Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.496
Filter
1.
Reprod Domest Anim ; 59(5): e14615, 2024 May.
Article in English | MEDLINE | ID: mdl-38798181

ABSTRACT

Present study was designed to evaluate the role of virulence factor genes (papG, cnf1 and hylA) in the pathogenesis of canine pyometra. Antimicrobial susceptibility test and detection of virulence genes were performed Escherichia coli (E. coli) detected in uterine swab samples. Animals were divided into two groups based on the presence (VF+, n:14) or absence (VF-, n:7) of the virulence factor genes papG, cnf1 and hylA. Blood and tissue glutathione peroxidase activity, uterine histopathologic analysis and AQP3, ESR1, PGR, OXTR gene expressions were determined in both groups. Statistical analyses were performed using Stata version 15.1. All E. coli isolates were susceptible to amikacin, whereas resistant to ampicillin, amoxicillin/clavulanic acid and lincomycin. None of the isolates were susceptible to cefotaxime. E. coli isolates had at least one virulence gene. The most prevalent gene was fimH (100%), followed by fyuA (95.8%), usp (83.3%), sfa (75%), cnf1 and hlyA (70.8%) genes. Blood GPx activity was greater in VF+ animals. On the other hand, uterine tissue GPx activity was lower in VF+ group compared to the control group. Expression levels of AQP3 were upregulated more than fivefold in VF-dogs compared to the control group. In addition, AQP3 expression levels were found approximately threefold higher in VF (-) than VF (+) group (p < .05). Varying degree of inflammation noted for all animals with pyometra, but the presence of bacteria noted only in VF+ animals. In conclusion, the presence of virulence factor genes does not play a role in the histopathological degree of inflammation, the presence of bacteria was found to vary. Serum GPx activity increased in VF+ animals. While the hormone receptor expressions were similar, AQP expression was upregulated in the absence of virulence factor genes.


Subject(s)
Aquaporin 3 , Dog Diseases , Escherichia coli , Glutathione Peroxidase , Pyometra , Uterus , Virulence Factors , Animals , Female , Virulence Factors/genetics , Virulence Factors/metabolism , Aquaporin 3/genetics , Aquaporin 3/metabolism , Dogs , Pyometra/veterinary , Pyometra/microbiology , Pyometra/pathology , Dog Diseases/microbiology , Uterus/pathology , Uterus/microbiology , Uterus/metabolism , Escherichia coli/genetics , Escherichia coli/pathogenicity , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Down-Regulation , Microbial Sensitivity Tests/veterinary
2.
Open Vet J ; 14(4): 973-979, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38808290

ABSTRACT

Background: Escherichia coli infection is one of the major diarrheal diseases resulting in the loss of pigs at a young age. Aim: This research investigated the antimicrobial activity of Caesalpinia sappan wood extract against E. coli infection as an antibiotic replacement. Methods: E. coli was cultured from diarrheal piglets and then used to find the minimal inhibition concentration (MIC). Caesalpinia sappan wood extract (500 mg/kg) was used for the treatment of diarrheal piglets compared to antibiotics (enrofloxacin 5 mg/kg) by oral administration. Another three groups of diarrheal piglets were used supplemented feed with 1% and 2% extract compared with commercial feed. Subsequently, E. coli enumeration, fecal shape, fecal color, and growth rate were recorded from day 1 to 7. Results: Based on the results, C. sappan wood extract could inhibit E. coli growth at a MIC of 16-34 mg/ml. The number of colonies did not significantly differ between C. sappan wood extract and enrofloxacin treatment groups. A supplemented feed with 1% and 2% C. sappan wood extract could improve the fecal shape and fecal score compared to the control group, albeit only in suckling pigs. There were significant differences from the control group on days 4, 5, 6, and 7 (p < 0.05). However, the average daily gain did not significantly differ among the three groups. Conclusion: The results indicate that C. sappan wood extract could improve diarrheal signs in suckling pigs and can be used as a replacement for antibiotics for organic pig production.


Subject(s)
Anti-Bacterial Agents , Caesalpinia , Escherichia coli Infections , Escherichia coli , Plant Extracts , Swine Diseases , Animals , Caesalpinia/chemistry , Swine Diseases/drug therapy , Swine Diseases/microbiology , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Swine , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Escherichia coli/drug effects , Microbial Sensitivity Tests/veterinary , Diarrhea/veterinary , Diarrhea/drug therapy , Diarrhea/microbiology , Wood/chemistry , Feces/microbiology
3.
Open Vet J ; 14(4): 1051-1058, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38808295

ABSTRACT

Background: Bacterial identification can be done using various testing techniques. Molecular techniques are often used to research dangerous diseases, an approach using genetic information on the pathogenic agent. The enterohemorrhagic invasive species Escherichia coli 0157:H7 was identified from the feces of working horses on the island of Sumbawa. Another advance in molecular technology is genome amplification with qPCR which is the gold standard for detecting E. coli. Aim: This study aims to detect and identify the invasive species E. coli 0157:H7 using the gene encoding chuA with the qPCR method sourced from horse feces. Methods: Fresh fecal samples from horses on Sumbawa Island were isolated and identified, then continued with molecular examination using the gene encoding chuA using the qPCR method. Results: qPCR testing in this study showed that six sample isolates that were positive for E. coli 0157:H7 were detected for the presence of the chuA gene, which is a gene coding for an invasive species of E. coli bacteria. The highest to lowest Cq values and Tm from the qPCR results of the sample isolates were 15.98 (4KJ), 14.90 (19KG), 14.6 (3KJ), 13.77 (20KG), 12.56 (5KGB), and 12.20 (6KJ). Tm values are 86.7 (4KJ), 86.69 (3KJ), 86.56 (5KGB), 85.88 (20KGB), 85.81 (19KG), and 85.74 (6KJ). Conclusion: Validation, standardization of the development, and modification of qPCR technology must be carried out to harmonize testing throughout to avoid wrong interpretation of the test results so that the determination of actions to eradicate and control diseases originating from animals in the field does not occur.


Subject(s)
Escherichia coli Infections , Feces , Real-Time Polymerase Chain Reaction , Animals , Horses , Feces/microbiology , Real-Time Polymerase Chain Reaction/veterinary , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Indonesia , Escherichia coli O157/isolation & purification , Escherichia coli O157/genetics , Horse Diseases/microbiology , Horse Diseases/diagnosis , Escherichia coli Proteins/genetics
4.
Trop Anim Health Prod ; 56(5): 179, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809309

ABSTRACT

We evaluated the effects of supplementing yeast mannan-reach-fraction on growth performance, jejunal morphology and lymphoid tissue characteristics in weaned piglets challenged with E. Coli F4. A total of 20 crossbred piglets were used. At weaning, piglets were assigned at random to one of four groups: piglets challenged and fed the basal diet supplemented with yeast mannan-rich fraction (C-MRF, n = 5); piglets challenged and fed the basal diet (C-BD, n = 5); piglets not challenged and fed the basal diet supplemented with yeast mannan-rich fraction (NC-MRF, n = 5), and piglets not challenged and fed the basal diet (NC-BD). Each dietary treatment had five replicates. On days 4, 5 and 10, piglets were orally challenged with 108 CFU/mL of E. Coli F4. C-MRF piglets had higher BW (p = 0.002; interactive effect) than C-BD piglets. C-MRF piglets had higher (p = 0.02; interactive effect) ADG in comparison with C-BD piglets. C-MRF piglets had higher (p = 0.04; interactive effect) ADFI than C-BD piglets. The diameter of lymphoid follicles was larger (p = 0.010; interactive effect) in the tonsils of C-MRF piglets than C-BD piglets. Lymphoid cells proliferation was greater in the mesenteric lymphnodes and ileum (p = 0.04 and p = 0.03, respectively) of C-MRF piglets. A reduction (p > 0.05) in E. Coli adherence in the ileum of piglets fed MRF was observed. In conclusion, the results of the present study demonstrate that dietary yeast mannan-rich fraction supplementation was effective in protecting weaned piglets against E. Coli F4 challenge.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Escherichia coli Infections , Escherichia coli , Lymphoid Tissue , Mannans , Swine Diseases , Animals , Dietary Supplements/analysis , Animal Feed/analysis , Mannans/administration & dosage , Mannans/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli Infections/prevention & control , Swine/growth & development , Swine Diseases/prevention & control , Swine Diseases/microbiology , Diet/veterinary , Weaning , Intestines , Random Allocation , Jejunum , Male
5.
Ecotoxicol Environ Saf ; 278: 116395, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728939

ABSTRACT

Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum ß-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum ß-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different ß-lactamase resistance genes (blaCTX-M-55, blaCTX-M-15, blaCTX-M-27, blaCTX-M-65, blaTEM-1, blaOXA-1 and blaCMY) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. blaCTX-M-55 (48.53 %) was found the most predominant resistance genes, followed by blaTEM-1 (19.12 %) and blaCTX-M-27 (16.18 %). Nonetheless, blaCTX-M-55 was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Escherichia coli , Feces , Multilocus Sequence Typing , Ursidae , beta-Lactamases , Animals , Escherichia coli/genetics , Escherichia coli/drug effects , beta-Lactamases/genetics , Ursidae/microbiology , China , Anti-Bacterial Agents/pharmacology , Feces/microbiology , Bacterial Proteins/genetics , Ecosystem , Phylogeny , Microbial Sensitivity Tests , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics
6.
BMC Vet Res ; 20(1): 200, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745199

ABSTRACT

BACKGROUND: In dairy cattle, mastitis causes high financial losses and impairs animal well-being. Genetic selection is used to breed cows with reduced mastitis susceptibility. Techniques such as milk cell flow cytometry may improve early mastitis diagnosis. In a highly standardized in vivo infection model, 36 half-sib cows were selected for divergent paternal Bos taurus chromosome 18 haplotypes (Q vs. q) and challenged with Escherichia coli for 24 h or Staphylococcus aureus for 96 h, after which the samples were analyzed at 12 h intervals. Vaginal temperature (VT) was recorded every three minutes. The objective of this study was to compare the differential milk cell count (DMCC), milk parameters (fat %, protein %, lactose %, pH) and VT between favorable (Q) and unfavorable (q) haplotype cows using Bayesian models to evaluate their potential as improved early indicators of differential susceptibility to mastitis. RESULTS: After S. aureus challenge, compared to the Q half-sibship cows, the milk of the q cows exhibited higher PMN levels according to the DMCC (24 h, p < 0.001), a higher SCC (24 h, p < 0.01 and 36 h, p < 0.05), large cells (24 h, p < 0.05) and more dead (36 h, p < 0.001) and live cells (24 h, p < 0.01). The protein % was greater in Q milk than in q milk at 0 h (p = 0.025). In the S. aureus group, Q cows had a greater protein % (60 h, p = 0.048) and fat % (84 h, p = 0.022) than q cows. Initially, the greater VT of S. aureus-challenged q cows (0 and 12-24 h, p < 0.05) reversed to a lower VT in q cows than in Q cows (48-60 h, p < 0.05). Additionally, the following findings emphasized the validity of the model: in the S. aureus group all DMCC subpopulations (24 h-96 h, p < 0.001) and in the E. coli group nearly all DMCC subpopulations (12 h-24 h, p < 0.001) were higher in challenged quarters than in unchallenged quarters. The lactose % was lower in the milk samples of E. coli-challenged quarters than in those of S. aureus-challenged quarters (24 h, p < 0.001). Between 12 and 18 h, the VT was greater in cows challenged with E. coli than in those challenged with S. aureus (3-h interval approach, p < 0.001). CONCLUSION: This in vivo infection model confirmed specific differences between Q and q cows with respect to the DMCC, milk component analysis results and VT results after S. aureus inoculation but not after E. coli challenge. However, compared with conventional milk cell analysis monitoring, e.g., the global SCC, the DMCC analysis did not provide refined phenotyping of the pathogen response.


Subject(s)
Escherichia coli Infections , Escherichia coli , Haplotypes , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Milk/microbiology , Milk/cytology , Female , Mastitis, Bovine/microbiology , Staphylococcus aureus/physiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Cell Count/veterinary , Body Temperature , Vagina/microbiology
7.
Curr Microbiol ; 81(7): 177, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758473

ABSTRACT

The purpose of this study was to determine if orangutans (Pongo spp.) living in captivity at a zoo in Wisconsin were colonized with antimicrobial-resistant bacteria and, if found, to identify underlying genetic mechanisms contributing to their resistant phenotypes. We hypothesize that since antimicrobial-resistant bacteria are so prevalent within humans, the animals could also be carriers of such strains given the daily contact between the animals and the zoo staff that care for them. To test this theory, fecal samples from two orangutans were examined for resistant bacteria by inoculation on HardyCHROM™ ESBL and HardyCHROM™ CRE agars. Isolates were identified using MALDI-TOF mass spectrometry and antimicrobial susceptibility testing was performed using a Microscan autoSCAN-4 System. An isolate was selected for additional characterization, including whole genome sequencing (WGS). Using the Type (Strain) Genome Server (TYGS) the bacterium was identified as Escherichia coli. The sequence type identified was (ST/phylogenetic group/ß-lactamase): ST6448/B1/CTX-M-55.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Feces , beta-Lactamases , Animals , beta-Lactamases/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Feces/microbiology , Anti-Bacterial Agents/pharmacology , Animals, Zoo/microbiology , Microbial Sensitivity Tests , Phylogeny , Whole Genome Sequencing , Wisconsin , Escherichia coli Proteins/genetics , Genome, Bacterial
8.
Sci Rep ; 14(1): 11260, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38755240

ABSTRACT

Β-lactamases-producing Escherichia coli are a widely distributed source of antimicrobial resistance (AMR), for animals and humans. Little is known about the sensitivity profile and genetic characteristics of E. coli strains isolated from domestic cats. We report a cross-sectional study that evaluated E. coli strains isolated from domestic cats in Panama. For this study the following antibiotics were analyzed: ampicillin, amoxicillin-clavulanate cefepime, cefotaxime, cefoxitin, ceftazidime, aztreonam, imipenem, gentamicin, kanamycin, streptomycin, tetracycline, ciprofloxacin, nalidixic acid, trimethoprim-sulfamethoxazole, and chloramphenicol. The data obtained were classified as resistant, intermediate, or sensitive. MDR strains were established when the strain presented resistance to at least one antibiotic from three or more antimicrobial classes. Forty-eight E. coli isolates were obtained, of which 80% presented resistance to at least one of the antibiotics analyzed, while only 20% were sensitive to all (p = 0.0001). The most common resistance was to gentamicin (58%). Twenty-nine percent were identified as multidrug-resistant isolates and 4% with extended spectrum beta-lactamase phenotype. The genes blaTEM (39%), blaMOX(16%), blaACC (16%) and blaEBC (8%) were detected. Plasmid-mediated resistance qnrB (25%) and qnrA (13%) are reported. The most frequent sequence types (STs) being ST399 and we reported 5 new STs. Our results suggest that in intestinal strains of E. coli isolated from domestic cats there is a high frequency of AMR.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Escherichia coli , Microbial Sensitivity Tests , Animals , Cats/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Phenotype , beta-Lactamases/genetics , Cross-Sectional Studies , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Genetic Variation
9.
BMC Infect Dis ; 24(1): 497, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755537

ABSTRACT

BACKGROUND: In recent years, there has been a growing interest in phage therapy as an effective therapeutic tool against colibacillosis caused by avian pathogenic Escherichia coli (APEC) which resulted from the increasing number of multidrug resistant (MDR) APEC strains. METHODS: In the present study, we reported the characterization of a new lytic bacteriophage (Escherichia phage AG- MK-2022. Basu) isolated from poultry slaughterhouse wastewater. In addition, the in vitro bacteriolytic activity of the newly isolated phage (Escherichia phage AG- MK-2022. Basu) and the Escherichia phage VaT-2019a isolate PE17 (GenBank: MK353636.1) were assessed against MDR- APEC strains (n = 100) isolated from broiler chickens with clinical signs of colibacillosis. RESULTS: Escherichia phage AG- MK-2022. Basu belongs to the Myoviridae family and exhibits a broad host range. Furthermore, the phage showed stability under a wide range of temperatures, pH values and different concentrations of NaCl. Genome analysis of the Escherichia phage AG- MK-2022. Basu revealed that the phage possesses no antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and any E. coli virulence associated genes. In vitro bacterial challenge tests demonstrated that two phages, the Escherichia phage VaT-2019a isolate PE17 and the Escherichia phage AG- MK-2022. Basu exhibited high bactericidal activity against APEC strains and lysed 95% of the tested APEC strains. CONCLUSIONS: The current study findings indicate that both phages could be suggested as safe biocontrol agents and alternatives to antibiotics for controlling MDR-APEC strains isolated from broilers.


Subject(s)
Chickens , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Phage Therapy , Poultry Diseases , Animals , Escherichia coli/virology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Chickens/microbiology , Poultry Diseases/microbiology , Coliphages/genetics , Coliphages/physiology , Host Specificity , Genome, Viral , Wastewater/microbiology , Wastewater/virology , Myoviridae/genetics , Myoviridae/isolation & purification , Myoviridae/physiology , Myoviridae/classification , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification
10.
PLoS One ; 19(5): e0296109, 2024.
Article in English | MEDLINE | ID: mdl-38743696

ABSTRACT

Colistin resistance is a global concern warning for a one health approach to combat the challenge. Colistin resistant E. coli and their resistance determinants are widely distributed in the environment, and rats could be a potential source of these isolates and resistant determinants to a diverse environmental setting. This study was aimed to determine the presence of colistin resistant E. coli (CREC) in wild rats, their antimicrobial resistance (AMR) phenotypes, and genotypic analysis of mcr-1 CREC through whole genome sequencing (WGS). A total of 39 rats were examined and CREC was isolated from their fecal pellets onto MacConkey agar containing colistin sulfate (1 µg/ mL). AMR of the CREC was determined by disc diffusion and broth microdilution was employed to determine MIC to colistin sulfate. CREC were screened for mcr genes (mcr-1 to mcr-8) and phylogenetic grouping by PCR. Finally, WGS of one mcr-1 CREC was performed to explore its genetic characteristics especially resistomes and virulence determinants. 43.59% of the rats carried CREC with one (2.56%) of them carrying CREC with mcr-1 gene among the mcr genes examined. Examination of seventeen (17) isolates from the CREC positive rats (n = 17) revealed that majority of them belonging to the pathogenic phylogroup D (52.94%) and B2 (11.76%). 58.82% of the CREC were MDR on disc diffusion test. Shockingly, the mcr-1 CREC showed phenotypic resistance to 16 antimicrobials of 8 different classes and carried the ARGs in its genome. The mcr-1 gene was located on a 60 kb IncI2 plasmid. On the other hand, ARGs related to aminoglycosides, phenicols, sulfonamides, tetracyclines and trimethoprims were located on a 288 kb mega-plasmid separately. The mcr-1 CREC carried 58 virulence genes including genes related to adhesion, colonization, biofilm formation, hemolysis and immune-evasion. The isolate belonged to ST224 and closely related to E. coli from different sources including UPEC clinical isolates from human based on cgMLST analysis. The current research indicates that rats might be a possible source of CREC, and the presence of mcr-1 and other ARGs on plasmid increases the risk of ARGs spreading and endangering human health and other environmental components through this infamous pest.


Subject(s)
Anti-Bacterial Agents , Colistin , Drug Resistance, Bacterial , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Animals , Colistin/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Rats , Escherichia coli Proteins/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Bangladesh , Whole Genome Sequencing/methods , Phylogeny , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Animals, Wild/microbiology , Feces/microbiology
11.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38692849

ABSTRACT

AIMS: Pyometra and cystitis caused by Escherichia coli are common diseases identified in canine or feline females. The origin of pyometra infection remains uncertain, and effective prevention strategies for this disease are still unknown. This study aimed to provide a phenotypic characterization, including antimicrobial resistance and virulence profiles, of endometrial pathogenic (EnPEC) and uropathogenic (UPEC) E. coli strains isolated simultaneously from the same animal. METHODS AND RESULTS: Sixteen E. coli strains, from eight different animals, were analyzed in this study. The antimicrobial susceptibility profile of EnPEC and UPEC strains was determined using the disc diffusion method, which showed a similar susceptibility profile among strains (EnPEC and UPEC) from the same animal. The virulence profile of the strains was assessed through biofilm formation, as well as serum resistance abilities. EnPEC and UPEC strains from the same animal exhibited slight variations in their virulence and antimicrobial resistance capabilities. Overall, most of the strain pairs showed a high similarity in their ability to establish biofilms and survive in serum complement activity. CONCLUSIONS: Overall, strains of E. coli isolated from both pyometra and cystitis in the same animal, despite presenting distinct clinical diseases, exhibit a wide phenotypic similarity, suggesting a common origin for the strains.


Subject(s)
Biofilms , Cat Diseases , Cystitis , Escherichia coli Infections , Escherichia coli , Microbial Sensitivity Tests , Phenotype , Pyometra , Animals , Cystitis/microbiology , Cystitis/veterinary , Pyometra/microbiology , Pyometra/veterinary , Female , Cats , Dogs , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Cat Diseases/microbiology , Biofilms/growth & development , Virulence , Anti-Bacterial Agents/pharmacology , Dog Diseases/microbiology , Uropathogenic Escherichia coli/isolation & purification , Uropathogenic Escherichia coli/pathogenicity , Drug Resistance, Bacterial
12.
NPJ Biofilms Microbiomes ; 10(1): 42, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697985

ABSTRACT

Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (VHH) constructs (VHH-(GGGGS)3-VHH, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log10 units difference in gene copies and bacterial count/g faeces across day 2-7) and resulted in week 1 enrichment of three bacterial families (Prevotellaceae (estimate: 1.12 ± 0.25, q = 0.0054), Lactobacillaceae (estimate: 2.86 ± 0.52, q = 0.0012), and Ruminococcaceae (estimate: 0.66 ± 0.18, q = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such VHH constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.


Subject(s)
Diarrhea , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Gastrointestinal Microbiome , Swine Diseases , Weaning , Animals , Swine , Diarrhea/microbiology , Diarrhea/prevention & control , Diarrhea/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Swine Diseases/microbiology , Swine Diseases/prevention & control , Animal Feed , Feces/microbiology
13.
Sci Rep ; 14(1): 11848, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38782931

ABSTRACT

Despite extensive characterisation of uropathogenic Escherichia coli (UPEC) causing urinary tract infections (UTIs), the genetic background of non-urinary extraintestinal pathogenic E. coli (ExPEC) in companion animals remains inadequately understood. In this study, we characterised virulence traits of 104 E. coli isolated from canine pyometra (n = 61) and prostatic abscesses (PAs) (n = 38), and bloodstream infections (BSIs) in dogs (n = 2), and cats (n = 3). A stronger association with UPEC of pyometra strains in comparison to PA strains was revealed. Notably, 44 isolates exhibited resistance to third-generation cephalosporins and/or fluoroquinolones, 15 were extended-spectrum ß-lactamase-producers. Twelve multidrug-resistant (MDR) strains, isolated from pyometra (n = 4), PAs (n = 5), and BSIs (n = 3), along with 7 previously characterised UPEC strains from dogs and cats, were sequenced. Genomic characteristics revealed that MDR E. coli associated with UTIs, pyometra, and BSIs belonged to international high-risk E. coli clones, including sequence type (ST) 38, ST131, ST617, ST648, and ST1193. However, PA strains belonged to distinct lineages, including ST12, ST44, ST457, ST744, and ST13037. The coreSNPs, cgMLST, and pan-genome illustrated intra-clonal variations within the same ST from different sources. The high-risk ST131 and ST1193 (phylogroup B2) contained high numbers of ExPEC virulence genes on pathogenicity islands, predominating in pyometra and UTI. Hybrid MDR/virulence IncF multi-replicon plasmids, containing aerobactin genes, were commonly found in non-B2 phylogroups from all sources. These findings offer genomic insights into non-urinary ExPEC, highlighting its potential for invasive infections in pets beyond UTIs, particularly with regards to high-risk global clones.


Subject(s)
Abscess , Dog Diseases , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Pyometra , Urinary Tract Infections , Dogs , Animals , Urinary Tract Infections/microbiology , Urinary Tract Infections/veterinary , Drug Resistance, Multiple, Bacterial/genetics , Male , Dog Diseases/microbiology , Cats , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Pyometra/microbiology , Pyometra/veterinary , Pyometra/genetics , Abscess/microbiology , Abscess/veterinary , Female , Cat Diseases/microbiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/pathogenicity , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Prostatic Diseases/microbiology , Prostatic Diseases/veterinary , Prostatic Diseases/genetics , Virulence/genetics , Virulence Factors/genetics
14.
BMC Vet Res ; 20(1): 220, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783285

ABSTRACT

BACKGROUND: Mammary Pathogenic Escherichia coli (MPEC) is an important pathogen that can escape the attack of the host immune system through biofilm formation and proliferate in the mammary gland continuously, resulting in mastitis in cows and causing enormous economic losses. As an effector of AI-2 quorum sensing, LsrR extensively affects the expression levels of hundreds of genes related to multiple biological processes in model E. coli strain. However, the regulatory role of LsrR in MPEC and whether it is involved in pathogenesis has been seldom reported. RESULTS: In this study, the function of LsrR in strain MPEC5, obtained from a milk sample in dairy cows with mastitis, was investigated by performing high-throughput sequencing (RNA-seq) assays. The results revealed that LsrR down-regulated the transcript levels of fimAICDFGH (encoding Type 1 pili), which have been reported to be associated with biofilm formation process. Biofilm assays confirmed that deletion of lsrR resulted in a significant increase in biofilm formation in vitro. In addition, electrophoretic mobility shift assay (EMSA) provided evidence that LsrR protein could directly bind to the promoter regions of fimAICDFGH in a dose-dependent manner. CONCLUSIONS: These results indicate that LsrR protein inhibits the biofilm formation ability of MPEC5 by directly binding to the fimAICDFGH promoter region. This study presents a novel clue for further exploration of the prevention and treatment of MPEC.


Subject(s)
Biofilms , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Mastitis, Bovine , Biofilms/growth & development , Animals , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Escherichia coli/genetics , Cattle , Female , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Mastitis, Bovine/microbiology , Mammary Glands, Animal/microbiology , Repressor Proteins
15.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791259

ABSTRACT

Avian pathogenic Escherichia coli (APEC) causes a variety of infections outside the intestine. The treatment of these infections is becoming increasingly difficult due to the emergence of multi-drug resistant (MDR) strains, which can also be a direct or indirect threat to humans as consumers of poultry products. Therefore, alternative antimicrobial agents are being sought, which could be essential oils, either administered individually or in interaction with antibiotics. Sixteen field isolates of E. coli (originating from 1-day-old broilers) and the ATCC 25922 reference strain were tested. Commercial cinnamon bark, clove bud, lavender flower essential oils (EOs) and enrofloxacin were selected to assess the sensitivity of the selected E. coli strains to antimicrobial agents. The checkerboard method was used to estimate the individual minimum inhibitory concentration (MIC) for each antimicrobial agent as well as to determine the interactions between the selected essential oil and enrofloxacin. In the case of enrofloxacin, ten isolates were resistant at MIC ≥ 2 µg/mL, three were classified as intermediate (0.5-1 µg/mL) and three as sensitive at ≤0.25 µg/mL. Regardless of the sensitivity to enrofloxacin, the MIC for cinnamon EO was 0.25% v/v and for clove EO was 0.125% v/v. All MDR strains had MIC values for lavender EO of 1% v/v, while drug-sensitive isolates had MIC of 0.5% v/v. Synergism between enrofloxacin and EO was noted more frequently in lavender EO (82.35%), followed by cinnamon EO (64.7%), than in clove EO (47.1%). The remaining cases exhibited additive effects. Owing to synergy, the isolates became susceptible to enrofloxacin at an MIC of ≤8 µg/mL. A time-kill study supports these observations. Cinnamon and clove EOs required for up to 1 h and lavender EO for up to 4 h to completely kill a multidrug-resistant strain as well as the ATCC 25922 reference strain of E. coli. Through synergistic or additive effects, blends with a lower than MIC concentration of enrofloxacin mixed with a lower EO content required 6 ± 2 h to achieve a similar effect.


Subject(s)
Chickens , Cinnamomum zeylanicum , Drug Resistance, Multiple, Bacterial , Enrofloxacin , Escherichia coli , Lavandula , Microbial Sensitivity Tests , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Animals , Escherichia coli/drug effects , Enrofloxacin/pharmacology , Chickens/microbiology , Drug Resistance, Multiple, Bacterial/drug effects , Cinnamomum zeylanicum/chemistry , Lavandula/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/veterinary , Drug Synergism , Plant Oils/pharmacology , Plant Oils/chemistry , Poultry Diseases/microbiology
16.
BMC Vet Res ; 20(1): 230, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802876

ABSTRACT

BACKGROUND: Piggery production is highly constrained by diseases, with diarrhoea in piglets being a major cause of economic losses to smallholder farmers in Uganda. Enterotoxigenic Escherichia coli (ETEC) is thought to be one of the major etiologies of this diarrhoea. A cross-sectional study was carried out in two high pig-producing districts of Uganda with the aim of determining the significance of piglet diarrhoea and the pathogenic determinants of causative E. coli. METHODOLOGY: A total of 40 households with piglets were visited in each district for a questionnaire survey and faecal sample collection. The questionnaire-based data collected included; demographic data and pig management practices. E. coli were isolated from diarrheic (43) and non-diarrheic (172) piglets and were subjected to antimicrobial susceptibility testing against nine commonly used antimicrobial agents. The E. coli isolates were further screened for the presence of 11 enterotoxin and fimbrial virulence gene markers using multiplex polymerase chain reaction. Data entry, cleaning, verification and descriptive statistics were performed using Microsoft Excel. Statistical analysis to determine any association between the presence of virulence markers and diarrhea in piglets was done using SPSS software (Version 23), with a p value of less than 0.05 taken as a statistically significant association. RESULTS: Escherichia coli were recovered from 81.4% (175/215) of the faecal samples. All the isolates were resistant to erythromycin, and most showed high resistance to tetracycline (71%), ampicillin (49%), and trimethoprim sulfamethoxazole (45%). More than half of the isolates (58.3%) carried at least one of the 11 virulence gene markers tested. EAST1 was the most prevalent virulence marker detected (35.4%), followed by STb (14.8%). Expression of more than one virulence gene marker was observed in 6.2% of the isolates, with the EAST1/STa combination being the most prevalent. Three adhesins; F17 (0.6%), F18 (6.3%) and AIDA-I (0.6%) were detected, with F18 being the most encountered. There was a statistically significant association between the occurrence of piglet diarrhoea and the presence of the AIDA-1 (p value = 0.037) or EAST1 (p value = 0.011) gene marker among the isolates. CONCLUSION AND RECOMMENDATION: The level of antimicrobial resistance among E. coli isolates expressing virulence markers were high in the sampled districts. The study established a significant association between presence of EAST1 and AIDA-I virulence markers and piglet diarrhea. Further studies should be carried out to elucidate the main adhesins borne by these organisms in Uganda and the actual role played by EAST1 in the pathogenesis of the infection since most isolates expressed this gene.


Subject(s)
Diarrhea , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Swine Diseases , Animals , Uganda/epidemiology , Swine , Swine Diseases/microbiology , Swine Diseases/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Diarrhea/veterinary , Diarrhea/microbiology , Cross-Sectional Studies , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/isolation & purification , Virulence/genetics , Feces/microbiology , Animals, Newborn , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Weaning , Microbial Sensitivity Tests/veterinary
17.
PeerJ ; 12: e17381, 2024.
Article in English | MEDLINE | ID: mdl-38726379

ABSTRACT

Background: Escherichia coli is an important intestinal flora, of which pathogenic E. coli is capable of causing many enteric and extra-intestinal diseases. Antibiotics are essential for the treatment of bacterial infections caused by pathogenic E. coli; however, with the widespread use of antibiotics, drug resistance in E. coli has become particularly serious, posing a global threat to human, animal, and environmental health. While the drug resistance and pathogenicity of E. coli carried by tigers and leopards in captivity have been studied intensively in recent years, there is an extreme lack of information on E. coli in these top predators in the wild environment. Methods: Whole genome sequencing data of 32 E. coli strains collected from the feces of wild Amur tiger (Panthera tigris altaica, n = 24) and North China leopard (Panthera pardus japonensis, n = 8) were analyzed in this article. The multi-locus sequence types, serotypes, virulence and resistance genotypes, plasmid replicon types, and core genomic SNPs phylogeny of these isolates were studied. Additionally, antimicrobial susceptibility testing (AST) was performed on these E. coli isolates. Results: Among the E. coli isolates studied, 18 different sequence types were identified, with ST939 (21.9%), ST10 (15.6%), and ST3246 (9.4%) being the most prevalent. A total of 111 virulence genes were detected, averaging about 54 virulence genes per sample. They contribute to invasion, adherence, immune evasion, efflux pump, toxin, motility, stress adaption, and other virulence-related functions of E. coli. Sixty-eight AMR genes and point mutations were identified. Among the detected resistance genes, those belonging to the efflux pump family were the most abundant. Thirty-two E. coli isolates showed the highest rate of resistance to tetracycline (14/32; 43.8%), followed by imipenem (4/32; 12.5%), ciprofloxacin (3/32; 9.4%), doxycycline (2/32; 6.3%), and norfloxacin (1/32; 3.1%). Conclusions: Our results suggest that E. coli isolates carried by wild Amur tigers and North China leopards have potential pathogenicity and drug resistance.


Subject(s)
Escherichia coli , Feces , Panthera , Tigers , Whole Genome Sequencing , Animals , Tigers/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Escherichia coli/isolation & purification , Panthera/microbiology , Feces/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Phylogeny , Anti-Bacterial Agents/pharmacology , Genome, Bacterial/genetics , Microbial Sensitivity Tests , China , Virulence/genetics , Drug Resistance, Bacterial/genetics , Polymorphism, Single Nucleotide/genetics , Multilocus Sequence Typing
18.
Sci Rep ; 14(1): 11053, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744900

ABSTRACT

This study investigated the influence of polyunsaturated fatty acid composition and vitamin E supplementation on oxidative status and immune responses in weanling piglets pre- and post-E. coli challenge. Suckling piglets (n = 24) were randomly selected from two litters for an oral supplementation (1 mL/day) with fish oil or hemp oil and vitamin E supplementation (60 mg natural vitamin E/mL oil) from day 10 to 28 of age. At day 29 and 30 of age, each piglet was orally inoculated with 6.7 × 108 and 3.96 × 108 CFU of F4 and F18 E. coli, respectively. Blood was sampled from all piglets on day 28 before E. coli challenge and on day 35 of age to investigate immunological and oxidative stress markers in plasma. One week after weaning and exposure to E. coli, a general reduction in the α-tocopherol concentration and activity of GPX1 was obtained. Vitamin E supplementation lowered the extent of lipid peroxidation and improved the antioxidative status and immune responses after E. coli challenge. Hemp oil had the greatest effect on antioxidant enzyme activity. Provision of hemp oil and vitamin E to suckling piglets may reduce the incidence of post-weaning diarrhea.


Subject(s)
Cannabis , Dietary Supplements , Escherichia coli Infections , Escherichia coli , Fish Oils , Oxidation-Reduction , Vitamin E , Animals , Vitamin E/pharmacology , Swine , Fish Oils/pharmacology , Fish Oils/administration & dosage , Cannabis/chemistry , Oxidation-Reduction/drug effects , Escherichia coli Infections/immunology , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Escherichia coli Infections/prevention & control , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress/drug effects , Weaning , Lipid Peroxidation/drug effects , Swine Diseases/microbiology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/drug therapy
19.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791466

ABSTRACT

The emerging heteropathotype shigatoxigenic (STEC) and extra-intestinal pathogenic Escherichia coli (ExPEC) O80:H2 has been the second leading cause of pediatric HUS in France since the mid-2010s. In contrast with other highly pathogenic STEC serotypes, for which ruminants have clearly been identified as the main human infection source, this heteropathotype's reservoir remains unknown. In this context, we describe for the first time the isolation of seven STEC O80:H2 strains from healthy cattle on a single cattle farm in France. This study aimed at (i) characterizing the genome and (ii) investigating the phylogenetic positions of these O80:H2 STEC strains. The virulomes, resistomes, and phylogenetic positions of the seven bovine isolates were investigated using in silico typing tools, antimicrobial susceptibility testing and cgMLST analysis after short-read whole genome sequencing (WGS). One representative isolate (A13P112V1) was also subjected to long-read sequencing. The seven isolates possessed ExPEC-related virulence genes on a pR444_A-like mosaic plasmid, previously described in strain RDEx444 and known to confer multi-drug resistance. All isolates were clonally related and clustered with human clinical strains from France and Switzerland with a range of locus differences of only one to five. In conclusion, our findings suggest that healthy cattle in France could potentially act as a reservoir of the STEC-ExPEC O80:H2 pathotype.


Subject(s)
Escherichia coli Infections , Genome, Bacterial , Phylogeny , Shiga-Toxigenic Escherichia coli , Whole Genome Sequencing , Animals , Cattle , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/pathogenicity , Shiga-Toxigenic Escherichia coli/classification , France , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Whole Genome Sequencing/methods , Extraintestinal Pathogenic Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Cattle Diseases/microbiology , Virulence Factors/genetics , Virulence/genetics , Serogroup , Genomics/methods , Plasmids/genetics
20.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38653718

ABSTRACT

The poultry industry is a very important agricultural and industrial sector in Tunisia and Nigeria, with little information about occurrence of diarrheagenic Escherichia coli in the farmers and chickens. This study aimed to detect the prevalence of diarrheal E. coli in humans and poultry and to investigate plasmid-mediated quinolone resistance (PMQR) genes in both countries. Seventy-four isolates of E. coli were studied; nine different virulence genes were screened by PCR. Serotyping was performed only for pathotypes as well as the determining of antibiotic resistance profiles against 21 antibiotics. PMQR genes were investigated by PCR. EAEC was the most abundant pathotype (37/74; 50%) in human and chicken isolates, whereas single EHEC and EPEC (1/74, 1.35%) pathotypes were detected in Tunisia and Nigeria, respectively. About 17 (45.95%) quinolones/fluoroquinolones-resistant isolates were detected, from which the following PMQR genes were detected: aac(6')-Ib-cr (8/17, 47.05%), qepA (6/17, 35.29%), qnrA + qnrB (2/17, 11.76%), and qnrS gene (1/17, 5.88%). Our findings highlight high occurrence of EAEC pathotype in Tunisia and Nigeria, more frequent than EPEC and EHEC. Additionally, all E. coli pathotypes isolated from different sources (humans, poultry) showed resistance to several antibiotics, which are in use as therapeutic choices in Tunisia and Nigeria.


Subject(s)
Anti-Bacterial Agents , Chickens , Escherichia coli Infections , Escherichia coli , Plasmids , Poultry Diseases , Quinolones , Animals , Chickens/microbiology , Quinolones/pharmacology , Tunisia , Nigeria , Plasmids/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Humans , Diarrhea/microbiology , Diarrhea/veterinary , Drug Resistance, Bacterial/genetics , Farmers , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL