Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.010
Filter
1.
Sci Rep ; 14(1): 12729, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830906

ABSTRACT

Sorghum germplasm showed grain Fe and Zn genetic variability, but a few varieties were biofortified with these minerals. This work contributes to narrowing this gap. Fe and Zn concentrations along with 55,068 high-quality GBS SNP data from 140 sorghum accessions were used in this study. Both micronutrients exhibited good variability with respective ranges of 22.09-52.55 ppm and 17.92-43.16 ppm. Significant marker-trait associations were identified on chromosomes 1, 3, and 5. Two major effect SNPs (S01_72265728 and S05_58213541) explained 35% and 32% of Fe and Zn phenotypic variance, respectively. The SNP S01_72265728 was identified in the cytochrome P450 gene and showed a positive effect on Fe accumulation in the kernel, while S05_58213541 was intergenic near Sobic.005G134800 (zinc-binding ribosomal protein) and showed negative effect on Zn. Tissue-specific in silico expression analysis resulted in higher levels of Sobic.003G350800 gene product in several tissues such as leaf, root, flower, panicle, and stem. Sobic.005G188300 and Sobic.001G463800 were expressed moderately at grain maturity and anthesis in leaf, root, panicle, and seed tissues. The candidate genes expressed in leaves, stems, and grains will be targeted to improve grain and stover quality. The haplotypes identified will be useful in forward genetics breeding.


Subject(s)
Genome-Wide Association Study , Iron , Polymorphism, Single Nucleotide , Sorghum , Zinc , Sorghum/genetics , Sorghum/metabolism , Zinc/metabolism , Iron/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Gene Expression Regulation, Plant , Phenotype , Quantitative Trait Loci , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Genes, Plant
3.
Curr Biol ; 34(11): R528-R530, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834023

ABSTRACT

The spikelet is the unit component of the spike and the site of grain production in Triticeae crops. Two new studies revealed that plant-specific transcription factors ALOG1 and PDB1 participate in modulating spikelet number and flowering time in barley and wheat.


Subject(s)
Edible Grain , Flowers , Hordeum , Plant Proteins , Triticum , Flowers/genetics , Flowers/growth & development , Hordeum/genetics , Hordeum/growth & development , Triticum/genetics , Triticum/growth & development , Edible Grain/genetics , Edible Grain/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant
4.
Sci Rep ; 14(1): 12819, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834589

ABSTRACT

Tef [Eragrostis tef (Zucc.) Trotter], an ancient cereal primarily grown in Ethiopia, is becoming increasingly popular worldwide due to its high iron content and gluten-free nature. However, it has been reported that injera produced only with tef flour lack certain vital nutrients. Therefore, this specific study was conducted to supplement tef injera with other food materials of better nutritional value and compensate its expensive market price with sorghum cereal flour. The effect of fermentation conditions, and the sorghum and carrot pulp blending ratio on the nutritional value and sensory quality of tef injera was investigated. The factorial approach of the experimental design was conducted considering the nutritional value and sensory quality of the injera made of three main blending ratios of tef, sorghum, and carrot (60% tef: 30% sorghum: 10% carrot pulp, 45% tef: 45% sorghum: 10% carrot pulp and 30% tef: 60% sorghum: 10% carrot pulp) as experiential variables. The raw materials and injera were characterised for their proximate composition, physicochemical property, mineral composition, microbial analysis, and sensory attributes, using standard methods. The results of the study show that fermentation conditions and blending ratios have a significant effect on the nutritional, anti-nutritional, mineral content, microbial quality, and sensory properties of blended injera products, where higher values of ash, crude protein, crude fat, Total titratable acidity (TTA), Fe, Zn, and Ca (2.30%, 11.34%, 2.62%, 3.53, 32.97 mg/100 g, 2.98 mg/100 g and 176.85 mg/100 g, respectively) were analyzed for the co-fermented injera sample. In addition, a lower microbial count was observed in co-fermented injera samples, whereas microbial counts in injera samples prepared from carrot pulp-supplemented dough after the co-fermentation of tef and sorghum flours were observed to be higher. The injera product made using blending ratio of 60% tef: 30%sorghum: 10% carrot co-fermented was found to be the optimum result due to its very good nutritional improvement (i.e., reduction of some anti-nutritional factors, microbial contents, pH and increased contents of some minerals, crude protein, crude fat, TTA and improved most of the sensory quality of the supplemented injera product). According to this study, sorghum and carrot supplementation on tef could improve the nutritional value of injera while also providing an instant remedy for the growing price of tef.


Subject(s)
Daucus carota , Fermentation , Nutritive Value , Sorghum , Sorghum/chemistry , Daucus carota/chemistry , Daucus carota/microbiology , Flour/analysis , Humans , Eragrostis , Taste , Edible Grain/chemistry
5.
Theor Appl Genet ; 137(7): 147, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834870

ABSTRACT

KEY MESSAGE: Major QTL for grain number per spike were identified on chromosomes 2B and 2D. Haplotypes and candidate genes of QGns.cib-2B.1 were analyzed. Grain number per spike (GNS) is one of the main components of wheat yield. Genetic dissection of their regulatory factors is essential to improve the yield potential. In present study, a recombinant inbred line population comprising 180 lines developed from the cross between a high GNS line W7268 and a cultivar Chuanyu12 was employed to identify quantitative trait loci (QTL) associated with GNS across six environments. Two major QTL, QGns.cib-2B.1 and QGns.cib-2D.1, were detected in at least four environments with the phenotypic variations of 12.99-27.07% and 8.50-13.79%, respectively. And significant interactions were observed between the two major QTL. In addition, QGns.cib-2B.1 is a QTL cluster for GNS, grain number per spikelet and fertile tiller number, and they were validated in different genetic backgrounds using Kompetitive Allele Specific PCR (KASP) markers. QGns.cib-2B.1 showed pleotropic effects on other yield-related traits including plant height, spike length, and spikelet number per spike, but did not significantly affect thousand grain weight which suggested that it might be potentially applicable in breeding program. Comparison analysis suggested that QGns.cib-2B.1 might be a novel QTL. Furthermore, haplotype analysis of QGns.cib-2B.1 indicated that it is a hot spot of artificial selection during wheat improvement. Based on the expression patterns, gene annotation, orthologs analysis and sequence variations, the candidate genes of QGns.cib-2B.1 were predicted. Collectively, the major QTL and KASP markers reported here provided a wealth of information for the genetic basis of GNS and grain yield improvement.


Subject(s)
Chromosome Mapping , Chromosomes, Plant , Haplotypes , Phenotype , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Chromosomes, Plant/genetics , Chromosome Mapping/methods , Genetic Markers , Edible Grain/genetics , Edible Grain/growth & development , Seeds/growth & development , Seeds/genetics , Plant Breeding , Alleles , Genes, Plant
6.
Theor Appl Genet ; 137(7): 148, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836887

ABSTRACT

KEY MESSAGE: Three stable QTL for grain zinc concentration were identified in wheat landrace Chinese Spring. Favorable alleles were more frequent in landraces than in modern wheat cultivars. Wheat is a major source of dietary energy for the growing world population. Developing cultivars with enriched zinc and iron can potentially alleviate human micronutrient deficiency. In this study, a recombinant inbred line (RIL) population with 245 lines derived from cross Zhou 8425B/Chinese Spring was used to detect quantitative trait loci (QTL) for grain zinc concentration (GZnC) and grain iron concentration (GFeC) across four environments. Three stable QTL for GZnC with all favorable alleles from Chinese Spring were identified on chromosomes 3BL, 5AL, and 5BL. These QTL explaining maxima of 8.7%, 5.8%, and 7.1% of phenotypic variances were validated in 125 resequenced wheat accessions encompassing both landraces and modern cultivars using six kompetitive allele specific PCR (KASP) assays. The frequencies of favorable alleles for QGZnCzc.caas-3BL, QGZnCzc.caas-5AL and QGZnCzc.caas-5BL were higher in landraces (90.4%, 68.0%, and 100.0%, respectively) compared to modern cultivars (45.9%, 35.4%, and 40.9%), suggesting they were not selected in breeding programs. Candidate gene association studies on GZnC in the cultivar panel further delimited the QTL into 8.5 Mb, 4.1 Mb, and 47.8 Mb regions containing 46, 4, and 199 candidate genes, respectively. The 5BL QTL located in a region where recombination was suppressed. Two stable and three less stable QTL for GFeC with favorable alleles also from Chinese Spring were identified on chromosomes 4BS (Rht-B1a), 4DS (Rht-D1a), 1DS, 3AS, and 6DS. This study sheds light on the genetic basis of GZnC and GFeC in Chinese Spring and provides useful molecular markers for wheat biofortification.


Subject(s)
Alleles , Chromosome Mapping , Iron , Phenotype , Quantitative Trait Loci , Triticum , Zinc , Triticum/genetics , Zinc/metabolism , Iron/metabolism , Edible Grain/genetics , Chromosomes, Plant/genetics , Seeds/genetics , Seeds/chemistry , Genotype
7.
BMC Plant Biol ; 24(1): 487, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824521

ABSTRACT

Soil salinity is a significant challenge in agriculture, particularly in arid and semi-arid regions such as Pakistan, leading to soil degradation and reduced crop yields. The present study assessed the impact of different salinity levels (0, 25, and 50 mmol NaCl) and biochar treatments (control, wheat-straw biochar, rice-husk biochar, and sawdust biochar applied @ 1% w/w) on the germination and growth performance of wheat. Two experiments: a germination study and a pot experiment (grown up to maturity), were performed. The results showed that NaCl-stress negatively impacted the germination parameters, grain, and straw yield, and agronomic and soil parameters. Biochar treatments restored these parameters compared to control (no biochar), but the effects were inconsistent across NaCl levels. Among the different biochars, wheat-straw biochar performed better than rice-husk and sawdust-derived biochar regarding germination and agronomic parameters. Biochar application notably increased soil pHs and electrical conductivity (ECe). Imposing NaCl stress reduced K concentrations in the wheat shoot and grains with concomitant higher Na concentrations in both parts. Parameters like foliar chlorophyll content (a, b, and total), stomatal and sub-stomatal conductance, and transpiration rate were also positively influenced by biochar addition. The study confirmed that biochar, particularly wheat-straw biochar, effectively mitigated the adverse effects of soil salinity, enhancing both soil quality and wheat growth. The study highlighted that biochar application can minimize the negative effects of salinity stress on wheat. Specifically, the types and dosages of biochar have to be optimized for different salinity levels under field conditions.


Subject(s)
Charcoal , Chlorophyll , Germination , Potassium , Salt Stress , Sodium , Triticum , Triticum/growth & development , Triticum/metabolism , Triticum/drug effects , Triticum/physiology , Germination/drug effects , Charcoal/pharmacology , Chlorophyll/metabolism , Potassium/metabolism , Sodium/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Soil/chemistry , Edible Grain/growth & development , Edible Grain/drug effects , Edible Grain/metabolism , Pakistan , Salinity
8.
PeerJ ; 12: e17475, 2024.
Article in English | MEDLINE | ID: mdl-38827300

ABSTRACT

Fertilization plays a crucial role in ensuring global food security and ecological balance. This study investigated the impact of substituting innovative biological manure for chemical fertilization on rice (Oryza sativa L) productivity and soil biochemical properties based on a three-year experiment. Our results suggested rice yield and straw weight were increased under manure addition treatment. Specifically, 70% of total nitrogen (N) fertilizer substituted by biological manure derived from straw, animal waste and microbiome, led to a substantial 13.6% increase in rice yield and a remarkable 34.2% boost in straw weight. In comparison to the conventional local farmer practice of applying 165 kg N ha-1, adopting 70% of total N plus biological manure demonstrated superior outcomes, particularly in enhancing yield components and spike morphology. Fertilization treatments led to elevated levels of soil microbial biomass carbon and N. However, a nuanced comparison with local practices indicated that applying biological manure alongside urea resulted in a slight reduction in N content in vegetative and economic organs, along with decreases of 10.4%, 11.2%, and 6.1% in N recovery efficiency (NRE), respectively. Prudent N management through the judicious application of partial biological manure fertilizer in rice systems could be imperative for sustaining productivity and soil fertility in southern China.


Subject(s)
Fertilizers , Manure , Nitrogen , Oryza , Soil , Nitrogen/metabolism , Nitrogen/analysis , Manure/analysis , Fertilizers/analysis , Oryza/growth & development , Oryza/metabolism , Soil/chemistry , China , Agriculture/methods , Soil Microbiology , Biomass , Animals , Edible Grain/growth & development , Edible Grain/metabolism
9.
Food Res Int ; 188: 114439, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823829

ABSTRACT

Tropane alkaloids (TAs) are secondary metabolites from weeds that can contaminate cereals and vegetables during harvest. Due to their toxicity, the Regulation (EC) 2023/915 sets maximum levels for atropine and scopolamine in cereal-based foods for infants containing millet, sorghum, buckwheat or their derived products. The aim of this study was to evaluate the effect of pH and temperature on the stability of TAs, as possible parameters in thermal processing to mitigate this chemical hazard in cereal-based infant food. The effect of pH (4 and 7) and temperature (80 °C and 100 °C) was assessed in buffer solutions. Also, treatment at 180 °C was performed in spiked and naturally incurred millet flour to assess the effect of high temperature, simulating cooking or drying, on the stability of TAs in the cereal matrix. The fate of 24 TAs was assessed by UHPLC-MS/MS. TAs showed high thermostability, although it was variable depending on the specific compound, pH, temperature and treatment time. In buffer solutions, higher degradation was found at 100 °C and pH 7. In spiked millet flour at 180 °C for 10 min, scopolamine and atropine contents decreased by 25 % and 22 %, similarly to other TAs which also showed a slow thermal degradation. Atropine, scopolamine, anisodamine, norscopolamine, scopine and scopoline were found in naturally contaminated millet flour. Interestingly, naturally incurred atropine was more thermostable than when spiked, showing a protective effect of the cereal matrix on TAs degradation. The present results highlight the need for an accurate monitorization of TAs in raw materials, as this chemical hazard may remain in infant cereal-based food even after intense thermal processing.


Subject(s)
Edible Grain , Food Contamination , Infant Food , Tandem Mass Spectrometry , Edible Grain/chemistry , Hydrogen-Ion Concentration , Infant Food/analysis , Food Contamination/prevention & control , Tropanes/chemistry , Tropanes/analysis , Temperature , Alkaloids/analysis , Humans , Food Handling/methods , Hot Temperature , Atropine/analysis , Atropine/chemistry , Infant , Chromatography, High Pressure Liquid
10.
Sci Rep ; 14(1): 12638, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825591

ABSTRACT

In this study, changes in bioactive compound contents and the in vitro biological activity of mixed grains, including oats, sorghum, finger millet, adzuki bean, and proso millet, with eight different blending ratios were investigated. The total phenolic compounds and flavonoid contents ranged from 14.43-16.53 mg gallic acid equivalent/g extract and 1.22-5.37 mg catechin equivalent/g extract, respectively, depending on the blending ratio. The DI-8 blend (30% oats, 30% sorghum, 15% finger millet, 15% adzuki bean, and 10% proso millet) exhibited relatively higher antioxidant and anti-diabetic effects than other blending samples. The levels of twelve amino acids and eight organic acids in the grain mixes were measured. Among the twenty metabolites, malonic acid, asparagine, oxalic acid, tartaric acid, and proline were identified as key metabolites across the blending samples. Moreover, the levels of lactic acid, oxalic acid, and malonic acid, which are positively correlated with α-glucosidase inhibition activity, were considerably higher in the DI-blending samples. The results of this study suggest that the DI-8 blend could be used as a functional ingredient as it has several bioactive compounds and biological activities, including anti-diabetic activity.


Subject(s)
Antioxidants , Edible Grain , Antioxidants/pharmacology , Antioxidants/chemistry , Edible Grain/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Phenols/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Amino Acids/metabolism , Amino Acids/analysis
11.
BMC Plant Biol ; 24(1): 491, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825702

ABSTRACT

BACKGROUND: Vegetable soybean is an important vegetable crop in world. Seed size and soluble sugar content are considered crucial indicators of quality in vegetable soybean, and there is a lack of clarity on the molecular basis of grain quality in vegetable soybean. RESULTS: In this context, we performed a comprehensive comparative transcriptome analysis of seeds between a high-sucrose content and large-grain variety (Zhenong 6, ZN6) and a low-sucrose content and small-grain variety (Williams 82, W82) at three developmental stages, i.e. stage R5 (Beginning Seed), stage R6 (Full Seed), and stage R7 (Beginning Maturity). The transcriptome analysis showed that 17,107 and 13,571 differentially expressed genes (DEGs) were identified in ZN6 at R6 (vs. R5) and R7 (vs. R6), respectively, whereas 16,203 and 16,032 were detected in W82. Gene expression pattern and DEGs functional enrichment proposed genotype-specific biological processes during seed development. The genes participating in soluble sugar biosynthesis such as FKGP were overexpressed in ZN6, whereas those responsible for lipid and protein metabolism such as ALDH3 were more enhanced in W82, exhibiting different dry material accumulation between two genotypes. Furthermore, hormone-associated transcriptional factors involved in seed size regulation such as BEH4 were overrepresented in ZN6, exhibiting different seed size regulation processes between two genotypes. CONCLUSIONS: Herein, we not only discovered the differential expression of genes encoding metabolic enzymes involved in seed composition, but also identified a type of hormone-associated transcriptional factors overexpressed in ZN6, which may regulate seed size and soluble content. This study provides new insights into the underlying causes of differences in the soybean metabolites and appearance, and suggests that genetic data can be used to improve its appearance and textural quality.


Subject(s)
Gene Expression Profiling , Glycine max , Seeds , Glycine max/genetics , Glycine max/metabolism , Glycine max/growth & development , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Edible Grain/genetics , Edible Grain/metabolism , Transcriptome , Genes, Plant , Gene Expression Regulation, Plant , Genotype , Sucrose/metabolism
12.
PLoS One ; 19(5): e0303857, 2024.
Article in English | MEDLINE | ID: mdl-38820516

ABSTRACT

Global food security basically depends on potential yields of staple grain crops worldwide, especially under climate change. However, most scholars use various models of production function in which climatic factors are often considered to estimate crop yield mostly at local or regional level. Therefore, in this paper: Potential yields of rice, wheat, maize and soybean worldwide by 2030 are projected creatively using Auto-regressive Integrated Moving Average and Trend Regressed (ARIMA-TR) model in which actual yields in recent two years are used for testing the reliability of projection and Gray System (GS) model for validating the test; Especially individual impacts of climate change on the productions of rice, wheat, maize and soybean worldwide since 1961 are analyzed by using unary regression model in which global mean temperature and land precipitation are independent variable while the yield of crop being dependent one, respectively. Results show that: by 2030, the ratio between average and top yields of world rice is projected to be 50.6% increasing, while those of world wheat, world maize and world soybean are projected to be 38.0% increasing, 14.7% decreasing and 72.5% increasing, respectively. Since 1961 global warming has exerted a negative impact on average yield of world rice less than on its top, a positive effect on average yield of world wheat while a negative impact on its top, a positive effect on average yield of world maize less than on its top, and a positive influence on average yield of world soybean while a negative one on its top, which might be slightly mitigated by 'Carbon Peak' target. The fluctuation of global rainfall contributes to the productions of these crops much less than global warming during same period. Our findings indicate that: to improve global production of four staple grain crops by 2030, the priorities of input should be given to either rice or wheat in both high and low yield countries, whereas to maize in high yield countries and to soybean in low yield countries. These insights highlight some difference from previous studies, and provide academia with innovative comprehension and policy-decision makers with supportive information on sustainable production of these four staple grain crops for global food security under climate change in the future.


Subject(s)
Climate Change , Crops, Agricultural , Oryza , Triticum , Zea mays , Crops, Agricultural/growth & development , Zea mays/growth & development , Triticum/growth & development , Oryza/growth & development , Edible Grain/growth & development , Glycine max/growth & development , Global Warming
13.
Nat Commun ; 15(1): 4493, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802342

ABSTRACT

Abscisic acid (ABA) plays a crucial role in promoting plant stress resistance and seed dormancy. However, how ABA regulates rice quality remains unclear. This study identifies a key transcription factor SLR1-like2 (SLRL2), which mediates the ABA-regulated amylose content (AC) of rice. Mechanistically, SLRL2 interacts with NF-YB1 to co-regulate Wx, a determinant of AC and rice quality. In contrast to SLR1, SLRL2 is ABA inducible but insensitive to GA. In addition, SLRL2 exhibits DNA-binding activity and directly regulates the expression of Wx, bHLH144 and MFT2. SLRL2 competes with NF-YC12 for interaction with NF-YB1. NF-YB1 also directly represses SLRL2 transcription. Genetic validation supports that SLRL2 functions downstream of NF-YB1 and bHLH144 in regulating rice AC. Thus, an NF-YB1-SLRL2-bHLH144 regulatory module is successfully revealed. Furthermore, SLRL2 regulates rice dormancy by modulating the expression of MFT2. In conclusion, this study revealed an ABA-responsive regulatory cascade that functions in both rice quality and seed dormancy.


Subject(s)
Abscisic Acid , Gene Expression Regulation, Plant , Oryza , Plant Dormancy , Plant Proteins , Oryza/genetics , Oryza/metabolism , Abscisic Acid/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Dormancy/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , CCAAT-Binding Factor/metabolism , CCAAT-Binding Factor/genetics , Seeds/metabolism , Seeds/growth & development , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Amylose/metabolism , Edible Grain/metabolism , Edible Grain/genetics , Plants, Genetically Modified
14.
Food Chem ; 453: 139651, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761736

ABSTRACT

The food contamination with Ochratoxin A (OTA) has highlighted the need to create precise, sensitive, and convenient techniques. Herein, we proposed a label-free and immobilization-free ratiometric homogeneous electrochemical aptasensor based on dual catalytic hairpin self-assembly (CHA) for OTA detection. Methylene blue (MB) and ferrocene (Fc) in solution were utilized as label-free signaling molecules, generating a response signal (IMB) and a reference signal (IFc), respectively. The ratio of IMB/IFc was utilized as a measure to quantify OTA. Dual CHA was exploited to increase the ratiometric signal and enhance the amplification efficiency. This aptasensor achieved trace-level detection for OTA over a linear range of lower concentrations (1.0 × 10-3 ng/mL-1.0 × 103 ng/mL) with LOD of 92 fg/mL. The aptasensor was successfully applied to detect OTA in cereal and wine, with comparable results of HPLC-MS/MS. This strategy provided a viable platform for rapid, sensitive, and accurate detection of OTA in food.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Food Contamination , Limit of Detection , Ochratoxins , Wine , Ochratoxins/analysis , Food Contamination/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Wine/analysis , Edible Grain/chemistry , Catalysis
15.
Trop Anim Health Prod ; 56(5): 169, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769230

ABSTRACT

Rumen cud transfaunation re-establishes rumen micro environment and improves fermentation in recipient animals affected with digestive disorders. Preserving rumen cud or fluid will increase its availability for the treatment of rumen fermentation disorders, without having to maintain donor animals. Rumen fluid collected from healthy goats, fed standard ration having roughage 70% and concentrate 30%, was lyophilized (prefreezing -80 °C, 48 h; lyophilization -45 °C, 32 h) using 5% glycerol as cryoprotectant. The 16 S metagenome analysis of the lyophilized rumen fluid (LRF) revealed an abundance of Prevotella (33.2%). Selenomonas ruminantium (1.87%) and Megasphaera elsdenii (0.23%) were also present. Twenty-four goats having history of high grain feeding and exhibiting clinical symptoms of rumen fermentation disorders were randomly distributed into either one of the two treatment groups viz., T1 = oral administration of LRF 31 g/animal/day and T2 = oral administration of sodium bicarbonate (SB) 15 g/animal/day. Post intervention LRF and SB, improved animal body condition, feed intake, fecal consistency, elevated the ruminal pH at 48 h, reduced propionate and lactate at 48 h, reduced total volatile fatty acids (TVFA) and ammonia nitrogen at 24 h. Significant reduction in serum blood urea nitrogen (BUN) and urea levels were observed even from 24 h post intervention irrespective of the treatments. LRF significantly improved acetate and decreased propionate production compared to SB. LRF at 7.5% (v/v) can thus be used to counteract ruminal fermentation disorders in goats sequel to high grain ration.


Subject(s)
Animal Feed , Fermentation , Goats , Rumen , Animals , Goats/physiology , Rumen/microbiology , Rumen/metabolism , Animal Feed/analysis , Freeze Drying , Diet/veterinary , Edible Grain/chemistry , Prevotella , Hydrogen-Ion Concentration , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Acidosis/veterinary , Random Allocation , Megasphaera , Selenomonas , Male
16.
Meat Sci ; 214: 109522, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38692014

ABSTRACT

Verification of beef production systems and authentication of origin is becoming increasingly important as consumers base purchase decisions on a greater number of perceived values including the healthiness and environmental impact of products. Previously Raman spectroscopy has been explored as a tool to classify carcases from grass and grain fed cattle. Thus, the aim of the current study was to validate Partial Least Squares Discriminant Analysis (PLS-DA) models created using independent samples from carcases sampled from northern and southern Australian production systems in 2019, 2020 and 2021. Validation of the robustness of discrimination models was undertaken using spectral measures of fat from 585 carcases which were measured in 2022 using a Raman handheld device with a sample excised for fatty acid analysis. PLS-DA models were constructed and then employed to classify samples as either grass or grain fed in a two-class model. Overall, predictions were high with accuracies of up to 95.7% however, variation in the predictive ability was noted with models created for southern cattle yielding an accuracy of 73.2%. While some variation in fatty acids and therefore models can be attributed to differences in genetics, management and diet, the impact of duration of feeding is currently unknown and thus further work is warranted.


Subject(s)
Animal Feed , Diet , Fatty Acids , Red Meat , Spectrum Analysis, Raman , Animals , Cattle , Spectrum Analysis, Raman/methods , Red Meat/analysis , Australia , Fatty Acids/analysis , Animal Feed/analysis , Diet/veterinary , Discriminant Analysis , Edible Grain , Poaceae , Least-Squares Analysis
17.
J Trace Elem Med Biol ; 84: 127457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692231

ABSTRACT

The aim of this paper was the quantitative determination of some macro and trace elements, especially potentially toxic elements in the samples of infant baby formulae and baby food cereals commercially available in Serbia using the inductively coupled plasma optical emission spectrometry (ICP OES) method. Among the macro elements, K is the most abundant in all infant formulae samples, followed by Ca, P, Na and Mg. On the other hand, the analysis of food cereals showed that P is presents in the highest contents, followed by K, Ca, Na, and Mg. Potentially toxic elements As, Pb, Hg, and Cd were not detected in any sample of infant formulae, while Cd was detected and quantified in cereal foods. Also, the calculated values of Estimated Tolerable Weekly Intake (ETWI) as well as the Estimated Tolerable Monthly Intake (ETMI) were lower than recommended values for a tolerable weekly intake (TWI) and provisional tolerable monthly intake (PTMI).


Subject(s)
Edible Grain , Infant Food , Infant Formula , Trace Elements , Serbia , Edible Grain/chemistry , Humans , Infant , Trace Elements/analysis , Infant Food/analysis , Infant Formula/analysis , Infant Formula/chemistry
18.
Planta ; 260(1): 10, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38796805

ABSTRACT

MAIN CONCLUSION: Brown-top millet is a lesser-known millet with a high grain nutrient value, early maturation, and drought tolerance that needs basic research to understand and conserve food security. Brown-top millet [Urochloa ramosa (L.)] is currently cultivated in some developing countries (especially in India) for food and fodder, although it is less known among the small millets. Like other millets, it contains macro- and micronutrients, vitamins, minerals, proteins, and fiber, all of which have rich health benefits. The nutritional importance and health benefits of brown-top millet are still unknown to many people due to a lack of awareness, wide cultivation, and research. Hence, this millet is currently overshadowed by other major cereals. This review article aims to present the nutritional, breeding, genetic, and genomic resources of brown-top millet to inform millet and other plant researchers. It is important to note that genetic and genomic resources have not yet been created for this millet. To date, there are no genomic and transcriptomic resources for brown-top millet to develop single nucleotide polymorphisms (SNP) and insertion/Deletions (InDels) for breeding studies. Furthermore, studies regarding nutritional significance and health benefits are required to investigate the exact nutritional contents and health benefits of the brown-top millet. The present review delves into the nutritional value and health advantages of brown-top millet, as supported by the available literature. The limitations of producing brown-top millet have been enumerated. We also cover the status of marker-assisted breeding and functional genomics research on closely related species. Lastly, we draw insights for further research such as developing omics resources and applying genome editing to study and improve brown-top millet. This review will help to start breeding and other molecular studies to increase the growth and development of this cereal.


Subject(s)
Millets , Plant Breeding , Millets/genetics , Plant Breeding/methods , Genomics , Crops, Agricultural/genetics , Nutritive Value , Genome, Plant/genetics , Edible Grain/genetics
19.
BMC Plant Biol ; 24(1): 458, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797860

ABSTRACT

BACKGROUND: The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled. RESULTS: This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant. CONCLUSIONS: In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.


Subject(s)
Edible Grain , Endosperm , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Endosperm/genetics , Endosperm/growth & development , Endosperm/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , CRISPR-Cas Systems
20.
Sci Total Environ ; 933: 173180, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740212

ABSTRACT

Projected changes in climate patterns, increase of weather extreme, water scarcity, and land degradation are going to challenge agricultural production and food security. Currently, studies concerning effects of climate change on agriculture mainly focus on yield and quality of cereal crops. In contrast, there has been little attention on the effects of environmental changes on vegetables that are necessary and key nutrition component for human beings, but quite sensitive to these climatic changes. Therefore, we reviewed the main changes of environmental factors under the current scenario as well as the impacts of these factors on the physiological responses and nutritional alteration of vegetables and the key findings based on modelling. The gaps between cereal crops and vegetables were pinpointed and the actions to take in the future were proposed. The review will enhance our understanding concerning the effects of environmental changes on production, physiological responses, nutrition, and modelling of vegetable plants.


Subject(s)
Agriculture , Climate Change , Crops, Agricultural , Edible Grain , Vegetables , Agriculture/methods , Humans , Food Supply
SELECTION OF CITATIONS
SEARCH DETAIL