Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.955
Filter
1.
Sci Rep ; 14(1): 15450, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965403

ABSTRACT

Ghost fishing is a global issue that can be addressed using fishing gear materials that do not persist in the marine environment. However, for these alternatives to be widely adopted, they must meet the same mechanical specifications as current commercial materials while degrading without any negative impact. The objective of this study was to compare a conventional gillnet made of polyamide 6 (PA6) with an alternative made of poly(butylene succinate-co-adipate-co-terephthalate) (PBSAT) at three different scales: monofilament, knot, and net. While the PBSAT monofilament's strength was half that of the conventional PA6 net, knot and net losses were even more significant. This indicates a greater sensitivity of the material to the knot. Since the results between the knot and net scales were coherent, testing whole net panels is not necessary. Studying the curvature and the behaviour of the knot revealed its complex geometry and mechanical behaviour. Testing the weaver's knot is a good indicator for studying the relevance of an alternative to conventional fishing gear materials. This should be considered when developing biodegradable nets in order to reduce ghost fishing at sea.


Subject(s)
Materials Testing , Polymers/chemistry , Polyesters/chemistry , Fisheries , Caprolactam/analogs & derivatives , Caprolactam/chemistry , Tensile Strength
2.
Proc Natl Acad Sci U S A ; 121(29): e2400592121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38980905

ABSTRACT

The expansion of marine protected areas (MPAs) is a core focus of global conservation efforts, with the "30x30" initiative to protect 30% of the ocean by 2030 serving as a prominent example of this trend. We consider a series of proposed MPA network expansions of various sizes, and we forecast the impact this increase in protection would have on global patterns of fishing effort. We do so by building a predictive machine learning model trained on a global dataset of satellite-based fishing vessel monitoring data, current MPA locations, and spatiotemporal environmental, geographic, political, and economic features. We then use this model to predict future fishing effort under various MPA expansion scenarios compared to a business-as-usual counterfactual scenario that includes no new MPAs. The difference between these scenarios represents the predicted change in fishing effort associated with MPA expansion. We find that regardless of the MPA network objectives or size, fishing effort would decrease inside the MPAs, though by much less than 100%. Moreover, we find that the reduction in fishing effort inside MPAs does not simply redistribute outside-rather, fishing effort outside MPAs would also decline. The overall magnitude of the predicted decrease in global fishing effort principally depends on where networks are placed in relation to existing fishing effort. MPA expansion will lead to a global redistribution of fishing effort that should be accounted for in network design, implementation, and impact evaluation.


Subject(s)
Conservation of Natural Resources , Fisheries , Animals , Oceans and Seas , Ecosystem , Machine Learning , Fishes
3.
Nat Commun ; 15(1): 5457, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951524

ABSTRACT

The impact of ocean warming on fish and fisheries is vigorously debated. Leading theories project limited adaptive capacity of tropical fishes and 14-39% size reductions by 2050 due to mass-scaling limitations of oxygen supply in larger individuals. Using the world's hottest coral reefs in the Persian/Arabian Gulf as a natural laboratory for ocean warming - where species have survived >35.0 °C summer temperatures for over 6000 years and are 14-40% smaller at maximum size compared to cooler locations - we identified two adaptive pathways that enhance survival at elevated temperatures across 10 metabolic and swimming performance metrics. Comparing Lutjanus ehrenbergii and Scolopsis ghanam from reefs both inside and outside the Persian/Arabian Gulf across temperatures of 27.0 °C, 31.5 °C and 35.5 °C, we reveal that these species show a lower-than-expected rise in basal metabolic demands and a right-shifted thermal window, which aids in maintaining oxygen supply and aerobic performance to 35.5 °C. Importantly, our findings challenge traditional oxygen-limitation theories, suggesting a mismatch in energy acquisition and demand as the primary driver of size reductions. Our data support a modified resource-acquisition theory to explain how ocean warming leads to species-specific size reductions and why smaller individuals are evolutionarily favored under elevated temperatures.


Subject(s)
Coral Reefs , Animals , Body Size/physiology , Global Warming , Oceans and Seas , Fishes/physiology , Indian Ocean , Oxygen/metabolism , Temperature , Hot Temperature , Fisheries
4.
PLoS One ; 19(7): e0302576, 2024.
Article in English | MEDLINE | ID: mdl-38954695

ABSTRACT

The Precautionary Approach to Fisheries Management requires an assessment of the impact of uncertainty on the risk of achieving management objectives. However, the main quantities, such as spawning stock biomass (SSB) and fish mortality (F), used in management metrics cannot be directly observed. This requires the use of models to provide guidance, for which there are three paradigms: the best assessment, model ensemble, and Management Strategy Evaluation (MSE). It is important to validate the models used to provide advice. In this study, we demonstrate how stock assessment models can be validated using a diagnostic toolbox, with a specific focus on prediction skill. Prediction skill measures the precision of a predicted value, which is unknown to the model, in relation to its observed value. By evaluating the accuracy of model predictions against observed data, prediction skill establishes an objective framework for accepting or rejecting model hypotheses, as well as for assigning weights to models within an ensemble. Our analysis uncovers the limitations of traditional stock assessment methods. Through the quantification of uncertainties and the integration of multiple models, our objective is to improve the reliability of management advice considering the complex interplay of factors that influence the dynamics of fish stocks.


Subject(s)
Fisheries , Fishes , Animals , Fishes/physiology , Uncertainty , Biomass , Models, Theoretical , Conservation of Natural Resources/methods , Reproducibility of Results , Risk Assessment/methods
5.
PLoS One ; 19(7): e0305779, 2024.
Article in English | MEDLINE | ID: mdl-38985725

ABSTRACT

Seafood plays an important role in sustainably feeding the world and is one of the most traded food products globally. However sustainability improvements are often focused on its production (e.g., aquaculture, fishing) rather than trade. Here, we quantify the magnitude and extent of global 'redundant two-way' seafood trade-the exchange of the same quantity of the same taxonomic species between two countries-to examine its prevalence and potential implications across the seafood supply chain. We focused on wild-caught seafood trade and found that redundant two-way trade has increased by 43%, between 2000 and 2015, making up 3.2% (7.7 Mt) of global seafood trade during that period. Although most countries were involved in redundant two-way seafood trade (111 of 212 analyzed), the majority occurred between five trade partners: Canada and the United States (15%), Germany and the Netherlands (11.8%); Denmark and Sweden (10.6%); Germany and Denmark (7.1%); and France and Norway (7%). Nearly 50% of redundant trade is made up of just four species including Atlantic herring, Atlantic cod, Skipjack tuna and Atlantic mackerel. While deficiencies in global seafood trade data mask seasonal and product heterogeneity, redundant trade could have implications for meeting conservation and sustainable development goals. Future research should build upon these findings to explore specific environmental, economic, and social implications associated with redundant two-way trade to benefit producers and consumers within the seafood supply chain.


Subject(s)
Commerce , Fisheries , Seafood , Seafood/economics , Seafood/supply & distribution , Fisheries/economics , Animals , Canada , Food Supply , Conservation of Natural Resources , Germany , United States , Denmark , France , Sweden , Norway , Internationality
6.
PLoS One ; 19(7): e0305922, 2024.
Article in English | MEDLINE | ID: mdl-38976691

ABSTRACT

INTRODUCTION: Obesity, as indicated by elevated Body Mass Index (BMI), is a well-established global health concern associated with increased morbidity and mortality across diverse populations. However, the influence of BMI on individuals in Agriculture, Forestry, and Fishing (AFF) occupations, characterized by unique challenges and environmental factors, has received limited research attention. METHODS: Our study, a prospective cohort analysis, utilized National Health and Nutrition Examination Survey (NHANES) data from 1999-2014, targeting adults above 18 in AFF occupations with comprehensive BMI data, omitting individuals with a history of cancer. Mortality outcomes were extracted from the NHANES mortality file, and BMI was segmented into eight categories. Essential covariates such as age, sex, race, and various health factors were incorporated. The statistical analysis encompassed Cox regression, generalized additive models, smooth curve fitting, and stratified analyses. RESULTS: During 1,005 person-years with 201 all-cause and 57 CVD deaths, we observed L-shaped and U-shaped correlations of BMI with all-cause and CVD mortality, featuring a pivotal inflection at 26.69 and 27.40 kg/m2. Above this BMI threshold of 26.69 and 27.4 kg/m2, all-cause mortality association was not significant while CVD mortality was positive. CONCLUSIONS: This study highlights a unique BMI-mortality association in AFF occupations, diverging from standard patterns. The rigorous labor and environmental conditions in AFF jobs suggest that a certain range of higher BMI could reduce mortality risk. This highlights the necessity for tailored health guidelines in different occupations. Future research should concentrate on diverse health indicators and enhanced risk assessment for physically strenuous occupations.


Subject(s)
Agriculture , Body Mass Index , Cardiovascular Diseases , Fisheries , Forestry , Humans , Male , Female , Middle Aged , Adult , Prospective Studies , Cardiovascular Diseases/mortality , Nutrition Surveys , Aged , Occupations/statistics & numerical data , Obesity/mortality , Obesity/epidemiology , Young Adult , Risk Factors , Cause of Death
7.
Cien Saude Colet ; 29(7): e03612024, 2024 Jul.
Article in Portuguese, English | MEDLINE | ID: mdl-38958324

ABSTRACT

This study aims to analyze the protective and destructive critical processes of 34 water women in the municipalities of Cabo de Santo de Agostinho and Ipojuca, Pernambuco, Brazil, from February/21 to August/22. The work process stages were systematized by the work flowchart, and we employed Breilh's critical processes matrix to organize the data. The destructive processes identified in the general domain were injustice and socio-environmental vulnerability, such as the economic development model, the Suape Industrial Port Complex, the 2019 oil spill crime disaster, the COVID-19 pandemic, and the difficult access to public policies; in the particular domain: overloads and extended working hours, use of rudimentary equipment and tools, and unequal gender, class, and race relationships; in the singular domain: physical and mental illnesses and deaths. The protective processes identified in the general domain were sustainable development objectives, public health, and social assistance policies; in the particular domain, group work and processing, consumption for subsistence; in the singular domain, fishing as a therapeutic, pleasurable, and sharing process. The study highlighted the central issues of the water women and the need to establish public policies targeting their care.


Objetivou-se analisar os processos críticos, protetores e destrutivos do trabalho de 34 mulheres das águas nos municípios de Cabo de Santo de Agostinho e Ipojuca (PE), de fevereiro de 2021 a agosto de 2022. As etapas do processo de trabalho foram sistematizadas pelo fluxograma do trabalho e organizadas na matriz de processos críticos de Breilh. Os processos destrutivos, no domínio geral, foram: injustiça e vulnerabilização socioambiental como modelo de desenvolvimento econômico, o Complexo Industrial Portuário de Suape, o desastre-crime de petróleo ocorrido em 2019, a pandemia de COVID-19 e dificuldade de acesso às políticas públicas; no particular: jornadas e sobrecargas de trabalho, uso de equipamentos e ferramentas rudimentares e relações desiguais de gênero, classe e raça; no singular: adoecimentos físicos, mentais e mortes. Os processos protetores, no domínio geral: os objetivos de desenvolvimento sustentável, políticas públicas de saúde e assistência social; no particular: trabalho e beneficiamento em grupo, consumo para subsistência; no singular: a pesca como processo terapêutico, prazeroso e de partilha. O estudo destacou os problemas centrais das mulheres das águas e a necessidade do estabelecimento de políticas públicas voltadas ao seu cuidado.


Subject(s)
COVID-19 , Brazil , Female , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Fisheries , Adult , Public Policy , Public Health , Middle Aged , Sustainable Development
8.
Math Biosci Eng ; 21(4): 5687-5711, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38872554

ABSTRACT

In this paper, we have proposed and investigated an intraguild predator-prey system incorporating two delays and a harvesting mechanism based on the Michaelis-Menten principle, and it was assumed that the two species compete for a shared resource. Firstly, we examined the properties of the relevant characteristic equations to derive sufficient conditions for the asymptotical stability of equilibria in the delayed model and the existence of Hopf bifurcation. Using the normal form method and the central manifold theorem, we analyzed the stability and direction of periodic solutions arising from Hopf bifurcations. Our theoretical findings were subsequently validated through numerical simulations. Furthermore, we explored the impact of harvesting on the quantity of biological resources and examined the critical values associated with the two delays.


Subject(s)
Computer Simulation , Ecosystem , Fisheries , Food Chain , Models, Biological , Population Dynamics , Predatory Behavior , Animals , Algorithms
9.
Methods Mol Biol ; 2820: 89-98, 2024.
Article in English | MEDLINE | ID: mdl-38941017

ABSTRACT

Fishery products are one of the main human nutritional sources, and due to the consumption increase, the quality of the derived products may be modified, during catching, technological processing, and storage. Detection and identification of pathogenic and spoilage microorganisms in fishery products is needed because the first may be involved in human diseases, while the second is responsible of significant economic losses. In this sense, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method and computational analysis of MS data are useful tools for characterizing and identifying different microorganisms and to develop promising strategies for food science investigations. Moreover, in the past decade, metaproteomic methodologies have progressed for the study of microorganisms isolated from their natural samples and independently of the culture restrictions. Metaproteomics enables assessment of proteins and pathways from individual members of the consortium. Metaproteomics can provide a detailed understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize nutrients, and these insights can be obtained directly from environmental samples.According to that, the sample preparation of the fishery product, the LC-ESI-MS/MS dedicated method, and the MS data analysis were described in the present chapter to obtain the metaproteomic analysis of the respective microbiomes or microbial communities.


Subject(s)
Microbiota , Proteomics , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Proteomics/methods , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Fisheries , Humans , Fish Products/microbiology , Fish Products/analysis , Animals , Food Microbiology
10.
Glob Chang Biol ; 30(6): e17383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932518

ABSTRACT

Marine species are widely shifting their distributions in response to global changes and it is commonly expected they will move northward and to greater depths to reach cooler, less disturbed habitats. However, local manifestations of global changes, anthropogenic pressures, and species characteristics may lead to unanticipated and varied responses by individual species. In this regard, the Celtic-Biscay Shelf is a particularly interesting study system because it has historically been heavily fished and occurs at the interface between two distinct biogeographic provinces, its community thus comprised of species with diverse thermal preferenda. In the context of rapidly warming temperatures and intense fishery exploitation, we investigated the distribution shifts of 93 taxa (65 Actinopteri, 10 Elasmobranchii, 11 Cephalopoda, 5 Malacostraca, and 2 Bivalvia), which were sampled annually from 1997 to 2020 during a scientific bottom trawl survey. We used a set of 11 complementary spatial indices to quantify taxon distribution shifts over time. Then, we explored the relative effect of taxon abundance, fishing pressure, and climatic conditions on taxon's distribution shift when a significant shift was detected. We observed that 56% of the taxa significantly shifted. Not all taxa will necessarily shift northward and to deeper areas, as it is often expected. Two opposite patterns were identified: taxa either moving deeper and to the southeast, or moving closer to the surface and to the northwest. The main explanatory factors were climate change (short- and long-term temperatures) and taxon abundance. Fishing pressure was the third, but still significant, explanatory factor of taxa of greater commercial importance. Our research highlights that taxa are displaying complex distribution shifts in response to the combined anthropogenic disturbances and underscores the need to conduct regional studies to better understand these responses at the ecosystem scale to develop more suitable management plans and policies.


Subject(s)
Animal Distribution , Climate Change , Fisheries , Animals , Atlantic Ocean , Fisheries/statistics & numerical data , Ecosystem , Aquatic Organisms/physiology , Fishes/physiology , Fishes/classification , Biodiversity
11.
Mar Drugs ; 22(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38921575

ABSTRACT

The valorization of aquaculture/fishery processing by-products, as well as unavoidable/unwanted catches and discards in Greece, is currently an underutilized activity despite the fact that there are several best practices in Northern Europe and overseas. One of the main challenges is to determine whether the available quantities for processing are sufficient to warrant the valorization of discards and fish side streams. This is the first attempt to systematically record and analyze the available quantities of fish by-products and discards in Greece spatially and temporally in an effort to create a national exploitation Master Plan for the valorization of this unavoidable and unwanted biomass. A thorough survey conducted within the VIOAXIOPIO project unveiled a substantial biomass of around 19,000 tonnes annually that could be harnessed for valorization. Furthermore, the production of various High-Added-Value Biomolecules (HAVBs) was investigated and experimental trials were conducted to assess the potential yields, with the collected data used to formulate four valorization scenarios.


Subject(s)
Fisheries , Fishes , Greece , Animals , Aquaculture , Biomass , Conservation of Natural Resources , Humans
12.
Sci Rep ; 14(1): 14711, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926460

ABSTRACT

In the current study, the fish farm model perturbed with time white noise is numerically examined. This model contains fish and mussel populations with external food supplied. The main aim of this work is to develop time-efficient numerical schemes for such models that preserve the dynamical properties. The stochastic backward Euler (SBE) and stochastic Implicit finite difference (SIFD) schemes are designed for the computational results. In the mean square sense, both schemes are consistent with the underlying model and schemes are von Neumann stable. The underlying model has various equilibria points and all these points are successfully gained by the SIFD scheme. The SIFD scheme showed positive and convergent behavior for the given values of the parameter. As the underlying model is a population model and its solution can attain minimum value zero, so a solution that can attain value less than zero is not biologically possible. So, the numerical solution obtained by the stochastic backward Euler is negative and divergent solution and it is not a biological phenomenon that is useless in such dynamical systems. The graphical behaviors of the system show that external nutrient supply is the important factor that controls the dynamics of the given model. The three-dimensional results are drawn for the various choices of the parameters.


Subject(s)
Fishes , Animals , Fishes/physiology , Fisheries , Models, Theoretical , Stochastic Processes , Aquaculture/methods , Computer Simulation
13.
Sensors (Basel) ; 24(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38894471

ABSTRACT

The integration of cutting-edge technologies such as the Internet of Things (IoT), robotics, and machine learning (ML) has the potential to significantly enhance the productivity and profitability of traditional fish farming. Farmers using traditional fish farming methods incur enormous economic costs owing to labor-intensive schedule monitoring and care, illnesses, and sudden fish deaths. Another ongoing issue is automated fish species recommendation based on water quality. On the one hand, the effective monitoring of abrupt changes in water quality may minimize the daily operating costs and boost fish productivity, while an accurate automatic fish recommender may aid the farmer in selecting profitable fish species for farming. In this paper, we present AquaBot, an IoT-based system that can automatically collect, monitor, and evaluate the water quality and recommend appropriate fish to farm depending on the values of various water quality indicators. A mobile robot has been designed to collect parameter values such as the pH, temperature, and turbidity from all around the pond. To facilitate monitoring, we have developed web and mobile interfaces. For the analysis and recommendation of suitable fish based on water quality, we have trained and tested several ML algorithms, such as the proposed custom ensemble model, random forest (RF), support vector machine (SVM), decision tree (DT), K-nearest neighbor (KNN), logistic regression (LR), bagging, boosting, and stacking, on a real-time pond water dataset. The dataset has been preprocessed with feature scaling and dataset balancing. We have evaluated the algorithms based on several performance metrics. In our experiment, our proposed ensemble model has delivered the best result, with 94% accuracy, 94% precision, 94% recall, a 94% F1-score, 93% MCC, and the best AUC score for multi-class classification. Finally, we have deployed the best-performing model in a web interface to provide cultivators with recommendations for suitable fish farming. Our proposed system is projected to not only boost production and save money but also reduce the time and intensity of the producer's manual labor.


Subject(s)
Machine Learning , Ponds , Water Quality , Animals , Fishes , Algorithms , Environmental Monitoring/methods , Support Vector Machine , Aquaculture/methods , Internet of Things , Fisheries
14.
An Acad Bras Cienc ; 96(3): e20231343, 2024.
Article in English | MEDLINE | ID: mdl-38896742

ABSTRACT

Arapaima gigas, an emblematic species of the Amazon region and a longstanding primary fishing resource, currently holds a "Data Deficient" status on the International Union for Conservation of Nature Red List, and is listed as an endangered species in Brazil. The Tocantins River is the most extensively modified large tributary of the Amazon Basin, and thus can affect the dynamics of ichthyofaunal populations. Over a period of 1 year, representatives of the fishing communities and fishermen from 25 fishing communities from four municipalities in the lower Tocantins River region were interviewed, and the obtained information was evaluated based on the literature to survey the population abundance status of A. gigas in the region and its impact on local communities. Among the fishermen interviewed, only one reported still encountering and fishing A. gigas on Jaracuera Island. The disappearance of A. gigas in the region are viewed as having economically disastrous consequences for the residents. Additionally, other endemic fish species are no longer observed in this locality either. If fishery management officials do not work together with local communities, A. gigas could disappear from the northern region of Brazil, where information on the dynamics of A. gigas fishing is lacking.


Subject(s)
Conservation of Natural Resources , Fisheries , Rivers , Brazil , Animals , Fisheries/statistics & numerical data , Fishes/classification , Population Dynamics , Population Density , Endangered Species , Humans
15.
Sci Total Environ ; 943: 173842, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38866163

ABSTRACT

The development of an ecosystem approach to fisheries management makes the assessment of the sustainability performance of fisheries a priority. This study examines European tropical tuna purse seine fleets as a case study, employing a multidisciplinary dashboard approach to evaluate historical and current sustainability performances. The aim is to enhance comprehension of the interconnected dimensions of sustainability and pinpoint management policy priorities. Using 18 indicators, we assessed the environmental, economic and social sustainability performances of European tropical tuna purse seine fleets, comparing them with other industrial tropical tuna fishing fleets in the Atlantic and Indian Oceans. The analysis also explored the temporal trend of sustainability performance for European tuna purse seiners from 2009 to 2019. Our results suggest that, compared with gillnetters and longliners, purse seiners and baitboats have a greater species-based selectivity, thereby catching fewer endangered, threatened or protected species, but a lower mature tuna catch rate, thus capturing more juveniles. We identify likely gaps in bycatch data reported by fishing on fish aggregating devices (FADs), due to results regarding selectivity and discard rates that appear inconsistent in the light of the scientific literature. The greater use of FADs, likely caused by the global tuna market, by purse seiner seems result in decreased ecological performances, as suggested by an increased carbon footprint per tonne landed. At the same time, it implies a better economic performance on the short-term, with higher net profit, energy efficiency (fuel consumed relative to monetary value created) and catch. For our case study, Ecology and Economy might seem to be in conflict for short-term perspective. However, consideration of the long-term impacts of FAD fishing and market incentives for fishing on free schools should lead purse seiner fleets to reduce drifting FAD fishing and promote more sustainable fishing practices.


Subject(s)
Conservation of Natural Resources , Fisheries , Tuna , Animals , Conservation of Natural Resources/methods , Europe , Ecosystem , Ecology , Indian Ocean , Atlantic Ocean
16.
PLoS One ; 19(6): e0298868, 2024.
Article in English | MEDLINE | ID: mdl-38843128

ABSTRACT

Commercial fisheries along the US West Coast are important components of local and regional economies. They use various fishing gear, target a high diversity of species, and are highly spatially heterogeneous, making it challenging to generate a synoptic picture of fisheries activity in the region. Still, understanding the spatial and temporal dynamics of US West Coast fisheries is critical to meet the US legal mandate to manage fisheries sustainably and to better coordinate activities among a growing number of users of ocean space, including offshore renewable energy, aquaculture, shipping, and interactions with habitats and key non-fishery species such as seabirds and marine mammals. We analyzed vessel tracking data from Vessel Monitoring System (VMS) from 2010 to 2017 to generate high-resolution spatio-temporal estimates of contemporary fishing effort across a wide range of commercial fisheries along the entire US West Coast. We identified over 247,000 fishing trips across the entire VMS data, covering over 25 different fisheries. We validated the spatial accuracy of our analyses using independent estimates of spatial groundfish fisheries effort generated through the NOAA's National Marine Fisheries Service Observer Program. Additionally, for commercial groundfish fisheries operating in federal waters in California, we combined the VMS data with landings and ex-vessel value data from California commercial fisheries landings receipts to generate highly resolved estimates of landings and ex-vessel value, matching over 38,000 fish tickets with VMS data that included 87% of the landings and 76% of the ex-vessel value for groundfish. We highlight fisheries-specific and spatially-resolved patterns of effort, landings, and ex-vessel value, a bimodal distribution of fishing effort with respect to depth, and variable and generally declining effort over eight years. The information generated by our study can help inform future sustainable spatial fisheries management and other activities in the marine environment including offshore renewable energy planning.


Subject(s)
Conservation of Natural Resources , Fisheries , Fisheries/legislation & jurisprudence , Fisheries/economics , California , Animals , Conservation of Natural Resources/methods , Ecosystem , Fishes , Ships
17.
PLoS One ; 19(6): e0304718, 2024.
Article in English | MEDLINE | ID: mdl-38843266

ABSTRACT

Climate change is anticipated to have long-term and pervasive effects on marine ecosystems, with cascading consequences to many ocean-reliant sectors. For the marine fisheries sector, these impacts can be further influenced by future socio-economic and political factors. This raises the need for robust projections to capture the range of potential biological and economic risks and opportunities posed by climate change to marine fisheries. Here, we project future changes in the abundance of eight commercially important fish and crab species in the eastern Bering Sea and Chukchi Sea under different CMIP6 Shared Socioeconomic Pathways (SSPs) leading to contrasting future (2021-2100) scenarios of warming, sea ice concentration, and net primary production. Our results revealed contrasting patterns of abundance and distribution changes across species, time periods and climate scenarios, highlighting potential winners and losers under future climate change. In particular, the least changes in future species abundance and distribution were observed under SSP126. However, under the extreme scenario (SSP585), projected Pacific cod and snow crab abundances increased and decreased, respectively, with concurrent zonal and meridional future shifts in their centers of gravity. Importantly, projected changes in species abundance suggest that fishing at the same distance from the current major port in the Bering Sea (i.e., Dutch Harbor) could yield declining catches for highly valuable fisheries (e.g., Pacific cod and snow crab) under SSP585. This is driven by strong decreases in future catches of highly valuable species despite minimal declines in maximum catch potential, which are dominated by less valuable taxa. Hence, our findings show that projected changes in abundance and shifting distributions could have important biological and economic impacts on the productivity of commercial and subsistence fisheries in the eastern Bering and Chukchi seas, with potential implications for the effective management of transboundary resources.


Subject(s)
Climate Change , Conservation of Natural Resources , Fisheries , Fishes , Fisheries/economics , Animals , Conservation of Natural Resources/economics , Ecosystem , Brachyura/physiology , Oceans and Seas
18.
Curr Biol ; 34(11): R526-R527, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834022

ABSTRACT

Fish and other metazoans play a major role in long-term sequestration of carbon in the oceans through the biological carbon pump1. Recent studies estimate that fish can release about 1,200 to 1,500 million metric tons of carbon per year (MtC year-1) in the oceans through feces production, respiration, and deadfalls, with mesopelagic fish playing a major role1,2. This carbon remains sequestered (stored) in the ocean for a period that largely depends on the depth at which it is released. Cephalopods (squid, octopus, and cuttlefish) have the potential to sequester carbon more effectively than fish because they grow on average five times faster than fish3,4 and they die after reproducing at an early age4,5 (usually 1-2 years), after which their carcasses sink rapidly to the sea floor6. Deadfall of carcasses is particularly important for long-term sequestration because it rapidly transports carbon to depths where residence times are longest1,6. We estimate that cephalopod carcasses transfer 11-22 MtC to the seafloor globally. While cephalopods represent less than 5% of global fisheries catch7, fishing extirpates about 0.36 MtC year-1 of cephalopod carbon that could otherwise have sunk to the seafloor, about half as much as that of fishing large fish8.


Subject(s)
Carbon Sequestration , Cephalopoda , Fisheries , Animals , Cephalopoda/metabolism , Carbon/metabolism
19.
Sci Rep ; 14(1): 12684, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830920

ABSTRACT

Climate change is recognised to lead to spatial shifts in the distribution of small pelagic fish, likely by altering their environmental optima. Fish supply along the Northwest African coast is significant at both socio-economic and cultural levels. Evaluating the impacts of climatic change on small pelagic fish is a challenge and of serious concern in the context of shared stock management. Evaluating the impact of climate change on the distribution of small pelagic fish, a trend analysis was conducted using data from 2363 trawl samplings and 170,000 km of acoustics sea surveys. Strong warming is reported across the Southern Canary Current Large Marine Ecosystem (CCLME), extending from Morocco to Senegal. Over 34 years, several trends emerged, with the southern CCLME experiencing increases in both wind speed and upwelling intensity, particularly where the coastal upwelling was already the strongest. Despite upwelling-induced cooling mechanisms, sea surface temperature (SST) increased in most areas, indicating the complex interplay of climatic-related stressors in shaping the marine ecosystem. Concomitant northward shifts in the distribution of small pelagic species were attributed to long-term warming trends in SST and a decrease in marine productivity in the south. The abundance of Sardinella aurita, the most abundant species along the coast, has increased in the subtropics and fallen in the intertropical region. Spatial shifts in biomass were observed for other exploited small pelagic species, similar to those recorded for surface isotherms. An intensification in upwelling intensity within the northern and central regions of the system is documented without a change in marine primary productivity. In contrast, upwelling intensity is stable in the southern region, while there is a decline in primary productivity. These environmental differences affected several small pelagic species across national boundaries. This adds a new threat to these recently overexploited fish stocks, making sustainable management more difficult. Such changes must motivate common regional policy considerations for food security and sovereignty in all West African countries sharing the same stocks.


Subject(s)
Climate Change , Ecosystem , Fishes , Food Security , Animals , Fishes/physiology , Fisheries , Temperature
20.
Sci Rep ; 14(1): 12813, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834719

ABSTRACT

Deep-sea coral assemblages are marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to the impacts of human activities such as fishing. The critically endangered "bamboo coral" Isidella elongata is a key structuring species of deep muddy bottoms that is susceptible to habitat destruction, particularly from trawling. A shallow population of this species was recently discovered by a multibeam and ROV survey offshore of the Asinara Island marine protected area (MPA) (northwestern Sardinia, NW Mediterranean Sea). This vulnerable marine assemblage has been found under healthy conditions at depths ranging from 110 to 298 m. Isidella elongata occurs on a muddy seafloor locally characterised by boulders associated with black coral species (Parantipathes larix and Antipathes dichotoma). The lush colonies of I. elongata seem to be related to natural protection from bottom trawling activity; nevertheless, the presence of lost fishing artisanal nets has been observed in the study area. These structuring species are indicators of vulnerable marine ecosystems, and their conservation is essential for preserving marine biodiversity. Therefore, enlarging the perimeter of the Asinara Island MPA into its deeper western waters is suggested to ensure the protection of these valuable and vulnerable marine ecosystems.


Subject(s)
Anthozoa , Biodiversity , Conservation of Natural Resources , Islands , Animals , Mediterranean Sea , Conservation of Natural Resources/methods , Italy , Ecosystem , Fisheries
SELECTION OF CITATIONS
SEARCH DETAIL