Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.291
Filter
1.
Biomacromolecules ; 25(8): 5222-5232, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39089682

ABSTRACT

Fluorogenic glycomonomers have been used for biological evaluations, and water-soluble and Förster resonance energy transfer (FRET)-sensitive glycopolymers have also been reported. A FRET-sensitive polymer was conveniently prepared from a fluorogenic donor monomer and a fluorogenic acceptor monomer by means of simple radical polymerization in high yield. Continuous fluorospectroscopic monitoring of the polymer in the presence of an enzyme was performed, and the results showed the possible application of the FRET-sensitive glycopolymer for practical use. In addition to the use of aqueous solution phase, the water-soluble and FRET-sensitive glycopolymer was completely captured into an interpenetrating polymer network (IPN) by means of radical polymerization with a combination of acrylamide and bis-acrylamide as used for the cross-linking reagent system. The IPN including the FRET-sensitive glycopolymer was allowed to react with amylases in an aqueous buffer solution at 37 °C, and the enzymatic reaction was continuously and conveniently monitored by means of fluorometric spectroscopy.


Subject(s)
Fluorescence Resonance Energy Transfer , Polymers , Fluorescence Resonance Energy Transfer/methods , Polymers/chemistry , Enzyme Assays/methods , Polymerization , Fluorescent Dyes/chemistry
2.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062935

ABSTRACT

The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/ß-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system.


Subject(s)
Amidohydrolases , Endocannabinoids , Enzyme Assays , Endocannabinoids/metabolism , Humans , Enzyme Assays/methods , Amidohydrolases/metabolism , Amidohydrolases/antagonists & inhibitors , Hydrolysis , Monoacylglycerol Lipases/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Animals , Fluorometry/methods , Fluorescence , Kinetics , Fluorescent Dyes/chemistry , Enzyme Inhibitors/pharmacology
3.
Molecules ; 29(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39064965

ABSTRACT

The ability of Mycobacterium tuberculosis to derive lipids from the host, store them intracellularly, and then break them down into energy requires a battery of serine hydrolases. Serine hydrolases are a large, diverse enzyme family with functional roles in dormant, active, and reactivating mycobacterial cultures. To rapidly measure substrate-dependent shifts in mycobacterial serine hydrolase activity, we combined a robust mycobacterial growth system of nitrogen limitation and variable carbon availability with nimble in-gel fluorogenic enzyme measurements. Using this methodology, we rapidly analyzed a range of ester substrates, identified multiple hydrolases concurrently, observed functional enzyme shifts, and measured global substrate preferences. Within every growth condition, mycobacterial hydrolases displayed the full, dynamic range of upregulated, downregulated, and constitutively active hydrolases independent of the ester substrate. Increasing the alkyl chain length of the ester substrate also allowed visualization of distinct hydrolase activity likely corresponding with lipases most responsible for lipid breakdown. The most robust expression of hydrolase activity was observed under the highest stress growth conditions, reflecting the induction of multiple metabolic pathways scavenging for energy to survive under this high stress. The unique hydrolases present under these high-stress conditions could represent novel drug targets for combination treatment with current front-line therapeutics. Combining diverse fluorogenic esters with in-gel activity measurements provides a rapid, customizable, and sensitive detection method for mycobacterial serine hydrolase activity.


Subject(s)
Hydrolases , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzymology , Hydrolases/metabolism , Substrate Specificity , Bacterial Proteins/metabolism , Serine/metabolism , Enzyme Assays/methods
4.
Mikrochim Acta ; 191(7): 439, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38954110

ABSTRACT

A Pyrococcus furiosus Argonaute (PfAgo)-based biosensor is presented for alkaline phosphatase (ALP) activity detection in which the ALP-catalyzed hydrolysis of 3'-phosphate-modified functional DNA activates the strand displacement amplification, and the amplicon mediates the fluorescent reporter cleavage as a guide sequence of PfAgo. Under the dual amplification mode of PfAgo-catalyzed multiple-turnover cleavage activity and pre-amplification technology, the developed method was successfully applied to ALP activity determination with a detection limit (LOD) of 0.0013 U L-1 (3σ) and a detection range of 0.0025 to 1 U L-1 within 90 min. The PfAgo-based method exhibits satisfactory analytic performance in the presence of potential interferents and in complex human serum samples. The proposed method shows several advantages, such as rapid analysis, high sensitivity, low-cost, and easy operation, and has great potential in disease evolution fundamental studies and clinical diagnosis applications.


Subject(s)
Alkaline Phosphatase , Biosensing Techniques , Limit of Detection , Pyrococcus furiosus , Biosensing Techniques/methods , Alkaline Phosphatase/blood , Alkaline Phosphatase/chemistry , Alkaline Phosphatase/metabolism , Humans , Pyrococcus furiosus/enzymology , Argonaute Proteins/metabolism , Nucleic Acid Amplification Techniques/methods , Enzyme Assays/methods
5.
Methods Mol Biol ; 2837: 257-270, 2024.
Article in English | MEDLINE | ID: mdl-39044091

ABSTRACT

HBV is a small, enveloped DNA virus that replicates by reverse transcription of an RNA intermediate. Current anti-HBV treatment regiments employ interferon α or nucleos(t)ide analogs, but they are not curative, are of long duration, and can be accompanied by systemic side-effects. The HBV ribonuclease H (RNaseH) is essential for viral replication; however, it is unexploited as a drug target. RNaseH inhibitors that actively block viral replication would represent an important addition to the potential new drugs for treating HBV infection. Here, we describe two methods to measure the activity of RNaseH inhibitors. The DNA oligonucleotide-directed RNA cleavage assay allows mechanistic analysis of compounds for anti-HBV RNaseH activity. Analysis of preferential inhibition of plus-polarity DNA strand synthesis by HBV RNaseH inhibitors in a cell culture model of HBV replication can be used to measure the ability of RNaseH inhibitors to block viral replication.


Subject(s)
Antiviral Agents , Hepatitis B virus , Ribonuclease H , Virus Replication , Ribonuclease H/metabolism , Ribonuclease H/antagonists & inhibitors , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Humans , Virus Replication/drug effects , Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Cell Culture Techniques/methods , Enzyme Assays/methods
6.
Methods Mol Biol ; 2839: 243-247, 2024.
Article in English | MEDLINE | ID: mdl-39008258

ABSTRACT

Ferrochelatases (E.C. 4.99.1.1) catalyze the insertion of ferrous iron into either protoporphyrin IX to make protoheme IX or coproporphyrin III to make coproheme III. Ferrochelatase activity in extracts or purified protein can be measured via several assays. Here, we describe a rapid real-time direct spectroscopic ferrochelatase assay for both protoporphyrin and coproporphyrin ferrochelatases.


Subject(s)
Enzyme Assays , Ferrochelatase , Protoporphyrins , Ferrochelatase/metabolism , Ferrochelatase/chemistry , Ferrochelatase/genetics , Protoporphyrins/chemistry , Protoporphyrins/metabolism , Enzyme Assays/methods , Coproporphyrins/metabolism , Coproporphyrins/chemistry , Spectrum Analysis/methods , Humans
7.
Anal Chem ; 96(29): 12181-12188, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38975840

ABSTRACT

New strategies for the simultaneous and portable detection of multiple enzyme activities are highly desirable for clinical diagnosis and home care. However, the methods developed thus far generally suffer from high costs, cumbersome procedures, and heavy reliance on large-scale instruments. To satisfy the actual requirements of rapid, accurate, and on-site detection of multiple enzyme activities, we report herein a smartphone-assisted programmable microfluidic paper-based analytical device (µPAD) that utilizes colorimetric and photothermal signals for simultaneous, accurate, and visual quantitative detection of alkaline phosphatase (ALP) and butyrylcholinesterase (BChE). Specifically, the operation of this µPAD sensing platform is based on two sequential steps. Cobalt-doped mesoporous cerium oxide (Co-m-CeO2) with remarkable peroxidase-like activities under neutral conditions first catalytically decomposes H2O2 for effectively converting colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB). The subsequent addition of ALP or BChE to their respective substrates produces a reducing substance that can somewhat inhibit the oxTMB transformation for compromised colorimetric and photothermal signals of oxTMB. Notably, these two-step bioenzyme-nanozyme cascade reactions strongly support the straightforward and excellent processability of this platform, which exhibit lower detection limits for ALP and BChE with a detection limit for BChE an order of magnitude lower than those of the other reported paper-based detection methods. The practicability and efficiency of this platform are further demonstrated through the analysis of clinical serum samples. This innovative platform exhibits great potential as a facile yet robust approach for simultaneous, accurate, and on-site visual detection of multiple enzyme activities in authentic samples.


Subject(s)
Alkaline Phosphatase , Butyrylcholinesterase , Colorimetry , Paper , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/analysis , Alkaline Phosphatase/chemistry , Humans , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/blood , Lab-On-A-Chip Devices , Benzidines/chemistry , Smartphone , Cerium/chemistry , Cobalt/chemistry , Microfluidic Analytical Techniques/instrumentation , Limit of Detection , Enzyme Assays/methods , Enzyme Assays/instrumentation , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis
8.
Methods Mol Biol ; 2824: 335-345, 2024.
Article in English | MEDLINE | ID: mdl-39039421

ABSTRACT

Rift Valley fever (RVF) virus is widespread worldwide and poses a severe threat to human life and property. RVF viral polymerase plays a vital role in the replication and transcription of the virus. Here, we describe how to express and purify this polymerase and perform tests for its in vitro activity assays.


Subject(s)
Rift Valley fever virus , Rift Valley fever virus/genetics , Saccharomyces cerevisiae/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Enzyme Assays/methods , Humans , Gene Expression , Virus Replication/genetics
9.
Methods Mol Biol ; 2814: 55-79, 2024.
Article in English | MEDLINE | ID: mdl-38954197

ABSTRACT

Lysosomes are membrane-enclosed organelles that digest intracellular material. They contain more than 50 different enzymes that can degrade a variety of macromolecules including nucleic acids, proteins, polysaccharides, and lipids. In addition to functioning within lysosomes, lysosomal enzymes are also secreted. Alterations in the levels and activities of lysosomal enzymes dysregulates lysosomes, which can lead to the intralysosomal accumulation of biological material and the development of lysosomal storage diseases (LSDs) in humans. Dictyostelium discoideum has a long history of being used to study the trafficking and functions of lysosomal enzymes. More recently, it has been used as a model system to study several LSDs. In this chapter, we outline the methods for assessing the activity of several lysosomal enzymes in D. discoideum (α-galactosidase, ß-galactosidase, α-glucosidase, ß-glucosidase, ß-N-acetylglucosaminidase, α-mannosidase, cathepsin B, cathepsin D, cathepsin F, palmitoyl protein thioesterase 1, and tripeptidyl peptidase 1).


Subject(s)
Dictyostelium , Lysosomes , Dictyostelium/enzymology , Lysosomes/enzymology , Lysosomes/metabolism , Tripeptidyl-Peptidase 1 , Enzyme Assays/methods , Humans , beta-Galactosidase/metabolism , Lysosomal Storage Diseases/enzymology , Lysosomal Storage Diseases/metabolism , Thiolester Hydrolases/metabolism
10.
Mol Genet Metab ; 142(4): 108517, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908075

ABSTRACT

GM2 gangliosidosis is a group of rare lysosomal storage disorders (LSDs) including Tay-Sachs disease (TSD) and Sandhoff disease (SD), caused by deficiency in activity of either ß-hexosaminidase A (HexA) or both ß-hexosaminidase A and ß-hexosaminidase B (HexB). Methods for screening and diagnosis of TSD and SD include measurement and comparison of the activity of these two enzymes. Here we report a novel method for duplex screening of dried blood spots (DBS) for TSD and SD by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method requires incubation of a single 3 mm DBS punch with the assay cocktail followed by the injection into the LC-MS/MS. The performance of the method was evaluated by comparing the confirmed TSD and SD patient DBS to random healthy newborn DBS which showed easy discrimination between the three cohorts. The method is multiplexable with other LSD MS/MS enzyme assays which is critical to the continued expansion of the NBS panels.


Subject(s)
Dried Blood Spot Testing , Neonatal Screening , Sandhoff Disease , Tandem Mass Spectrometry , Tay-Sachs Disease , Humans , Tay-Sachs Disease/diagnosis , Tay-Sachs Disease/blood , Tay-Sachs Disease/enzymology , Infant, Newborn , Tandem Mass Spectrometry/methods , Neonatal Screening/methods , Dried Blood Spot Testing/methods , Sandhoff Disease/diagnosis , Sandhoff Disease/blood , Chromatography, Liquid/methods , Enzyme Assays/methods , beta-Hexosaminidase alpha Chain/blood , Hexosaminidase A/blood , Hexosaminidase B/blood
11.
Exp Eye Res ; 245: 109966, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857822

ABSTRACT

The retinal pigment epithelium (RPE) is omnivorous and can utilize a wide range of substrates for oxidative phosphorylation. Certain tissues with high mitochondrial metabolic load are capable of ketogenesis, a biochemical pathway that consolidates acetyl-CoA into ketone bodies. Earlier work demonstrated that the RPE expresses the rate-limiting enzyme for ketogenesis, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), and that the RPE indeed produces ketone bodies, including beta-hydroxybutyrate (ß-HB). Prior work, based on detecting ß-HB via enzymatic assays, suggested that differentiated cultures of primary RPE preferentially export ß-HB across the apical membrane. Here, we compare the accuracy of measuring ß-HB by enzymatic assay kits to mass spectrometry analysis. We found that commercial kits lack the sensitivity to accurately measure the levels of ß-HB in RPE cultures and are prone to artifact. Using mass spectrometry, we found that while RPE cultures secrete ß-HB, they do so equally to both apical and basal sides. We also find RPE is capable of consuming ß-HB as levels rise. Using isotopically labeled glucose, amino acid, and fatty acid tracers, we found that carbons from both fatty acids and ketogenic amino acids, but not from glucose, produce ß-HB. Altogether, we substantiate ß-HB secretion in RPE but find that the secretion is equal apically and basally, RPE ß-HB can derive from ketogenic amino acids or fatty acids, and accurate ß-HB assessment requires mass spectrometric analysis.


Subject(s)
3-Hydroxybutyric Acid , Ketone Bodies , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Ketone Bodies/metabolism , Cells, Cultured , 3-Hydroxybutyric Acid/metabolism , Humans , Enzyme Assays/methods , Hydroxymethylglutaryl-CoA Synthase/metabolism , Mass Spectrometry , Animals
12.
Methods Mol Biol ; 2792: 19-27, 2024.
Article in English | MEDLINE | ID: mdl-38861075

ABSTRACT

Besides the historical and traditional use of nuclear magnetic resonance (NMR) spectroscopy as a structure elucidation tool for proteins and metabolites, its quantification ability allows the determination of metabolite amounts and therefore enzymatic activity measurements. For this purpose, 1H-NMR with adapted water pulse pre-saturation sequences and calibration curves with commercial standard solutions can be used to quantify the photorespiratory cycle intermediates, 2-phosphoglycolate and glycolate, associated with the phosphoglycolate phosphatase reaction. The intensity of the 1H-NMR signal of glycolate produced by the activity of purified recombinant Arabidopsis thaliana PGLP1 can therefore be used to determine PGLP1 enzymatic activities and kinetic parameters.


Subject(s)
Arabidopsis , Glycolates , Magnetic Resonance Spectroscopy , Phosphoric Monoester Hydrolases , Glycolates/metabolism , Glycolates/chemistry , Phosphoric Monoester Hydrolases/metabolism , Arabidopsis/metabolism , Arabidopsis/enzymology , Magnetic Resonance Spectroscopy/methods , Arabidopsis Proteins/metabolism , Enzyme Assays/methods , Kinetics , Recombinant Proteins/metabolism
13.
Talanta ; 277: 126399, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38876030

ABSTRACT

The misregulation of protein phosphatases is a key factor in the development of many human diseases, notably cancers. Here, based on a 100 MHz quartz crystal microbalance (QCM) biosensing platform, the dephosphorylation process of phosphopeptide (P-peptide) caused by protein tyrosine phosphatase 1B (PTP1B) was monitored in real time for the first time and PTP1B activity was assayed rapidly and sensitively. The QCM chip, coated with a gold (Au) film, was used to immobilized thiol-labeled single-stranded 5'-phosphate-DNAs (P-DNA) through Au-S bond. The P-peptide, specific to PTP1B, was then connected to the P-DNA via chelation between Zr4+ and phosphate groups. When PTP1B was injected into the QCM flow cell where the P-peptide/Zr4+/MCH/P-DNA/Au chip was placed, the P-peptide was dephosphorylated and released from the Au chip surface, resulting in an increase in the frequency of the QCM Au chip. This allowed the real-time monitoring of the P-peptide dephosphorylation process and sensitive detection of PTP1B activity within 6 min with a linear detection range of 0.01-100 pM and a detection limit of 0.008 pM. In addition, the maximum inhibitory ratios of inhibitors were evaluated using this proposed 100 MHz QCM biosensor. The developed 100 MHz QCM biosensing platform shows immense potential for early diagnosis of diseases related to protein phosphatases and the development of drugs targeting protein phosphatases.


Subject(s)
Biosensing Techniques , Phosphopeptides , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Quartz Crystal Microbalance Techniques , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/analysis , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Quartz Crystal Microbalance Techniques/methods , Phosphopeptides/analysis , Biosensing Techniques/methods , Phosphorylation , Humans , Zirconium/chemistry , Time Factors , Gold/chemistry , Enzyme Assays/methods
14.
Anal Chem ; 96(25): 10408-10415, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38863215

ABSTRACT

The abnormal expression of protein tyrosine phosphatase 1B (PTP1B) is highly related to several serious human diseases. Therefore, an accurate PTP1B activity assay is beneficial to the diagnosis and treatment of these diseases. In this study, a dual-mode biosensing platform that enabled the sensitive and accurate assay of PTP1B activity was constructed based on the high-frequency (100 MHz) quartz crystal microbalance (QCM) and dual-signaling electrochemical (EC) ratiometric strategy. Covalent-organic framework@gold nanoparticles@ferrocene@single-strand DNA (COF@Au@Fc-S0) was introduced onto the QCM Au chip via the chelation between Zr4+ and phosphate groups (phosphate group of the phosphopeptide (P-peptide) on the QCM Au chip and the phosphate group of thiol-labeled single-stranded DNA (S0) on COF@Au@Fc-S0) and used as a signal reporter. When PTP1B was present, the dephosphorylation of the P-peptide led to the release of COF@Au@Fc-S0 from the QCM Au chip, resulting in an increase in the frequency of the QCM. Meanwhile, the released COF@Au@Fc-S0 hybridized with thiol/methylene blue (MB)-labeled hairpin DNA (S1-MB) on the Au NPs-modified indium-tin oxide (ITO) electrode. This caused MB to be far away from the electrode surface and Fc to be close to the electrode, leading to a decrease in the oxidation peak current of MB and an increase in the oxidation peak current of Fc. Thus, PTP1B-induced dephosphorylation of the P-peptide was monitored in real time by QCM, and PTP1B activity was detected sensitively and reliably using this innovative QCM-EC dual-mode sensing platform with an ultralow detection limit. This platform is anticipated to serve as a robust tool for the analysis of protein phosphatase activity and the discovery of drugs targeting protein phosphatase.


Subject(s)
Electrochemical Techniques , Ferrous Compounds , Gold , Metal-Organic Frameworks , Metallocenes , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Quartz Crystal Microbalance Techniques , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/analysis , Gold/chemistry , Humans , Metal-Organic Frameworks/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Zirconium/chemistry , Enzyme Assays/methods
15.
Food Chem ; 457: 140099, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38905836

ABSTRACT

Developing convenient γ-glutamyl transpeptidase (GGT) activity detection methods is of great significance for soaking Laba garlic and human diseases detection. A dual-site fluorescent probe (probe 1) was developed for detection the activity of GGT. Probe 1 could recognize GGT by the enzymatic hydrolysis of peptide bond by GGT. There has a linear relationship between the fluorescence intensity of probe 1 at 416 nm and the activity of GGT. And the color of the probe solution gradually changed from colorless to blue with the increase of GGT activity under 365 nm ultraviolet light. Importantly, it has a linear relationship between the activity of GGT and the blue (B) value of probe solution photo. Therefore, probes can serve as a convenient tool for detecting GGT activity. More importantly, the probe has been successfully applied to detect of GGT activity in garlic.


Subject(s)
Fluorescent Dyes , Garlic , gamma-Glutamyltransferase , Garlic/chemistry , Garlic/enzymology , gamma-Glutamyltransferase/metabolism , gamma-Glutamyltransferase/analysis , Fluorescent Dyes/chemistry , Humans , Spectrometry, Fluorescence/methods , Enzyme Assays/methods
16.
Methods Mol Biol ; 2832: 163-170, 2024.
Article in English | MEDLINE | ID: mdl-38869794

ABSTRACT

Protein phosphorylation is one of the most important posttranslational modifications in cell signaling pathways. Kinases and phosphatases play essential roles in transferring information between sensors and effectors under stress conditions. Several methods have been developed to analyze the phosphorylation mechanisms. Each method has advantages and disadvantages. In vitro kinase assay using recombinant proteins is a method to analyze kinase activities under simplified conditions. It is a good strategy to understand each mechanism one by one, although it is not always suitable to estimate the feature of complex machinery in vivo. In this chapter, the purification of recombinant proteins produced in Escherichia coli followed by assaying a kinase activity using radioactivity is described.


Subject(s)
Enzyme Assays , Escherichia coli , Protein Serine-Threonine Kinases , Recombinant Proteins , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Enzyme Assays/methods , Phosphorylation , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Stress, Physiological , Arabidopsis/genetics
17.
Methods Enzymol ; 699: 89-119, 2024.
Article in English | MEDLINE | ID: mdl-38942517

ABSTRACT

Prenyltransferases are terpene synthases that combine 5-carbon precursor molecules into linear isoprenoids of varying length that serve as substrates for terpene cyclases, enzymes that catalyze fascinating cyclization reactions to form diverse terpene natural products. Terpenes and their derivatives comprise the largest class of natural products and have myriad functions in nature and diverse commercial uses. An emerging class of bifunctional terpene synthases contains both prenyltransferase and cyclase domains connected by a disordered linker in a single polypeptide chain. Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is one of the most well-characterized members of this subclass and serves as a model system for the exploration of structure-function relationships. PaFS has been structurally characterized using a variety of biophysical techniques. The enzyme oligomerizes to form a stable core of six or eight prenyltransferase domains that produce a 20-carbon linear isoprenoid, geranylgeranyl diphosphate (GGPP), which then transits to the cyclase domains for the generation of fusicoccadiene. Cyclase domains are in dynamic equilibrium between randomly splayed-out and prenyltransferase-associated positions; cluster channeling is implicated for GGPP transit from the prenyltransferase core to the cyclase domains. In this chapter, we outline the methods we are developing to interrogate the nature of cluster channeling in PaFS, including enzyme activity and product analysis assays, approaches for engineering the linker segment connecting the prenyltransferase and cyclase domains, and structural analysis by cryo-EM.


Subject(s)
Alkyl and Aryl Transferases , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/genetics , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/genetics , Diterpenes/metabolism , Diterpenes/chemistry , Enzyme Assays/methods , Polyisoprenyl Phosphates/metabolism , Polyisoprenyl Phosphates/chemistry , Cyclization
18.
Methods Mol Biol ; 2832: 145-161, 2024.
Article in English | MEDLINE | ID: mdl-38869793

ABSTRACT

Photorespiration, an essential metabolic component, is a classic example of interactions between the intracellular compartments of a plant cell: the chloroplast, peroxisome, mitochondria, and cytoplasm. The photorespiratory pathway is often modulated by abiotic stress and is considered an adaptive response. Monitoring the patterns of key enzymes located in different subcellular components would be an ideal approach to assessing the modulation of the photorespiratory metabolism under abiotic stress. This chapter describes the procedures for assaying several individual enzyme activities of key photorespiratory enzymes and evaluating their response to oxidative/photooxidative stress. It is essential to ascertain the presence of stress in the experimental material. Therefore, procedures for typical abiotic stress induction in leaves by highlighting without or with menadione (an oxidant that targets mitochondria) are also included.


Subject(s)
Plant Leaves , Stress, Physiological , Plant Leaves/metabolism , Photosynthesis , Chloroplasts/metabolism , Oxidative Stress , Enzyme Assays/methods , Cell Respiration , Vitamin K 3/pharmacology , Arabidopsis/metabolism , Arabidopsis/enzymology , Arabidopsis/physiology , Light
19.
Methods Mol Biol ; 2792: 41-49, 2024.
Article in English | MEDLINE | ID: mdl-38861077

ABSTRACT

Glutamate:glyoxylate aminotransferase (GGAT; EC 2.6.1.4) and serine:glyoxylate aminotransferase activities (SGAT; EC 2.6.1.45) are central photorespiratory reactions within plant peroxisomes. Both enzymatic reactions convert glyoxylate, a product of glycolate oxidase, to glycine, a substrate of the mitochondrial glycine decarboxylase complex. The GGAT reaction uses glutamate as an amino group donor and also produces α-ketoglutarate, which is recycled to glutamate in plastids by ferredoxin-dependent glutamate synthase. Using serine, a product of mitochondrial serine hydroxymethyltransferase, as an amino group donor, the SGAT reaction also produces hydroxypyruvate, a substrate of hydroxypyruvate reductase. The activities of these photorespiratory aminotransferases can be measured using indirect, coupled, spectrophotometric assays, detailed herein.


Subject(s)
Spectrophotometry , Transaminases , Transaminases/metabolism , Spectrophotometry/methods , Glyoxylates/metabolism , Glutamic Acid/metabolism , Enzyme Assays/methods , Cell Respiration
20.
Methods Mol Biol ; 2792: 29-39, 2024.
Article in English | MEDLINE | ID: mdl-38861076

ABSTRACT

Phosphoglycolate phosphatase (PGLP) dephosphorylates 2-phosphoglycolate to glycolate that can be further metabolized to glyoxylate by glycolate oxidase (GOX) via an oxidative reaction that uses O2 and releases H2O2. The oxidation of o-dianisidine by H2O2 catalyzed by a peroxidase can be followed in real time by an absorbance change at 440 nm. Based on these reactions, a spectrophotometric method for measuring PGLP activity using a coupled reaction with recombinant Arabidopsis thaliana GOX is described. This protocol has been used successfully with either purified PGLP or total soluble proteins extracted from Arabidopsis rosette leaves.


Subject(s)
Alcohol Oxidoreductases , Arabidopsis , Phosphoric Monoester Hydrolases , Recombinant Proteins , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Glycolates/metabolism , Enzyme Assays/methods , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Plant Leaves/metabolism , Plant Leaves/enzymology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Spectrophotometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL