillae/tegument) and reproductive (ovary and testis) tissues from Holothuria arguinensis (57 ORs) and in the Apostichopus japonicus genome (79 ORs). The sea cucumber ORs clustered with those of sea urchin and starfish into four main clades of gene expansions sharing a common ancestor and evolving under purifying selection. However, the sea cucumber ORs repertoire was the smallest among the echinoderms and the olfactory receptor signature motif LxxPxYxxxxxLxxxDxxxxxxxxP was better conserved in cluster OR-l1 which also had more members. ORs were expressed in tentacles, oral cavity, calcareous ring, and papillae/tegument, supporting their potential role in chemosensing. This study is the first comprehensive survey of chemosensory GPCRs in sea cucumbers, and provides the molecular basis to understand how they communicate.


Subject(s)
Phylogeny , Receptors, G-Protein-Coupled/genetics , Receptors, Odorant/genetics , Sea Cucumbers/physiology , Animals , Echinodermata/genetics , Echinodermata/physiology , Genome/genetics , Olfactory Receptor Neurons/metabolism , Sea Cucumbers/genetics , Sequence Alignment , Stichopus/genetics , Transcriptome/genetics
15.
J Struct Biol ; 211(1): 107481, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32088334

ABSTRACT

Brittle stars are known for the high flexibility of their arms, a characteristic required for locomotion, food grasping, and for holding onto a great diversity of substrates. Their high agility is facilitated by the numerous discrete skeletal elements (ossicles) running through the center of each arm and embedded in the skin. While much has been learned regarding the structural diversity of these ossicles, which are important characters for taxonomic purposes, their impact on the arms' range of motion, by contrast, is poorly understood. In the present study, we set out to investigate how ossicle morphology and skeletal organization affect the flexibility of brittle star arms. Here, we present the results of an in-depth analysis of three brittle star species (Ophioplocus esmarki, Ophiopteris papillosa, and Ophiothrix spiculata), chosen for their different ranges of motion, as well as spine size and orientation. Using an integrated approach that combines behavioral studies with parametric modeling, additive manufacturing, micro-computed tomography, scanning electron microscopy, and finite element simulations, we present a high-throughput workflow that provides a fundamental understanding of 3D structure-kinematic relationships in brittle star skeletal systems.


Subject(s)
Echinodermata/anatomy & histology , Echinodermata/ultrastructure , Skeleton/ultrastructure , Animals , Biomechanical Phenomena , Echinodermata/physiology , Skeleton/anatomy & histology , Skeleton/physiology , X-Ray Microtomography
16.
Proc Biol Sci ; 287(1919): 20192143, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31992167

ABSTRACT

Functional trait-based approaches are increasingly adopted to understand and project ecological responses to environmental change; however, most assume trait expression is constant between conspecifics irrespective of context. Using two species of benthic invertebrate (brittlestars Amphiura filiformis and Amphiura chiajei), we demonstrate that trait expression at individual and community levels differs with biotic and abiotic context. We use PERMANOVA to test the effect of species identity, density and local environmental history on individual (righting and burrowing) and community (particle reworking and burrow ventilation) trait expression, as well as associated effects on ecosystem functioning (sediment nutrient release). Trait expression differs with context, with repercussions for the faunal mediation of ecosystem processes; we find increased rates of righting and burial behaviour and greater particle reworking with increasing density that are reflected in nutrient generation. However, the magnitude of effects differed within and between species, arising from site-specific environmental and morphological differences. Our results indicate that traits and processes influencing change in ecosystem functioning are products of both prevailing and historic conditions that cannot be constrained within typologies. Trait-based study must incorporate context-dependent variation, including intraspecific differences from individual to ecosystem scales, to avoid jeopardizing projections of ecosystem functioning and service delivery.


Subject(s)
Aquatic Organisms/physiology , Invertebrates/physiology , Animals , Behavior, Animal , Biodiversity , Echinodermata/physiology , Ecosystem , Phenotype
17.
Curr Biol ; 30(2): 319-327.e4, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31902727

ABSTRACT

Almost all animals can sense light, but only those with spatial vision can "see." Conventionally, this was restricted to animals possessing discrete visual organs (eyes), but extraocular vision could facilitate vision without eyes. Echinoderms form the focus of extraocular vision research [1-7], and the brittle star Ophiocoma wendtii, which exhibits light-responsive color change and shelter seeking, became a key species of interest [4, 8, 9]. Both O. wendtii and an apparently light-indifferent congeneric, O. pumila, possess an extensive network of r-opsin-reactive cells, but its function remains unclear [4]. We show that, although both species are strongly light averse, O. wendtii orients to stimuli necessitating spatial vision for detection, but O. pumila does not. However, O. wendtii's response disappears when chromatophores are contracted within the skeleton. Combining immunohistochemistry, histology, and synchrotron microtomography, we reconstructed models of photoreceptors in situ and extracted estimated angular apertures for O. wendtii and O. pumila. Angular sensitivity estimates, derived from these models, support the hypothesis that chromatophores constitute a screening mechanism in O. wendtii, providing sufficient resolving power to detect the stimuli. RNA sequencing (RNA-seq) identified opsin candidates in both species, including multiple r-opsins and transduction pathway constituents, congruent with immunohistochemistry and studies of other echinoderms [10, 11]. Finally, we note that differing body postures between the two species during experiments may reflect aspect of signal integration. This represents one of the most detailed mechanisms for extraocular vision yet proposed and draws interesting parallels with the only other confirmed extraocular visual system, that of some sea urchins, which also possess chromatophores [1].


Subject(s)
Chromatophores/physiology , Echinodermata/physiology , Phototaxis , Visual Perception , Animals , Light
18.
J Exp Biol ; 223(Pt 4)2020 02 18.
Article in English | MEDLINE | ID: mdl-31974222

ABSTRACT

Bioluminescence is a widespread phenomenon in the marine environment. Among luminous substrates, coelenterazine is the most widespread luciferin, found in eight phyla. The wide phylogenetic coverage of this light-emitting molecule has led to the hypothesis of its dietary acquisition, which has so far been demonstrated in one cnidarian and one lophogastrid shrimp species. Within Ophiuroidea, the dominant class of luminous echinoderms, Amphiura filiformis is a model species known to use coelenterazine as substrate of a luciferin/luciferase luminous system. The aim of this study was to perform long-term monitoring of A. filiformis luminescent capabilities during captivity. Our results show (i) depletion of luminescent capabilities within 5 months when the ophiuroid was fed a coelenterazine-free diet and (ii) a quick recovery of luminescent capabilities when the ophiuroid was fed coelenterazine-supplemented food. The present work demonstrates for the first time a trophic acquisition of coelenterazine in A. filiformis to maintain light emission capabilities.


Subject(s)
Diet , Echinodermata/physiology , Imidazoles/administration & dosage , Pyrazines/administration & dosage , Animals , Luminescent Measurements , Potassium Chloride/pharmacology
19.
Sci Rep ; 9(1): 8298, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31165756

ABSTRACT

Physiological experiments and mathematical models have supported that neuronal activity is crucial for coordinating rhythmic movements in animals. On the other hand, robotics studies have suggested the importance of physical properties made by body structure, i.e. morphology. However, it remains unclear how morphology affects movement coordination in animals, independent of neuronal activity. To begin to understand this issue, our study reports a rhythmic movement in the green brittle star Ophiarachna incrassata. We found this animal moved five radially symmetric parts in a well-ordered unsynchronized pattern. We built a phenomenological model where internal fluid flows between the five body parts to explain the coordinated pattern without considering neuronal activity. Changing the number of the body parts from five to six, we simulated a synchronized pattern, which was demonstrated also by an individual with six symmetric parts. Our model suggests a different number in morphology makes a different fluid flow, leading to a different synchronization pattern in the animal.


Subject(s)
Echinodermata/anatomy & histology , Echinodermata/physiology , Movement , Animals , Biomechanical Phenomena , Computer Simulation , Models, Theoretical , Seawater
20.
Nat Commun ; 10(1): 1366, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30911013

ABSTRACT

Deuterostomes are a morphologically disparate clade, encompassing the chordates (including vertebrates), the hemichordates (the vermiform enteropneusts and the colonial tube-dwelling pterobranchs) and the echinoderms (including starfish). Although deuterostomes are considered monophyletic, the inter-relationships between the three clades remain highly contentious. Here we report, Yanjiahella biscarpa, a bilaterally symmetrical, solitary metazoan from the early Cambrian (Fortunian) of China with a characteristic echinoderm-like plated theca, a muscular stalk reminiscent of the hemichordates and a pair of feeding appendages. Our phylogenetic analysis indicates that Y. biscarpa is a stem-echinoderm and not only is this species the oldest and most basal echinoderm, but it also predates all known hemichordates, and is among the earliest deuterostomes. This taxon confirms that echinoderms acquired plating before pentaradial symmetry and that their history is rooted in bilateral forms. Yanjiahella biscarpa shares morphological similarities with both enteropneusts and echinoderms, indicating that the enteropneust body plan is ancestral within hemichordates.


Subject(s)
Echinodermata/anatomy & histology , Fossils/anatomy & histology , Phylogeny , Animals , Biological Evolution , China , Chordata, Nonvertebrate/anatomy & histology , Chordata, Nonvertebrate/classification , Chordata, Nonvertebrate/physiology , Echinodermata/classification , Echinodermata/physiology , Fossils/history , Geologic Sediments/analysis , History, Ancient
SELECTION OF CITATIONS
SEARCH DETAIL