Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.781
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1443051, 2024.
Article in English | MEDLINE | ID: mdl-39253586

ABSTRACT

The hypometabolism induced by fasting has great potential in maintaining health and improving survival in extreme environments, among which thyroid hormone (TH) plays an important role in the adaptation and the formation of new energy metabolism homeostasis during long-term fasting. In the present review, we emphasize the potential of long-term fasting to improve physical health and emergency rescue in extreme environments, introduce the concept and pattern of fasting and its impact on the body's energy metabolism consumption. Prolonged fasting has more application potential in emergency rescue in special environments. The changes of THs caused by fasting, including serum biochemical characteristics, responsiveness of the peripheral and central hypothalamus-pituitary-thyroid (HPT) axis, and differential changes of TH metabolism, are emphasized in particular. It was proposed that the variability between brain and liver tissues in THs uptake, deiodination activation and inactivation is the key regulatory mechanism for the cause of peripheral THs decline and central homeostasis. While hypothalamic tanycytes play a pivotal role in the fine regulation of the HPT negative feedback regulation during long-term fasting. The study progress of tanycytes on thyrotropin-releasing hormone (TRH) release and deiodination is described in detail. In conclusion, the combination of the decrease of TH metabolism in peripheral tissues and stability in the central HPT axis maintains the basal physiological requirement and new energy metabolism homeostasis to adapt to long-term food scarcity. The molecular mechanisms of this localized and differential regulation will be a key research direction for developing measures for hypometabolic applications in extreme environment.


Subject(s)
Energy Metabolism , Fasting , Thyroid Hormones , Humans , Fasting/metabolism , Fasting/physiology , Thyroid Hormones/metabolism , Animals , Energy Metabolism/physiology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Thyroid Gland/metabolism , Thyroid Gland/physiology , Homeostasis
2.
PLoS Biol ; 22(9): e3002735, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39241209

ABSTRACT

Transitions between the fed and fasted state are common in mammals. The liver orchestrates adaptive responses to feeding/fasting by transcriptionally regulating metabolic pathways of energy usage and storage. Transcriptional and enhancer dynamics following cessation of fasting (refeeding) have not been explored. We examined the transcriptional and chromatin events occurring upon refeeding in mice, including kinetic behavior and molecular drivers. We found that the refeeding response is temporally organized with the early response focused on ramping up protein translation while the later stages of refeeding drive a bifurcated lipid synthesis program. While both the cholesterol biosynthesis and lipogenesis pathways were inhibited during fasting, most cholesterol biosynthesis genes returned to their basal levels upon refeeding while most lipogenesis genes markedly overshoot above pre-fasting levels. Gene knockout, enhancer dynamics, and ChIP-seq analyses revealed that lipogenic gene overshoot is dictated by LXRα. These findings from unbiased analyses unravel the mechanism behind the long-known phenomenon of refeeding fat overshoot.


Subject(s)
Enhancer Elements, Genetic , Fasting , Lipogenesis , Liver X Receptors , Liver , Mice, Inbred C57BL , Animals , Liver X Receptors/metabolism , Liver X Receptors/genetics , Lipogenesis/genetics , Liver/metabolism , Mice , Fasting/metabolism , Enhancer Elements, Genetic/genetics , Male , Cholesterol/metabolism , Mice, Knockout , Gene Expression Regulation
3.
Psychiatr Hung ; 39(2): 161-179, 2024.
Article in Hungarian | MEDLINE | ID: mdl-39143831

ABSTRACT

The stability of brain functions is mainly determined by the energy management of the cells, and mental health is, therefore, profoundly affected by metabolic dysfunctions and immune and inflammatory processes. Research sheds light on more and more details and connections about the efficacy of diet and exercise, based on which we can develop effective metabolic interventions. The roots of this discipline, which is emerging today, go back to thousands of years of traditions and hundreds of years of documented observations. This paper reviews the role of mitochondria in healthy cell functions, in the distress cascade, and in the neurobiology of mental illnesses, as well as the modern knowledge related to metabolic interventions that support mitochondrial function, the therapeutic fasting, the ketogenic diet therapy, the regular exercise, and the use of nutritional supplements, and finally discusses the role of metabolic interventions in curing psychiatric diseases and improving mental health. The purpose of metabolic psychiatric interventions is to prevent neuroprogression in the broad sense, if it is already developing, to stop it, to break it, to restore the degraded functions, as a supplement to the usual psychosocial, pharmacological, somatic and neuromodulation treatments.


Subject(s)
Diet, Ketogenic , Mental Disorders , Humans , Mental Disorders/therapy , Mental Disorders/metabolism , Mental Disorders/diet therapy , Mitochondria/metabolism , Exercise , Dietary Supplements , Psychiatry , Fasting/metabolism , Brain/metabolism , Mental Health
4.
Nat Commun ; 15(1): 6604, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098920

ABSTRACT

The ependyma lining the third ventricle (3V) in the mediobasal hypothalamus plays a crucial role in energy balance and glucose homeostasis. It is characterized by a high functional heterogeneity and plasticity, but the underlying molecular mechanisms governing its features are not fully understood. Here, 5481 hypothalamic ependymocytes were cataloged using FACS-assisted scRNAseq from fed, 12h-fasted, and 24h-fasted adult male mice. With standard clustering analysis, typical ependymal cells and ß2-tanycytes appear sharply defined, but other subpopulations, ß1- and α-tanycytes, display fuzzy boundaries with few or no specific markers. Pseudospatial approaches, based on the 3V neuroanatomical distribution, enable the identification of specific versus shared tanycyte markers and subgroup-specific versus general tanycyte functions. We show that fasting dynamically shifts gene expression patterns along the 3V, leading to a spatial redistribution of cell type-specific responses. Altogether, we show that changes in energy status induce metabolic and functional switches in tanycyte subpopulations, providing insights into molecular and functional diversity and plasticity within the tanycyte population.


Subject(s)
Ependymoglial Cells , Fasting , Lipid Metabolism , Neurons , Animals , Ependymoglial Cells/metabolism , Male , Fasting/metabolism , Mice , Neurons/metabolism , Ependyma/metabolism , Ependyma/cytology , Hypothalamus/metabolism , Hypothalamus/cytology , Mice, Inbred C57BL , Energy Metabolism , Third Ventricle/metabolism , Glucose/metabolism
5.
Nat Commun ; 15(1): 6701, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112471

ABSTRACT

The hypothalamic arcuate nucleus (ARH) contains neurons vital for maintaining energy homeostasis that sense and respond to changes in blood-borne metabolic hormones. Despite its juxtaposition to the median eminence (ME), a circumventricular organ lacking a blood-brain barrier and thus exposed to circulating molecules, only a few ventral ARH neurons perceive these extravasating metabolic signals due to a poorly understood ME/ARH diffusion barrier. Here, we show in male mice that aggrecan, a perineural-net proteoglycan deposited by orexigenic ARH neurons, creates a peculiar ventrodorsal diffusion gradient. Fasting enhances aggrecan deposition more dorsally, reinforcing the diffusion barrier, particularly around neurons adjacent to fenestrated capillary loops that enter the ARH. The disruption of aggrecan deposits results in unregulated diffusion of blood-borne molecules into the ARH and impairs food intake. Our findings reveal the molecular nature and plasticity of the ME/ARH diffusion barrier, and indicate its physiological role in hypothalamic metabolic hormone sensing.


Subject(s)
Aggrecans , Arcuate Nucleus of Hypothalamus , Energy Metabolism , Neurons , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Male , Neurons/metabolism , Aggrecans/metabolism , Mice , Median Eminence/metabolism , Mice, Inbred C57BL , Eating/physiology , Fasting/metabolism , Blood-Brain Barrier/metabolism , Signal Transduction
6.
Physiol Rep ; 12(15): e16181, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39138135

ABSTRACT

This study aimed to evaluate the influence of combined intermittent fasting (IF) and high-intensity interval training (HIIT) on morphology, caspase-independent apoptosis signaling pathway, and myostatin expression in soleus and gastrocnemius (white portion) muscles from healthy rats. Sixty-day-old male Wistar rats (n = 60) were divided into four groups: control (C), IF, high-intensity-interval training (T), and high-intensity-interval training and intermittent fasting (T-IF). The C and T groups received ad libitum chow daily; IF and T-IF received the same standard chow every other day. Animals from T and T-IF underwent a HIIT protocol five times a week for 12 weeks. IF reduced gastrocnemius mass and increased pro-apoptotic proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG) in soleus and cleaved-to-non-cleaved PARP-1 ratio and myostatin expression in gastrocnemius white portion. HIIT increased AIF and apoptosis repressor with caspase recruitment domain expression in soleus and cleaved-to-total PARP-1 ratio in gastrocnemius muscle white portion. The combination of IF and HIIT reduced fiber cross-sectional area in both muscles, increased EndoG and AIF expression, and decreased cleaved-to-non-cleaved PARP-1 ratio in gastrocnemius muscle white portion. Muscle responses to IF and HIIT are directly impacted by the muscle fiber type composition and are modulated, at least in part, by myostatin and caspase-independent apoptosis signaling.


Subject(s)
Apoptosis Inducing Factor , Apoptosis , Fasting , High-Intensity Interval Training , Muscle Fibers, Slow-Twitch , Muscular Atrophy , Myostatin , Rats, Wistar , Signal Transduction , Animals , Male , Apoptosis/physiology , Fasting/metabolism , Fasting/physiology , Myostatin/metabolism , High-Intensity Interval Training/methods , Rats , Signal Transduction/physiology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Apoptosis Inducing Factor/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Fast-Twitch/pathology , Endodeoxyribonucleases/metabolism , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Muscle, Skeletal/metabolism , Intermittent Fasting , Poly (ADP-Ribose) Polymerase-1
7.
Comput Biol Med ; 181: 109024, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39178806

ABSTRACT

Men generally favor carbohydrate metabolism, while women lean towards lipid metabolism, resulting in significant sex-based differences in energy oxidation across various metabolic states such as fasting and feeding. These differences are influenced by body composition and inherent metabolic fluxes, including increased lipolysis rates in women. However, understanding how sex influences organ-specific metabolism and systemic manifestations remains incomplete. To address these gaps, we developed a sex-specific, whole-body metabolic model for feeding and fasting scenarios in healthy young adults. Our model integrates organ metabolism with whole-body responses to mixed meals, particularly high-carbohydrate and high-fat meals. Our predictions suggest that differences in liver and adipose tissue nutrient storage and oxidation patterns drive systemic metabolic disparities. We propose that sex differences in fasting hepatic glucose output may result from the different handling of free fatty acids, glycerol, and glycogen. We identified a metabolic pathway, possibly more prevalent in female livers, redirecting lipids towards carbohydrate metabolism to support hepatic glucose production. This mechanism is facilitated by the TG-FFA cycle between adipose tissue and the liver. Incorporating sex-specific data into multi-scale frameworks offers insights into how sex modulates human metabolism.


Subject(s)
Fasting , Liver , Models, Biological , Humans , Female , Male , Fasting/metabolism , Liver/metabolism , Lipid Metabolism/physiology , Adipose Tissue/metabolism , Glucose/metabolism , Adult , Sex Characteristics , Energy Metabolism/physiology , Carbohydrate Metabolism/physiology
8.
Metabolomics ; 20(4): 86, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066850

ABSTRACT

INTRODUCTION: Longitudinal metabolomics data from a meal challenge test contains both fasting and dynamic signals, that may be related to metabolic health and diseases. Recent work has explored the multiway structure of time-resolved metabolomics data by arranging it as a three-way array with modes: subjects, metabolites, and time. The analysis of such dynamic data (where the fasting data is subtracted from postprandial states) reveals dynamic markers of various phenotypes, and differences between fasting and dynamic states. However, there is still limited success in terms of extracting static and dynamic biomarkers for the same subject stratifications. OBJECTIVES: Through joint analysis of fasting and dynamic metabolomics data, our goal is to capture static and dynamic biomarkers of a phenotype for the same subject stratifications providing a complete picture, that will be more effective for precision health. METHODS: We jointly analyze fasting and dynamic metabolomics data collected during a meal challenge test from the COPSAC 2000 cohort using coupled matrix and tensor factorizations (CMTF), where the dynamic data (subjects by metabolites by time) is coupled with the fasting data (subjects by metabolites) in the subjects mode. RESULTS: The proposed data fusion approach extracts shared subject stratifications in terms of BMI (body mass index) from fasting and dynamic signals as well as the static and dynamic metabolic biomarker patterns corresponding to those stratifications. Specifically, we observe a subject stratification showing the positive association with all fasting VLDLs and higher BMI. For the same subject stratification, a subset of dynamic VLDLs (mainly the smaller sizes) correlates negatively with higher BMI. Higher correlations of the subject quantifications with the phenotype of interest are observed using such a data fusion approach compared to individual analyses of the fasting and postprandial state. CONCLUSION: The CMTF-based approach provides a complete picture of static and dynamic biomarkers for the same subject stratifications-when markers are present in both fasting and dynamic states.


Subject(s)
Biomarkers , Fasting , Metabolomics , Postprandial Period , Humans , Biomarkers/blood , Biomarkers/metabolism , Metabolomics/methods , Fasting/metabolism , Male , Female , Adult , Middle Aged
9.
Mol Pharm ; 21(9): 4510-4523, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38956965

ABSTRACT

Nalbuphine (NAL) is a κ-agonist/µ-antagonist opioid being developed as an oral extended formulation (ER) for the treatment of chronic cough in idiopathic pulmonary fibrosis and itch in prurigo nodularis. NAL is extensively glucuronidated and likely undergoes enterohepatic recirculation (EHR). The purpose of this work is to develop pharmacokinetic models for NAL absorption and enterohepatic recirculation (EHR). Clinical pharmacokinetic (PK) data sets in healthy subjects from three trials that included IV, oral solution, and ER tablets in fed and fasted state and two published trials were used to parametrize a novel partial differential equation (PDE)-based model, termed "PDE-EHR" model. Experimental inputs included in vitro dissolution and permeability data. The model incorporates a continuous intestinal absorption framework, explicit liver and gall bladder compartments, and compartments for systemic drug disposition. The model was fully PDE-based with well-stirred compartments achieved by rapid diffusion. The PDE-EHR model accurately reproduces NAL concentration-time profiles for all clinical data sets. NAL disposition simulations required inclusion of both parent and glucuronide recirculation. Inclusion of intestinal P-glycoprotein efflux in the simulations suggests that NAL is not expected to be a victim or perpetrator of P-glycoprotein-mediated drug interactions. The PDE-EHR model is a novel tool to predict EHR and food/formulation effects on drug PK. The results strongly suggest that even intravenous dosing studies be conducted in fasted subjects when EHR is suspected. The modeling effort is expected to aid in improved prediction of dosing regimens and drug disposition in patient populations.


Subject(s)
Intestinal Absorption , Nalbuphine , Humans , Intestinal Absorption/physiology , Intestinal Absorption/drug effects , Nalbuphine/pharmacokinetics , Nalbuphine/administration & dosage , Models, Biological , Enterohepatic Circulation , Administration, Oral , Healthy Volunteers , Fasting/metabolism , Male , Adult , Analgesics, Opioid/pharmacokinetics , Analgesics, Opioid/administration & dosage
10.
Clin Pharmacol Drug Dev ; 13(9): 1061-1070, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39023505

ABSTRACT

This study aimed to investigate the pharmacokinetic parameters of single oral administration of postchange and prechange abexinostat (CRA-024781) tosylate tablets in Chinese healthy subjects under fasting conditions, and assess the bioequivalence (BE) of the 2 formulations (Test [T1] and Reference [T2]). This study was a randomized, open-label, 2-formulation, fasting administration, single-dose, 2-sequence, 2-cycle, crossover BE study. Thirty-six subjects were enrolled in the study and 33 subjects completed 2 cycles. The plasma concentrations were determined by liquid chromatography-tandem mass spectrometry. The 90% confidence intervals (CIs) for the Cmax, AUC0-t, and AUC0-∞ of CRA-024781 and its 2 major metabolites (PCI-27789 and PCI-27887, both metabolites are pharmacologically inactive on HDAC1) fell within the acceptable range of 80%-125%. The results suggest that the CRA-024781 test preparation (Test [T1]) is bioequivalent to the reference preparation (Reference [T2]) in healthy Chinese subjects under fasting conditions.


Subject(s)
Area Under Curve , Asian People , Cross-Over Studies , Fasting , Healthy Volunteers , Tablets , Therapeutic Equivalency , Humans , Male , Fasting/metabolism , Adult , Young Adult , Administration, Oral , Female , Tandem Mass Spectrometry , Chromatography, Liquid
11.
Mol Metab ; 87: 101997, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032642

ABSTRACT

OBJECTIVE: Currently, little is known about the mechanism(s) regulating global and specific protein translation during metabolic dysfunction-associated steatohepatitis (MASH; previously known as non-alcoholic steatohepatitis, NASH). METHODS: Unbiased label-free quantitative proteome, puromycin-labelling and polysome profiling were used to understand protein translation activity in vitro and in vivo. RESULTS: We observed a global decrease in protein translation during lipotoxicity in human primary hepatocytes, mouse hepatic AML12 cells, and livers from a dietary mouse model of MASH. Interestingly, proteomic analysis showed that Rplp1, which regulates ribosome and translation pathways, was one of the most downregulated proteins. Moreover, decreased Esrra expression and binding to the Rplp1 promoter, diminished Rplp1 gene expression during lipotoxicity. This, in turn, reduced global protein translation and Esrra/Rplp1-dependent translation of lysosome (Lamp2, Ctsd) and autophagy (sqstm1, Map1lc3b) proteins. Of note, Esrra did not increase its binding to these gene promoters or their gene transcription, confirming its regulation of their translation during lipotoxicity. Notably, hepatic Esrra-Rplp1-dependent translation of lysosomal and autophagy proteins also was impaired in MASH patients and liver-specific Esrra knockout mice. Remarkably, alternate day fasting induced Esrra-Rplp1-dependent expression of lysosomal proteins, restored autophagy, and reduced lipotoxicity, inflammation, and fibrosis in hepatic cell culture and in vivo models of MASH. CONCLUSIONS: Esrra regulation of Rplp1-mediated translation of lysosome/autolysosome proteins was downregulated during MASH. Alternate day fasting activated this novel pathway and improved MASH, suggesting that Esrra and Rplp1 may serve as therapeutic targets for MASH. Our findings also provided the first example of a nuclear hormone receptor, Esrra, to not only regulate transcription but also protein translation, via induction of Rplp1.


Subject(s)
Fasting , Lysosomes , Non-alcoholic Fatty Liver Disease , Animals , Humans , Male , Mice , Autophagy , Fasting/metabolism , Hepatocytes/metabolism , Liver/metabolism , Lysosomes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Protein Biosynthesis , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics
12.
Article in English | MEDLINE | ID: mdl-38852903

ABSTRACT

Non-blood-feeding leeches, Whitmania pigra, have evolved unique digestive structures and physiological mechanisms to cope with fasting. However, the metabolic changes and molecular mechanisms induced by fasting remain unclear. Therefore, this study recorded the weights of leeches during the fasting process. The weight changes were divided into two stages: a rapid decline period (1-9 weeks) and a fluctuating decline period (9-24 weeks). Leeches fasted for 4 (H4), 11 (H11), and 24 (H24) weeks were selected for transcriptome sequencing. Compared to the control group (H0), 436, 1157, and 337 differentially expressed genes (DEGs) were identified, which were mainly related to glycolysis/gluconeogenesis, amino acid metabolism, and the lipid metabolism pathway. The 6-phosphofructokinase (Pfk), pyruvate kinase (PK), and phosphoenolpyruvate carboxykinase (Pck) transcription levels revealed glycolysis/gluconeogenesis activation during the early stage of fasting and peaked at 11 weeks. Decreased expression of the rate-limiting enzyme acetyl-CoA carboxylase (ACC) in fatty acid synthesis during fasting may impede fatty acid synthesis. These results indicated that the nutrient storage and energy-supplying pathways in W. pigra were modified to improve fasting resistance. The findings of this study provided guidance for exploring the mechanism underlying fasting metabolism and laid a foundation for artificial breeding to improve the resistance of leeches.


Subject(s)
Energy Metabolism , Fasting , Leeches , Animals , Leeches/metabolism , Leeches/physiology , Energy Metabolism/physiology , Fasting/metabolism , Glycolysis , Transcriptome
13.
Mol Metab ; 86: 101967, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876267

ABSTRACT

OBJECTIVE: In response to bacterial inflammation, anorexia of acute illness is protective and is associated with the induction of fasting metabolic programs such as ketogenesis. Forced feeding during the anorectic period induced by bacterial inflammation is associated with suppressed ketogenesis and increased mortality. As ketogenesis is considered essential in fasting adaptation, we sought to determine the role of ketogenesis in illness-induced anorexia. METHODS: A mouse model of inducible hepatic specific deletion of the rate limiting enzyme for ketogenesis (HMG-CoA synthase 2, Hmgcs2) was used to investigate the role of ketogenesis in endotoxemia, a model of bacterial inflammation, and in prolonged starvation. RESULTS: Mice deficient of hepatic Hmgcs2 failed to develop ketosis during endotoxemia and during prolonged fasting. Surprisingly, hepatic HMGCS2 deficiency and the lack of ketosis did not affect survival, glycemia, or body temperature in response to endotoxemia. Mice with hepatic ketogenic deficiency also did not exhibit any defects in starvation adaptation and were able to maintain blood glucose, body temperature, and lean mass compared to littermate wild-type controls. Mice with hepatic HMGCS2 deficiency exhibited higher levels of plasma acetate levels in response to fasting. CONCLUSIONS: Circulating hepatic-derived ketones do not provide protection against endotoxemia, suggesting that alternative mechanisms drive the increased mortality from forced feeding during illness-induced anorexia. Hepatic ketones are also dispensable for surviving prolonged starvation in the absence of inflammation. Our study challenges the notion that hepatic ketogenesis is required to maintain blood glucose and preserve lean mass during starvation, raising the possibility of extrahepatic ketogenesis and use of alternative fuels as potential means of metabolic compensation.


Subject(s)
Hydroxymethylglutaryl-CoA Synthase , Ketosis , Liver , Starvation , Animals , Mice , Liver/metabolism , Starvation/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Male , Ketosis/metabolism , Endotoxemia/metabolism , Adaptation, Physiological , Ketone Bodies/metabolism , Blood Glucose/metabolism , Mice, Inbred C57BL , Fasting/metabolism , Mice, Knockout , Anorexia/metabolism
14.
Life Sci ; 351: 122814, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38857654

ABSTRACT

Circadian oscillatory system plays a key role in coordinating the metabolism of most organisms. Perturbation of genetic effects and misalignment of circadian rhythms result in circadian dysfunction and signs of metabolic disorders. The eating-fasting cycle can act on the peripheral circadian clocks, bypassing the photoperiod. Therefore, time-restricted eating (TRE) can improve metabolic health by adjusting eating rhythms, a process achieved through reprogramming of circadian genomes and metabolic programs at different tissue levels or remodeling of the intestinal microbiota, with omics technology allowing visualization of the regulatory processes. Here, we review recent advances in circadian regulation of metabolism, focus on the potential application of TRE for rescuing circadian dysfunction and metabolic disorders with the contribution of intestinal microbiota in between, and summarize the significance of omics technology.


Subject(s)
Circadian Rhythm , Gastrointestinal Microbiome , Circadian Rhythm/physiology , Gastrointestinal Microbiome/physiology , Humans , Animals , Circadian Clocks/physiology , Fasting/physiology , Fasting/metabolism
15.
Eur J Pharm Sci ; 200: 106821, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823599

ABSTRACT

To treat colonic diseases more effectively, improved therapies are urgently needed. In this respect, delivering drugs locally to the colon is a key strategy to achieve higher local drug concentrations while minimizing systemic side effects. Understanding the luminal environment is crucial to efficiently develop such targeted therapies and to predict drug disposition in the colon. In this clinical study, we collected colonic contents from an undisturbed fasted proximal colon via colonoscopy and characterized their composition with regard to drug disposition. Colonic pH, osmolality, protein content, bile salts, lipids, phospholipids and short-chain fatty acids were investigated in 10 healthy volunteers (8 male and 2 female, age 19-25). The unique environment of the proximal colon was reflected in the composition of the sampled luminal fluids and the effect of the microbiota could be observed on the pH (median 6.55), the composition of bile salts (majority deconjugated and secondary), and the abundance of short-chain fatty acids. At the same time, an increase in phospholipid concentration, osmolality and total protein content compared to reported ileal values was seen, likely resulting from desiccation. Lipids could only be found in low quantities and mainly in the form of cholesterol and free fatty acids, showing almost complete digestion and absorption by the time luminal contents reach the colon. All characteristics also displayed the considerable intersubject variability found in different regions of the gastrointestinal tract. This study contributes to an improved understanding of the luminal conditions in the proximal colon and facilitates the development of new predictive tools to study colonic drug absorption.


Subject(s)
Bile Acids and Salts , Colon , Fasting , Humans , Female , Male , Adult , Colon/metabolism , Fasting/metabolism , Bile Acids and Salts/metabolism , Young Adult , Hydrogen-Ion Concentration , Phospholipids/metabolism , Osmolar Concentration , Lipids , Fatty Acids, Volatile/metabolism
16.
Nat Commun ; 15(1): 3982, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729945

ABSTRACT

The hepatocytes within the liver present an immense capacity to adapt to changes in nutrient availability. Here, by using high resolution volume electron microscopy, we map how hepatic subcellular spatial organization is regulated during nutritional fluctuations and as a function of liver zonation. We identify that fasting leads to remodeling of endoplasmic reticulum (ER) architecture in hepatocytes, characterized by the induction of single rough ER sheet around the mitochondria, which becomes larger and flatter. These alterations are enriched in periportal and mid-lobular hepatocytes but not in pericentral hepatocytes. Gain- and loss-of-function in vivo models demonstrate that the Ribosome receptor binding protein1 (RRBP1) is required to enable fasting-induced ER sheet-mitochondria interactions and to regulate hepatic fatty acid oxidation. Endogenous RRBP1 is enriched around periportal and mid-lobular regions of the liver. In obesity, ER-mitochondria interactions are distinct and fasting fails to induce rough ER sheet-mitochondrion interactions. These findings illustrate the importance of a regulated molecular architecture for hepatocyte metabolic flexibility.


Subject(s)
Endoplasmic Reticulum , Fasting , Hepatocytes , Liver , Obesity , Fasting/metabolism , Endoplasmic Reticulum/metabolism , Animals , Hepatocytes/metabolism , Obesity/metabolism , Obesity/pathology , Liver/metabolism , Mice , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria, Liver/metabolism , Mitochondria, Liver/ultrastructure , Fatty Acids/metabolism , Humans , Oxidation-Reduction , Ribosomal Proteins/metabolism
17.
EMBO Rep ; 25(7): 2878-2895, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38769419

ABSTRACT

Vitamin A (retinol) is distributed via the blood bound to its specific carrier protein, retinol-binding protein 4 (RBP4). Retinol-loaded RBP4 is secreted into the circulation exclusively from hepatocytes, thereby mobilizing hepatic retinoid stores that represent the major vitamin A reserves in the body. The relevance of extrahepatic retinoid stores for circulating retinol and RBP4 levels that are usually kept within narrow physiological limits is unknown. Here, we show that fasting affects retinoid mobilization in a tissue-specific manner, and that hormone-sensitive lipase (HSL) in adipose tissue is required to maintain serum concentrations of retinol and RBP4 during fasting in mice. We found that extracellular retinol-free apo-RBP4 induces retinol release by adipocytes in an HSL-dependent manner. Consistently, global or adipocyte-specific HSL deficiency leads to an accumulation of retinoids in adipose tissue and a drop of serum retinol and RBP4 during fasting, which affects retinoid-responsive gene expression in eye and kidney and lowers renal retinoid content. These findings establish a novel crosstalk between liver and adipose tissue retinoid stores for the maintenance of systemic vitamin A homeostasis during fasting.


Subject(s)
Adipocytes , Fasting , Retinol-Binding Proteins, Plasma , Sterol Esterase , Vitamin A , Retinol-Binding Proteins, Plasma/metabolism , Retinol-Binding Proteins, Plasma/genetics , Animals , Vitamin A/metabolism , Vitamin A/blood , Fasting/metabolism , Mice , Adipocytes/metabolism , Sterol Esterase/metabolism , Sterol Esterase/genetics , Liver/metabolism , Adipose Tissue/metabolism , Mice, Knockout , Mice, Inbred C57BL
18.
Metabolomics ; 20(3): 50, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722393

ABSTRACT

INTRODUCTION: Analysis of time-resolved postprandial metabolomics data can improve our understanding of the human metabolism by revealing similarities and differences in postprandial responses of individuals. Traditional data analysis methods often rely on data summaries or univariate approaches focusing on one metabolite at a time. OBJECTIVES: Our goal is to provide a comprehensive picture in terms of the changes in the human metabolism in response to a meal challenge test, by revealing static and dynamic markers of phenotypes, i.e., subject stratifications, related clusters of metabolites, and their temporal profiles. METHODS: We analyze Nuclear Magnetic Resonance (NMR) spectroscopy measurements of plasma samples collected during a meal challenge test from 299 individuals from the COPSAC2000 cohort using a Nightingale NMR panel at the fasting and postprandial states (15, 30, 60, 90, 120, 150, 240 min). We investigate the postprandial dynamics of the metabolism as reflected in the dynamic behaviour of the measured metabolites. The data is arranged as a three-way array: subjects by metabolites by time. We analyze the fasting state data to reveal static patterns of subject group differences using principal component analysis (PCA), and fasting state-corrected postprandial data using the CANDECOMP/PARAFAC (CP) tensor factorization to reveal dynamic markers of group differences. RESULTS: Our analysis reveals dynamic markers consisting of certain metabolite groups and their temporal profiles showing differences among males according to their body mass index (BMI) in response to the meal challenge. We also show that certain lipoproteins relate to the group difference differently in the fasting vs. dynamic state. Furthermore, while similar dynamic patterns are observed in males and females, the BMI-related group difference is observed only in males in the dynamic state. CONCLUSION: The CP model is an effective approach to analyze time-resolved postprandial metabolomics data, and provides a compact but a comprehensive summary of the postprandial data revealing replicable and interpretable dynamic markers crucial to advance our understanding of changes in the metabolism in response to a meal challenge.


Subject(s)
Metabolomics , Postprandial Period , Humans , Postprandial Period/physiology , Male , Female , Metabolomics/methods , Adult , Fasting/metabolism , Principal Component Analysis , Magnetic Resonance Spectroscopy/methods , Middle Aged , Data Analysis , Metabolome/physiology
19.
Sci Adv ; 10(22): eadk9681, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820148

ABSTRACT

In response to energy and nutrient shortage, the liver triggers several catabolic processes to promote survival. Despite recent progress, the precise molecular mechanisms regulating the hepatic adaptation to fasting remain incompletely characterized. Here, we report the identification of hydroxysteroid dehydrogenase-like 2 (HSDL2) as a mitochondrial protein highly induced by fasting. We show that the activation of PGC1α-PPARα and the inhibition of the PI3K-mTORC1 axis stimulate HSDL2 expression in hepatocytes. We found that HSDL2 depletion decreases cholesterol conversion to bile acids (BAs) and impairs FXR activity. HSDL2 knockdown also reduces mitochondrial respiration, fatty acid oxidation, and TCA cycle activity. Bioinformatics analyses revealed that hepatic Hsdl2 expression positively associates with the postprandial excursion of various BA species in mice. We show that liver-specific HSDL2 depletion affects BA metabolism and decreases circulating cholesterol levels upon refeeding. Overall, our report identifies HSDL2 as a fasting-induced mitochondrial protein that links nutritional signals to BAs and cholesterol homeostasis.


Subject(s)
Bile Acids and Salts , Cholesterol , Homeostasis , Animals , Cholesterol/metabolism , Bile Acids and Salts/metabolism , Mice , Fasting/metabolism , Liver/metabolism , Humans , Mitochondria/metabolism , Signal Transduction , Hepatocytes/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism
20.
Trends Endocrinol Metab ; 35(9): 821-833, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38719726

ABSTRACT

Intermittent fasting (IF) modifies cell- and tissue-specific immunometabolic responses that dictate metabolic flexibility and inflammation during obesity and type 2 diabetes (T2D). Fasting forces periods of metabolic flexibility and necessitates increased use of different substrates. IF can lower metabolic inflammation and improve glucose metabolism without lowering obesity and can influence time-dependent, compartmentalized changes in immunity. Liver, adipose tissue, skeletal muscle, and immune cells communicate to relay metabolic and immune signals during fasting. Here we review the connections between metabolic and immune cells to explain the divergent effects of IF compared with classic caloric restriction (CR) strategies. We also explore how the immunometabolism of metabolic diseases dictates certain IF outcomes, where the gut microbiota triggers changes in immunity and metabolism during fasting.


Subject(s)
Fasting , Humans , Fasting/physiology , Fasting/metabolism , Animals , Caloric Restriction , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Obesity/immunology , Obesity/metabolism , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/immunology , Immunity/physiology , Intermittent Fasting
SELECTION OF CITATIONS
SEARCH DETAIL