Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.538
Filter
1.
Mycopathologia ; 189(5): 74, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39107598

ABSTRACT

BACKGROUND: Mycotic keratitis (MK) represents a corneal infection, with Fusarium species identified as the leading cause. Fusarium is a genus of filamentous fungi commonly found in soil and plants. While many Fusarium species are harmless, some can cause serious infections in humans and animals, particularly Fusarium keratitis, that can lead to severe ocular infections, prevalent cause of monocular blindness in tropical and subtropical regions of the world. Due to its incidence and importance in ophthalmology, we conducted a systematic analysis of clinical cases to increase our understanding of Fusarium keratitis by gathering clinical and demographic data. METHODS: To conduct an analysis of Fusarium keratitis, we looked through the literature from the databases PubMed, Embase, Lilacs, and Google Scholar and found 99 papers that, between March 1969 and September 2023, corresponded to 163 cases of Fusarium keratitis. RESULTS: Our analysis revealed the Fusarium solani species complex as the predominant isolate, with females disproportionately affected by Fusarium keratitis. Notably, contact lens usage emerged as a significant risk factor, implicated in nearly half of cases. Diagnosis primarily relied on culture, while treatment predominantly involved topical natamycin, amphotericin B, and/or voriconazole. Surprisingly, our findings demonstrated a prevalence of cases originating from the United States, suggesting potential underreporting and underestimation of this mycosis in tropical regions. This shows the imperative for heightened vigilance, particularly in underdeveloped regions with substantial agricultural activity, where Fusarium infections may be more prevalent than currently reported. CONCLUSION: Our study sheds light on the clinical complexities of Fusarium keratitis and emphasizes the need for further research and surveillance to effectively tackle this vision-threatening condition. Furthermore, a timely identification and early initiation of antifungal treatment appear to be as important as the choice of initial treatment itself.


Subject(s)
Antifungal Agents , Fusariosis , Fusarium , Keratitis , Humans , Keratitis/microbiology , Keratitis/epidemiology , Keratitis/drug therapy , Fusarium/isolation & purification , Fusarium/classification , Fusarium/genetics , Fusariosis/microbiology , Fusariosis/drug therapy , Fusariosis/epidemiology , Fusariosis/diagnosis , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/epidemiology , Eye Infections, Fungal/drug therapy , Female , Voriconazole/therapeutic use , Prevalence , Risk Factors , Male , Adult , Middle Aged , Contact Lenses/microbiology , Contact Lenses/adverse effects , Amphotericin B/therapeutic use , Natamycin/therapeutic use , Aged , Young Adult , Adolescent
2.
Funct Plant Biol ; 512024 Aug.
Article in English | MEDLINE | ID: mdl-39137292

ABSTRACT

Two markers on Chromosome 2 of chickpea (Cicer arietinum ) are reportedly associated with resistance to race 4 Fusarium wilt, and are frequently used in breeding. However, the genes in this region that actually confer wilt resistance are unknown. We aimed to characterise them using both in silico approaches and marker trait association (MTA) analysis. Of the 225 protein-encoding genes in this region, 51 showed significant differential expression in two contrasting chickpea genotypes under wilt, with potential involvement in stress response. From a diverse set of 244 chickpea genotypes, two sets of 40 resistant and 40 susceptible genotypes were selected based on disease incidence and amplification pattern of the TA59 marker. All cultivars were further genotyped with 1238 single nucleotide polymorphisms (SNPs) specific to the 51 genes; only seven SNPs were significantly correlated with disease. SNP Ca2_24099002, specific to the LOC101498008 (Transmembrane protein 87A) gene, accounted for the highest phenotypic variance for disease incidence at 16.30%, whereas SNPs Ca2_25166118 and Ca2_27029215, specific to the LOC101494644 (ß-glucosidase BoGH3B-like) and LOC101505289 (Putative tRNA pseudouridine synthase) genes, explained 10.51% and 10.50% of the variation, respectively, in the sets with contrasting disease susceptibility. Together with the TA59 and TR19 markers, these SNPs can be used in a chickpea breeding scheme to develop wilt resistance.


Subject(s)
Cicer , Disease Resistance , Fusarium , Plant Diseases , Polymorphism, Single Nucleotide , Cicer/genetics , Cicer/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Chromosomes, Plant/genetics , Genotype , Genes, Plant
3.
Int J Mol Sci ; 25(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39126085

ABSTRACT

Chitinase genes, as a class of cell wall hydrolases, are essential for the development and pathogenesis of Fusarium oxysporum f.sp. vasinfectum (F. ox) in cotton, but related research focused on chitinase genes are limited. This study explored two island cotton root secretions from the highly resistant cultivar Xinhai 41 and sensitive cultivar Xinhai 14 to investigate their interaction with F. ox by a weighted correlation network analysis (WGCNA). As a result, two modules that related to the fungal pathogenicity emerged. Additionally, a total of twenty-five chitinase genes were identified. Finally, host-induced gene silencing (HIGS) of FoChi20 was conducted, and the cotton plants showed noticeably milder disease with a significantly lower disease index than the control. This study illuminated that chitinase genes play crucial roles in the pathogenicity of cotton wilt fungi, and the FoChi20 gene could participate in the pathogenesis of F. ox and host-pathogen interactions, which establishes a theoretical framework for disease control in Sea Island cotton.


Subject(s)
Chitinases , Disease Resistance , Fusarium , Gossypium , Plant Diseases , Fusarium/pathogenicity , Fusarium/genetics , Gossypium/microbiology , Chitinases/genetics , Chitinases/metabolism , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Host-Pathogen Interactions/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Plant , Plant Roots/microbiology
4.
Sci Rep ; 14(1): 18052, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103395

ABSTRACT

The novelty of this study lies in demonstrating a new approach to control wilt diseases using Jania ethyl acetate extract. In the current investigation, the potential impacts of Jania sp. ethyl acetate extract (JE) on Tomato Fusarium oxysporum wilt (FOW) have been studied. The in vitro antifungal potential of JE against F. oxysporum (FO) was examined. GC-MS investigation of the JE revealed that, the compounds possessing fungicidal action were Phenol,2-methoxy-4-(2-propenyl)-,acetate, Eugenol, Caryophyllene oxide, Isoespintanol, Cadinene, Caryophylla-4(12),8(13)-dien-5à-ol and Copaen. Jania sp. ethyl acetate extract exhibited strong antifungal potential against FO, achieving a 20 mmzone of inhibition. In the experiment, two different methods were applied: soil irrigation (SI) and foliar application (FS) of JE. The results showed that both treatments reduced disease index present DIP by 20.83% and 33.33% respectively. The findings indicated that during FOW, proline, phenolics, and the antioxidant enzymes activity increased, while growth and photosynthetic pigments decreased. The morphological features, photosynthetic pigments, total phenol content, and antioxidant enzyme activity of infected plants improved when JE was applied through soil or foliar methods. It is interesting to note that the application of JE had a substantially less negative effect on the isozymes peroxidase and polyphenol oxidase in tomato plants, compared to FOW. These reactions differed depending on whether JE was applied foliarly or via the soil. Finally, the use of Jania sp. could be utilized commercially as an ecologically acceptable method to protect tomato plants against FOW.


Subject(s)
Fusarium , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/immunology , Solanum lycopersicum/drug effects , Fusarium/pathogenicity , Fusarium/drug effects , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/prevention & control , Seaweed , Plant Immunity/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rhodophyta , Antifungal Agents/pharmacology
5.
Mol Plant Pathol ; 25(8): e13502, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118198

ABSTRACT

Banana Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a major disease of banana plants worldwide. Effector proteins play critical roles in banana-Foc TR4 interaction. Our previous studies highlighted a ribonuclease protein belonging to the T2 family (named as FocRnt2) in the Foc TR4 secretome, which was predicted to be an effector. However, its biological function in Foc TR4 infection is still unclear. Herein, we observed significant expression of FocRnt2 during the early stage of fungal infection in planta. A yeast signal sequence trap assay showed that FocRnt2 contained a functional signal peptide for secretion. FocRnt2 possessed ribonuclease activity that could degrade the banana total RNA in vitro. Subcellular localization showed that FocRnt2 was localized in the nucleus and cytoplasm of Nicotiana benthamiana leaves. Transient expression of FocRnt2 suppressed the expression of salicylic acid- and jasmonic acid-signalling marker genes, reactive oxygen species accumulation, and BAX-mediated cell death in N. benthamiana. FocRnt2 deletion limited fungal penetration, reduced fusaric acid biosynthesis in Foc TR4, and attenuated fungal virulence against banana plants, but had little effect on Foc TR4 growth and sensitivity to various stresses. Furthermore, FocRnt2 deletion mutants induced higher expression of the defence-related genes in banana plants. These results suggest that FocRnt2 plays an important role in full virulence of Foc TR4, further improving our understanding of effector-mediated Foc TR4 pathogenesis.


Subject(s)
Fusarium , Musa , Nicotiana , Plant Diseases , Fusarium/pathogenicity , Virulence , Plant Diseases/microbiology , Musa/microbiology , Nicotiana/microbiology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ribonucleases/metabolism , Ribonucleases/genetics , Reactive Oxygen Species/metabolism , Endoribonucleases
6.
Molecules ; 29(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124884

ABSTRACT

Carbamate is a key structural motif in the development of fungicidal compounds, which is still promising and robust in the discovery of green pesticides. Herein, we report the synthesis and evaluation of the fungicidal activity of 35 carbamate derivatives, among which 19 compounds were synthesized in our previous report. These derivatives were synthesized from aromatic amides in a single step, which was a green oxidation process for Hofmann rearrangement using oxone, KCl and NaOH. Their chemical structures were characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry. Their antifungal activity was tested against seven plant fungal pathogens. Many of the compounds exhibited good antifungal activity in vitro (inhibitory rate > 60% at 50 µg/mL). Compound 1ag exhibited excellent broad-spectrum antifungal activities with inhibition rates close to or higher than 70% at 50 µg/mL. Notably, compound 1af demonstrated the most potent inhibition against F. graminearum, with an EC50 value of 12.50 µg/mL, while compound 1z was the most promising candidate fungicide against F. oxysporum (EC50 = 16.65 µg/mL). The structure-activity relationships are also discussed in this paper. These results suggest that the N-aryl carbamate derivatives secured by our green protocol warrant further investigation as potential lead compounds for novel antifungal agents.


Subject(s)
Antifungal Agents , Carbamates , Green Chemistry Technology , Microbial Sensitivity Tests , Carbamates/chemistry , Carbamates/pharmacology , Carbamates/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Structure-Activity Relationship , Molecular Structure , Fungi/drug effects , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Fusarium/drug effects
7.
Molecules ; 29(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39124974

ABSTRACT

In our ongoing work to create potential antifungal agents, we synthesized and tested a group of C1-substituted acylhydrazone ß-carboline analogues 9a-o and 10a-o for their effectiveness against Valsa mali, Fusarium solani, Fusarium oxysporum, and Fusarium graminearum. Their compositions were analyzed using different spectral techniques, such as 1H/13C NMR and HRMS, with the structure of 9l being additionally confirmed through X-ray diffraction. The antifungal evaluation showed that, among all the target ß-carboline analogues, compounds 9n and 9o exhibited more promising and broad-spectrum antifungal activity than the commercial pesticide hymexazol. Several intriguing findings regarding structure-activity relationships (SARs) were examined. In addition, the cytotoxicity test showed that these acylhydrazone ß-carboline analogues with C1 substitutions exhibit a preference for fungi, with minimal harm to healthy cells (LO2). The reported findings provide insights into the development of ß-carboline analogues as new potential antifungal agents.


Subject(s)
Antifungal Agents , Carbolines , Fusarium , Hydrazones , Microbial Sensitivity Tests , Carbolines/chemistry , Carbolines/pharmacology , Carbolines/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Structure-Activity Relationship , Fusarium/drug effects , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Molecular Structure , Humans
8.
PeerJ ; 12: e17656, 2024.
Article in English | MEDLINE | ID: mdl-38948216

ABSTRACT

Fusarium crown rot (FCR), caused by Fusarium spp., is a devastating disease in wheat growing areas. Previous studies have shown that FCR is caused by co-infection of F. graminearum, F. pseudograminearum, F. proliferatum and F. verticillioides in Hubei Province, China. In this study, a method was developed to simultaneously detected DNAs of F. graminearum, F. pseudograminearum, F. proliferatum and F. verticillioides that can efficiently differentiate them. Whole genome sequence comparison of these four Fusarium spp. was performed and a 20 bp sequence was designed as an universal upstream primer. Specific downstream primers of each pathogen was also designed, which resulted in a 206, 482, 680, and 963 bp amplicon for each pathogen, respectively. Multiplex PCR specifically identified F. graminearum, F. pseudograminearum, F. proliferatum and F. verticillioides but not from other 46 pathogens, and the detection limit of target pathogens is about 100 pg/µl. Moreover, we accurately determined the FCR pathogen species in wheat samples using the optimized multiplex PCR method. These results demonstrate that the multiplex PCR method established in this study can efficiently and rapidly identify F. graminearum, F. pseudograminearum, F. proliferatum, and F. verticillioides, which should provide technical support for timely and targeted prevention and control of FCR.


Subject(s)
Fusarium , Multiplex Polymerase Chain Reaction , Plant Diseases , Triticum , Fusarium/genetics , Fusarium/isolation & purification , Triticum/microbiology , Plant Diseases/microbiology , Multiplex Polymerase Chain Reaction/methods , China , DNA, Fungal/genetics
9.
PeerJ ; 12: e17578, 2024.
Article in English | MEDLINE | ID: mdl-38948222

ABSTRACT

In the eastern coastal regions of Odisha, wilt caused by Fusarium oxysporum f. sp.capsici is an extremely damaging disease in chilli. This disease is very difficult to manage with chemical fungicides since it is soil-borne in nature. The natural rhizosphere soil of the chilli plant was used to isolate and test bacterial antagonists for their effectiveness and ability to promote plant growth. Out of the fifty-five isolates isolated from the rhizosphere of healthy chilli plants, five isolates, namely Iso 01, Iso 17, Iso 23, Iso 24, and Iso 32, showed their highly antagonistic activity against F. oxysporum f. sp. capsici under in vitro. In a dual culture, Iso 32 (73.3%) and Iso 24 (71.5%) caused the highest level of pathogen inhibition. In greenhouse trials, artificially inoculated chilli plants treated with Iso 32 (8.8%) and Iso 24 (10.2%) had decreased percent disease incidence (PDI), with percent disease reduction over control of 85.6% and 83.3%, respectively. Iso 32 and Iso 24 treated chilli seeds have shown higher seed vigor index of 973.7 and 948.8, respectively, as compared to untreated control 636.5. Furthermore, both the isolates significantly increased plant height as well as the fresh and dry weight of chilli plants under the rolled paper towel method. Morphological, biochemical, and molecular characterization identified Bacillus amyloliquefaciens (MH491049) as the key antagonist. This study demonstrates that rhizobacteria, specifically Iso 32 and Iso 24, can effectively protect chilli plants against Fusarium wilt while promoting overall plant development. These findings hold promise for sustainable and eco-friendly management of Fusarium wilt in chilli cultivation.


Subject(s)
Fusarium , Plant Diseases , Rhizosphere , Soil Microbiology , Fusarium/isolation & purification , Fusarium/pathogenicity , Fusarium/drug effects , Fusarium/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Capsicum/microbiology , Capsicum/growth & development , Antibiosis/physiology , Plant Development
10.
Sci Rep ; 14(1): 15365, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965302

ABSTRACT

Endophytic fungal-based biopesticides are sustainable and ecologically-friendly biocontrol agents of several pests and diseases. However, their potential in managing tomato fusarium wilt disease (FWD) remains unexploited. This study therefore evaluated effectiveness of nine fungal isolates against tomato fusarium wilt pathogen, Fusarium oxysporum f. sp. lycopersici (FOL) in vitro using dual culture and co-culture assays. The efficacy of three potent endophytes that inhibited the pathogen in vitro was assessed against FWD incidence, severity, and ability to enhance growth and yield of tomatoes in planta. The ability of endophytically-colonized tomato (Solanum lycopersicum L.) plants to systemically defend themselves upon exposure to FOL were also assessed through defence genes expression using qPCR. In vitro assays showed that endophytes inhibited and suppressed FOL mycelial growth better than entomopathogenic fungi (EPF). Endophytes Trichoderma asperellum M2RT4, Hypocrea lixii F3ST1, Trichoderma harzianum KF2R41, and Trichoderma atroviride ICIPE 710 had the highest (68.84-99.61%) suppression and FOL radial growth inhibition rates compared to EPF which exhibited lowest (27.05-40.63%) inhibition rates. Endophytes T. asperellum M2RT4, H. lixii F3ST1 and T. harzianum KF2R41 colonized all tomato plant parts. During the in planta experiment, endophytically-colonized and FOL-infected tomato plants showed significant reduction of FWD incidence and severity compared to non-inoculated plants. In addition, these endophytes contributed to improved growth promotion parameters and yield. Moreover, there was significantly higher expression of tomato defence genes in T. asperellum M2RT4 colonized than in un-inoculated tomato plants. These findings demonstrated that H. lixii F3ST1 and T. asperellum M2RT4 are effective biocontrol agents against FWD and could sustainably mitigate tomato yield losses associated with fusarium wilt.


Subject(s)
Endophytes , Fusarium , Plant Diseases , Solanum lycopersicum , Fusarium/pathogenicity , Fusarium/physiology , Solanum lycopersicum/microbiology , Solanum lycopersicum/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Endophytes/physiology , Hypocreales/physiology , Hypocreales/pathogenicity , Antibiosis , Pest Control, Biological/methods , Biological Control Agents
11.
Cell Host Microbe ; 32(7): 1114-1128.e10, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38955187

ABSTRACT

Plant immune homeostasis is achieved through a balanced immune activation and suppression, enabling effective defense while averting autoimmunity. In Arabidopsis, disrupting a mitogen-activated protein (MAP) kinase cascade triggers nucleotide-binding leucine-rich-repeat (NLR) SUPPRESSOR OF mkk1/2 2 (SUMM2)-mediated autoimmunity. Through an RNAi screen, we identify PUB5, a putative plant U-box E3 ligase, as a critical regulator of SUMM2-mediated autoimmunity. In contrast to typical E3 ligases, PUB5 stabilizes CRCK3, a calmodulin-binding receptor-like cytoplasmic kinase involved in SUMM2 activation. A closely related E3 ligase, PUB44, functions oppositely with PUB5 to degrade CRCK3 through monoubiquitylation and internalization. Furthermore, CRCK3, highly expressed in roots and conserved across plant species, confers resistance to Fusarium oxysporum, a devastating soil-borne fungal pathogen, in both Arabidopsis and cotton. These findings demonstrate the antagonistic role of an E3 ligase pair in fine-tuning kinase proteostasis for the regulation of NLR-mediated autoimmunity and highlight the function of autoimmune activators in governing plant root immunity against fungal pathogens.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Autoimmunity , Disease Resistance , Fusarium , Plant Diseases , Plant Immunity , Ubiquitin-Protein Ligases , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Fusarium/immunology , NLR Proteins/metabolism , NLR Proteins/genetics , Gene Expression Regulation, Plant , Ubiquitination , Carrier Proteins
12.
BMC Plant Biol ; 24(1): 650, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977959

ABSTRACT

Modern intensive cropping systems often contribute to the accumulation of phenolic acids in the soil, which promotes the development of soilborne diseases. This can be suppressed by intercropping. This study analyzed the effects of intercropping on Fusarium wilt based on its effect on photosynthesis under stress by the combination of Fusarium commune and cinnamic acid. The control was not inoculated with F. commune, while the faba bean plants (Vicia faba L.) were inoculated with this pathogen in the other treatments. The infected plants were also treated with cinnamic acid. This study examined the development of Fusarium wilt together with its effects on the leaves, absorption of nutrients, chlorophyll fluorescence parameters, contents of photosynthetic pigments, activities of photosynthetic enzymes, gas exchange parameters, and the photosynthetic assimilates of faba bean from monocropping and intercropping systems. Under monocropping conditions, the leaves of the plants inoculated with F. commune grew significantly less, and there was enhanced occurrence of the Fusarium wilt compared with the control. Compared with the plants solely inoculated with F. commune, the exogenous addition of cinnamic acid to the infected plants significantly further reduced the growth of faba bean leaves and increased the occurrence of Fusarium wilt. A comparison of the combination of F. commune and cinnamic acid in intercropped wheat and faba bean compared with monocropping showed that intercropping improved the absorption of nutrients, increased photosynthetic pigments and its contents, electron transport, photosynthetic enzymes, and photosynthetic assimilates. The combination of these factors reduced the occurrence of Fusarium wilt in faba bean and increased the growth of its leaves. These results showed that intercropping improved the photosynthesis, which promoted the growth of faba bean, thus, reducing the development of Fusarium wilt following the stress of infection by F. commune and cinnamic acid. This research should provide more information to enhance sustainable agriculture.


Subject(s)
Cinnamates , Fusarium , Photosynthesis , Plant Diseases , Vicia faba , Fusarium/physiology , Vicia faba/microbiology , Vicia faba/physiology , Cinnamates/metabolism , Cinnamates/pharmacology , Plant Diseases/microbiology , Stress, Physiological , Plant Leaves/microbiology , Crop Production/methods , Chlorophyll/metabolism , Crops, Agricultural/microbiology
13.
Mycoses ; 67(7): e13759, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39012211

ABSTRACT

The present study analyses the clinical characteristics of patients diagnosed with cutaneous fusarium through a systematic review of cases reported in literature. A total of 39 cases were included, of which 53% were men, 30% were women, and in 17% the sex was not specified. The age ranged from 5 to 85 years. Most cases were reported in Brazil, followed by Japan and United States of America. The most common agent was Fusarium solani, in 37.5% of the patients. Most of the affected individuals had acute myeloid leukaemia and some of the predisposing factors, which included induction chemotherapy, febrile neutropenia, and bone marrow transplantation. The clinical topography of the lesions was located in 27.5% and disseminated in 72.5%, with the most observed clinical feature outstanding the presence of papules and nodules with central necrosis in 47% of the cases. Longer survival was demonstrated in those treated with more than three antifungals. It is concluded that cutaneous fusarium is a complex and challenging clinical entity, infection in patients with leukaemias underscores the need for thorough care to decrease morbidity and mortality.


Subject(s)
Antifungal Agents , Fusariosis , Fusarium , Humans , Fusariosis/drug therapy , Fusariosis/microbiology , Fusarium/isolation & purification , Aged , Adult , Antifungal Agents/therapeutic use , Middle Aged , Female , Male , Aged, 80 and over , Young Adult , Adolescent , Brazil/epidemiology , Child , Japan/epidemiology , Child, Preschool , Leukemia, Myeloid, Acute/complications , United States/epidemiology , Leukemia/complications , Leukemia/microbiology , Dermatomycoses/microbiology , Dermatomycoses/epidemiology , Dermatomycoses/drug therapy , Dermatomycoses/pathology
14.
Biochemistry ; 63(14): 1824-1836, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38968244

ABSTRACT

Faced with the emergence of multiresistant microorganisms that affect human health, microbial agents have become a serious global threat, affecting human health and plant crops. Antimicrobial peptides have attracted significant attention in research for the development of new microbial control agents. This work's goal was the structural characterization and analysis of antifungal activity of chitin-binding peptides from Capsicum baccatum and Capsicum frutescens seeds on the growth of Candida and Fusarium species. Proteins were initially submitted to extraction in phosphate buffer pH 5.4 and subjected to chitin column chromatography. Posteriorly, two fractions were obtained for each species, Cb-F1 and Cf-F1 and Cb-F2 and Cf-F2, respectively. The Cb-F1 (C. baccatum) and Cf-F1 (C. frutescens) fractions did not bind to the chitin column. The electrophoresis results obtained after chromatography showed two major protein bands between 3.4 and 14.2 kDa for Cb-F2. For Cf-F2, three major bands were identified between 6.5 and 14.2 kDa. One band from each species was subjected to mass spectrometry, and both bands showed similarity to nonspecific lipid transfer protein. Candida albicans and Candida tropicalis had their growth inhibited by Cb-F2. Cf-F2 inhibited the development of C. albicans but did not inhibit the growth of C. tropicalis. Both fractions were unable to inhibit the growth of Fusarium species. The toxicity of the fractions was tested in vivo on Galleria mellonella larvae, and both showed a low toxicity rate at high concentrations. As a result, the fractions have enormous promise for the creation of novel antifungal compounds.


Subject(s)
Antifungal Agents , Candida , Chitin , Fusarium , Molecular Docking Simulation , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Chitin/chemistry , Chitin/metabolism , Fusarium/drug effects , Candida/drug effects , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Animals , Capsicum/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Proteins/pharmacology , Microbial Sensitivity Tests , Protein Binding , Protein Conformation
15.
Fungal Biol ; 128(5): 1960-1967, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39059851

ABSTRACT

Fusarium wilt of banana, caused by the fungus Fusarium oxysporum f. sp. cubense (Foc), is a serious fungal disease that affects banana plants globally. To explore the virulence mechanisms of this pathogen, we created a null mutation of the transcription factor gene FoAce2 (encoding F. oxysporum angiotensin converting enzyme 2). Deletion of FoAce2 resulted in slower growth, decreased aerial mycelia and conidiation, and a significant decrease in fungal virulence against banana hosts relative to those of the wild-type (WT) fungus. Additionally, transmission electron microscopy showed that the cell wall was thicker in the FoAce2 deletion mutants. Consistent with this finding, the cell wall glucose level was decreased in the ΔFoAce2 mutants compared with that in the WT and complemented strain, ΔFoAce2-C1. Complementation with the WT FoAce2 gene fully reversed the mutant phenotypes. Analysis of the transcriptome of ΔFoAce2 and the WT strain showed alterations in the expression levels of many genes associated with virulence and growth. Thus, FoAce2 appears to be essential for Foc virulence, cell wall homeostasis, conidiation, and vegetative growth.


Subject(s)
Cell Wall , Fungal Proteins , Fusarium , Homeostasis , Musa , Plant Diseases , Spores, Fungal , Transcription Factors , Fusarium/genetics , Fusarium/pathogenicity , Fusarium/growth & development , Cell Wall/metabolism , Virulence , Spores, Fungal/growth & development , Musa/microbiology , Plant Diseases/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Gene Deletion , Gene Expression Profiling
16.
Sci Rep ; 14(1): 15538, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38969729

ABSTRACT

Drug delivery is the process or method of delivering a pharmacological product to have therapeutic effects on humans or animals. The use of nanoparticles to deliver medications to cells is driving the present surge in interest in improving human health. Green nanodrug delivery methods are based on chemical processes that are acceptable for the environment or that use natural biomaterials such as plant extracts and microorganisms. In this study, zinc oxide-superparamagnetic iron oxide-silver nanocomposite was synthesized via green synthesis method using Fusarium oxysporum fungi mycelia then loaded with sorafenib drug. The synthesized nanocomposites were characterized by UV-visibile spectroscopy, FTIR, TEM and SEM techniques. Sorafenib is a cancer treatment and is also known by its brand name, Nexavar. Sorafenib is the only systemic medication available in the world to treat hepatocellular carcinoma. Sorafenib, like many other chemotherapeutics, has side effects that restrict its effectiveness, including toxicity, nausea, mucositis, hypertension, alopecia, and hand-foot skin reaction. In our study, 40 male albino rats were given a single dose of diethyl nitrosamine (DEN) 60 mg/kg b.wt., followed by carbon tetrachloride 2 ml/kg b.wt. twice a week for one month. The aim of our study is using the zinc oxide-superparamagnetic iron oxide-silver nanocomposite that was synthesized by Fusarium oxysporum fungi mycelia as nanocarrier for enhancement the sorafenib anticancer effect.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Silver , Sorafenib , Zinc Oxide , Animals , Sorafenib/pharmacology , Sorafenib/chemistry , Sorafenib/administration & dosage , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Silver/chemistry , Rats , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Male , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Drug Carriers/chemistry , Fusarium/drug effects , Magnetite Nanoparticles/chemistry , Nanocomposites/chemistry , Humans , Magnetic Iron Oxide Nanoparticles/chemistry
17.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063117

ABSTRACT

Direct barrier discharge (DBD) plasma is a potential antibacterial strategy for controlling Fusarium oxysporum (F. oxysporum) in the food industry. The aim of this study was to investigate the inhibitory effect and mechanism of action of DBD plasma on F. oxysporum. The result of the antibacterial effect curve shows that DBD plasma has a good inactivation effect on F. oxysporum. The DBD plasma treatment severely disrupted the cell membrane structure and resulted in the leakage of intracellular components. In addition, flow cytometry was used to observe intracellular reactive oxygen species (ROS) levels and mitochondrial membrane potential, and it was found that, after plasma treatment, intracellular ROS accumulation and mitochondrial damage were accompanied by a decrease in antioxidant enzyme activity. The results of free fatty acid metabolism indicate that the saturated fatty acid content increased and unsaturated fatty acid content decreased. Overall, the DBD plasma treatment led to the oxidation of unsaturated fatty acids, which altered the cell membrane fatty acid content, thereby inducing cell membrane damage. Meanwhile, DBD plasma-induced ROS penetrated the cell membrane and accumulated intracellularly, leading to the collapse of the antioxidant system and ultimately causing cell death. This study reveals the bactericidal effect and mechanism of the DBD treatment on F. oxysporum, which provides a possible strategy for the control of F. oxysporum.


Subject(s)
Cell Membrane , Fusarium , Oxidation-Reduction , Plasma Gases , Reactive Oxygen Species , Fusarium/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects , Plasma Gases/pharmacology , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Membrane Potential, Mitochondrial/drug effects , Homeostasis/drug effects , Fatty Acids/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism
18.
Toxins (Basel) ; 16(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39057933

ABSTRACT

The presence of mycotoxins and other toxic metabolites in hops (Humulus lupulus L.) was assessed for the first time. In total, 62 hop samples were sampled in craft breweries, and analyzed by a multi-toxin LS-MS/MS method. The study collected samples from craft breweries in all of the Croatian counties and statistically compared the results. Based on previous reports on Alternaria spp. and Fusarium spp. contamination of hops, the study confirmed the contamination of hops with these toxins. Alternaria toxins, particularly tenuazonic acid, were found in all tested samples, while Fusarium toxins, including deoxynivalenol, were present in 98% of samples. However, no Aspergillus or Penicillium metabolites were detected, indicating proper storage conditions. In addition to the Alternaria and Fusarium toxins, abscisic acid, a drought stress indicator in hops, was also detected, as well as several unspecific metabolites. The findings suggest the need for monitoring, risk assessment, and potential regulation of Alternaria and Fusarium toxins in hops to ensure the safety of hop usage in the brewing and pharmaceutical industries. Also, four local wild varieties were tested, with similar results to the commercial varieties for toxin contamination, but the statistically significant regional differences in toxin occurrence highlight the importance and need for targeted monitoring.


Subject(s)
Alternaria , Food Contamination , Fusarium , Humulus , Mycotoxins , Humulus/chemistry , Humulus/microbiology , Mycotoxins/analysis , Food Contamination/analysis , Alternaria/metabolism , Fusarium/metabolism , Tandem Mass Spectrometry , Croatia , Abscisic Acid/analysis , Abscisic Acid/metabolism
19.
Toxins (Basel) ; 16(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39057942

ABSTRACT

Crops contamination with aflatoxins (AFs) and zearalenone (ZEA) threaten human and animal health; these mycotoxins are produced by several species of Aspergillus and Fusarium. The objective was to evaluate under field conditions the influence of the wet season on the dissemination of AF- and ZEA-producing fungi via houseflies collected from dairy farms. Ten dairy farms distributed in the semi-arid Central Mexican Plateau were selected. Flies were collected in wet and dry seasons at seven points on each farm using entomological traps. Fungi were isolated from fly carcasses via direct seeding with serial dilutions and wet chamber methods. The production of AFs and ZEA from pure isolates was quantified using indirect competitive ELISA. A total of 693 Aspergillus spp. and 1274 Fusarium spp. isolates were obtained, of which 58.6% produced AFs and 50.0% produced ZEA (491 ± 122; 2521 ± 1295 µg/kg). Houseflies and both fungal genera were invariably present, but compared to the dry season, there was a higher abundance of flies as well as AF- and ZEA-producing fungi in the wet season (p < 0.001; 45.3/231 flies/trap; 8.6/29.6% contaminated flies). These results suggest that rainy-weather conditions on dairy farms increase the spread of AF- and ZEA-producing Aspergillus spp. and Fusarium spp. through houseflies and the incorporation of their mycotoxins into the food chain.


Subject(s)
Aflatoxins , Aspergillus , Dairying , Fusarium , Houseflies , Seasons , Zearalenone , Animals , Fusarium/metabolism , Mexico , Aspergillus/metabolism , Aspergillus/isolation & purification , Aflatoxins/biosynthesis , Houseflies/microbiology , Food Contamination/analysis , Farms
20.
Microb Cell Fact ; 23(1): 189, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956629

ABSTRACT

Developing special textiles (for patients in hospitals for example) properties, special antimicrobial and anticancer, was the main objective of the current work. The developed textiles were produced after dyeing by the novel formula of natural (non-environmental toxic) pigments (melanin amended by microbial-AgNPs). Streptomyces torulosus isolate OSh10 with accession number KX753680.1 was selected as a superior producer for brown natural pigment. By optimization processes, some different pigment colors were observed after growing the tested strain on the 3 media. Dextrose and malt extract enhanced the bacteria to produce a reddish-black color. However, glycerol as the main carbon source and NaNO3 and asparagine as a nitrogen source were noted as the best for the production of brown pigment. In another case, starch as a polysaccharide was the best carbon for the production of deep green pigment. Peptone and NaNO3 are the best nitrogen sources for the production of deep green pigment. Microbial-AgNPs were produced by Fusarium oxysporum with a size of 7-21 nm, and the shape was spherical. These nanoparticles were used to produce pigments-nanocomposite to improve their promising properties. The antimicrobial of nanoparticles and textiles dyeing by nanocomposites was recorded against multidrug-resistant pathogens. The new nanocomposite improved pigments' dyeing action and textile properties. The produced textiles had anticancer activity against skin cancer cells with non-cytotoxicity detectable action against normal skin cells. The obtained results indicate to application of these textiles in hospital patients' clothes.


Subject(s)
Antineoplastic Agents , Coloring Agents , Silver , Textiles , Textiles/microbiology , Coloring Agents/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Silver/pharmacology , Silver/chemistry , Fusarium/drug effects , Streptomyces/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Metal Nanoparticles/chemistry , Pigments, Biological/pharmacology , Pigments, Biological/biosynthesis , Microbial Sensitivity Tests , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL