Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.346
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1296886, 2024.
Article in English | MEDLINE | ID: mdl-38828417

ABSTRACT

Introduction: The dysregulation of cell fate toward osteoprecursor cells associated with most GNAS-based disorders may lead to episodic de novo extraskeletal or ectopic bone formation in subcutaneous tissues. The bony lesion distribution suggests the involvement of abnormal differentiation of mesenchymal stem cells (MSCs) and/or more committed precursor cells. Data from transgenic mice support the concept that GNAS is a crucial factor in regulating lineage switching between osteoblasts (OBs) and adipocyte fates. The mosaic nature of heterotopic bone lesions suggests that GNAS genetic defects provide a sensitized background for ectopic osteodifferentiation, but the underlying molecular mechanism remains largely unknown. Methods: The effect of GNAS silencing in the presence and/or absence of osteoblastic stimuli was evaluated in the human L88/5 MSC line during osteodifferentiation. A comparison of the data obtained with data coming from a bony lesion from a GNAS-mutated patient was also provided. Results: Our study adds some dowels to the current fragmented notions about the role of GNAS during osteoblastic differentiation, such as the premature transition of immature OBs into osteocytes and the characterization of the differences in the deposed bone matrix. Conclusion: We demonstrated that our cell model partially replicates the in vivo behavior results, resulting in an applicable human model to elucidate the pathophysiology of ectopic bone formation in GNAS-based disorders.


Subject(s)
Cell Differentiation , Chromogranins , GTP-Binding Protein alpha Subunits, Gs , Mesenchymal Stem Cells , Osteoblasts , Osteogenesis , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , Chromogranins/genetics , Cell Differentiation/genetics , Osteogenesis/genetics , Osteoblasts/metabolism , Osteoblasts/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Gene Silencing , Cell Line
2.
Oncol Res ; 32(6): 1079-1091, 2024.
Article in English | MEDLINE | ID: mdl-38827318

ABSTRACT

Approximately 30%-40% of growth hormone-secreting pituitary adenomas (GHPAs) harbor somatic activating mutations in GNAS (α subunit of stimulatory G protein). Mutations in GNAS are associated with clinical features of smaller and less invasive tumors. However, the role of GNAS mutations in the invasiveness of GHPAs is unclear. GNAS mutations were detected in GHPAs using a standard polymerase chain reaction (PCR) sequencing procedure. The expression of mutation-associated maternally expressed gene 3 (MEG3) was evaluated with RT-qPCR. MEG3 was manipulated in GH3 cells using a lentiviral expression system. Cell invasion ability was measured using a Transwell assay, and epithelial-mesenchymal transition (EMT)-associated proteins were quantified by immunofluorescence and western blotting. Finally, a tumor cell xenograft mouse model was used to verify the effect of MEG3 on tumor growth and invasiveness. The invasiveness of GHPAs was significantly decreased in mice with mutated GNAS compared with that in mice with wild-type GNAS. Consistently, the invasiveness of mutant GNAS-expressing GH3 cells decreased. MEG3 is uniquely expressed at high levels in GHPAs harboring mutated GNAS. Accordingly, MEG3 upregulation inhibited tumor cell invasion, and conversely, MEG3 downregulation increased tumor cell invasion. Mechanistically, GNAS mutations inhibit EMT in GHPAs. MEG3 in mutated GNAS cells prevented cell invasion through the inactivation of the Wnt/ß-catenin signaling pathway, which was further validated in vivo. Our data suggest that GNAS mutations may suppress cell invasion in GHPAs by regulating EMT through the activation of the MEG3/Wnt/ß-catenin signaling pathway.


Subject(s)
Chromogranins , Epithelial-Mesenchymal Transition , GTP-Binding Protein alpha Subunits, Gs , Growth Hormone-Secreting Pituitary Adenoma , Mutation , Neoplasm Invasiveness , RNA, Long Noncoding , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , Animals , Humans , Growth Hormone-Secreting Pituitary Adenoma/genetics , Growth Hormone-Secreting Pituitary Adenoma/pathology , Growth Hormone-Secreting Pituitary Adenoma/metabolism , Mice , Chromogranins/genetics , Chromogranins/metabolism , Epithelial-Mesenchymal Transition/genetics , RNA, Long Noncoding/genetics , Female , Male , Cell Line, Tumor , Adenoma/genetics , Adenoma/pathology , Adenoma/metabolism , Middle Aged , Adult , Cell Proliferation/genetics , Xenograft Model Antitumor Assays , Wnt Signaling Pathway/genetics , Gene Expression Regulation, Neoplastic
3.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38902023

ABSTRACT

Formation and retrieval of remote contextual memory depends on cortical engram neurons that are defined during learning. Manipulation of astrocytic Gq and Gi associated G-protein coupled receptor (GPCR) signaling has been shown to affect memory processing, but little is known about the role of cortical astrocytic Gs-GPCR signaling in remote memory acquisition and the functioning of cortical engram neurons. We assessed this by chemogenetic manipulation of astrocytes in the medial prefrontal cortex (mPFC) of male mice, during either encoding or consolidation of a contextual fear memory, while simultaneously labeling cortical engram neurons. We found that stimulation of astrocytic Gs signaling during memory encoding and consolidation did not alter remote memory expression. In line with this, the size of the mPFC engram population and the recall-induced reactivation of these neurons was unaffected. Hence, our data indicate that activation of Gs-GPCR signaling in cortical astrocytes is not sufficient to alter memory performance and functioning of cortical engram neurons.


Subject(s)
Astrocytes , Fear , Neurons , Prefrontal Cortex , Signal Transduction , Animals , Astrocytes/metabolism , Male , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Signal Transduction/physiology , Neurons/metabolism , Neurons/physiology , Fear/physiology , Mice, Inbred C57BL , GTP-Binding Protein alpha Subunits, Gs/metabolism , Mice , Memory/physiology , Memory, Long-Term/physiology
4.
Exp Dermatol ; 33(6): e15111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840411

ABSTRACT

Keloids are pathological scar tissue resulting from skin trauma or spontaneous formation, often accompanied by itching and pain. Although GNAS antisense RNA 1 (GNAS-AS1) shows abnormal upregulation in keloids, the underlying molecular mechanism is unclear. The levels of genes and proteins in clinical tissues from patients with keloids and human keloid fibroblasts (HKFs) were measured using quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assay. The features of HKFs, including proliferation and migration, were evaluated using cell counting kit 8 and a wound healing assay. The colocalization of GNAS-AS1 and miR-196a-5p in HKFs was measured using fluorescence in situ hybridization. The relationships among GNAS-AS1, miR-196a-5p and C-X-C motif chemokine ligand 12 (CXCL12) in samples from patients with keloids were analysed by Pearson correlation analysis. Gene interactions were validated by chromatin immunoprecipitation and luciferase reporter assays. GNAS-AS1 and CXCL12 expression were upregulated and miR-196a-5p expression was downregulated in clinical tissues from patients with keloids. GNAS-AS1 knockdown inhibited proliferation, migration, and extracellular matrix (ECM) accumulation of HKFs, all of which were reversed by miR-196a-5p downregulation. Signal transducer and activator of transcription 3 (STAT3) induced GNAS-AS1 transcription through GNAS-AS1 promoter interaction, and niclosamide, a STAT3 inhibitor, decreased GNAS-AS1 expression. GNAS-AS1 positively regulated CXCL12 by sponging miR-196-5p. Furthermore, CXCL12 knockdown restrained STAT3 phosphorylation in HKFs. Our findings revealed a feedback loop of STAT3/GNAS-AS1/miR-196a-5p/CXCL12/STAT3 that promoted HKF proliferation, migration and ECM accumulation and affected keloid progression.


Subject(s)
Cell Proliferation , Chemokine CXCL12 , Fibroblasts , Keloid , MicroRNAs , RNA, Long Noncoding , STAT3 Transcription Factor , Keloid/metabolism , Keloid/genetics , Keloid/pathology , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Fibroblasts/metabolism , Cell Movement , Feedback, Physiological , Chromogranins/genetics , Chromogranins/metabolism , Male , Female , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , Signal Transduction , Adult , Cells, Cultured , Up-Regulation
5.
Nat Commun ; 15(1): 5129, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879678

ABSTRACT

Glucagon, a hormone released from pancreatic α-cells, is critical for maintaining euglycemia and plays a key role in the pathophysiology of diabetes. To stimulate the development of new classes of therapeutic agents targeting glucagon release, key α-cell signaling pathways that regulate glucagon secretion need to be identified. Here, we focused on the potential importance of α-cell Gs signaling on modulating α-cell function. Studies with α-cell-specific mouse models showed that activation of α-cell Gs signaling causes a marked increase in glucagon secretion. We also found that intra-islet adenosine plays an unexpected autocrine/paracrine role in promoting glucagon release via activation of α-cell Gs-coupled A2A adenosine receptors. Studies with α-cell-specific Gαs knockout mice showed that α-cell Gs also plays an essential role in stimulating the activity of the Gcg gene, thus ensuring proper islet glucagon content. Our data suggest that α-cell enriched Gs-coupled receptors represent potential targets for modulating α-cell function for therapeutic purposes.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs , Glucagon-Secreting Cells , Glucagon , Mice, Knockout , Signal Transduction , Glucagon/metabolism , Animals , Glucagon-Secreting Cells/metabolism , Mice , GTP-Binding Protein alpha Subunits, Gs/metabolism , Adenosine/metabolism , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2A/genetics , Male , Mice, Inbred C57BL , Islets of Langerhans/metabolism
6.
Eur J Surg Oncol ; 50(7): 108395, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735236

ABSTRACT

The study of circulating tumor DNA (ctDNA) plays a pivotal role in advancing precision oncology, providing valuable information for individualized patient care and contributing to the ongoing effort to improve cancer diagnosis, treatment, and management. However, its applicability in pseudomyxoma peritonei (PMP) remains unexplored. In this multicenter retrospective study involving 21 PMP patients, we investigated ctDNA presence in peripheral blood using three distinct methodologies. Despite mucinous tumor tissues exhibiting KRAS and GNAS mutations, ctDNA for these mutations was undetectable in blood samples. In this pilot study, circulating tumor DNA was not detected in blood when the tumor harbored mutations of known significance. In the future, a study with a larger sample size is needed to confirm these findings and to determine whether ctDNA could identify patients at risk for early recurrence and/or systemic metastases.


Subject(s)
Circulating Tumor DNA , Peritoneal Neoplasms , Pseudomyxoma Peritonei , Humans , Pseudomyxoma Peritonei/genetics , Pseudomyxoma Peritonei/blood , Pseudomyxoma Peritonei/pathology , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/blood , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Retrospective Studies , Female , Middle Aged , Male , Aged , GTP-Binding Protein alpha Subunits, Gs/genetics , Chromogranins/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Pilot Projects , Adult
7.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727310

ABSTRACT

Fibrous dysplasia (FD) is a mosaic skeletal disorder caused by somatic activating variants of GNAS encoding for Gαs and leading to excessive cyclic adenosine monophosphate signaling in bone-marrow stromal cells (BMSCs). The effect of Gαs activation in the BMSC transcriptome and how it influences FD lesion microenvironment are unclear. We analyzed changes induced by Gαs activation in the BMSC transcriptome and secretome. RNAseq analysis of differential gene expression of cultured BMSCs from patients with FD and healthy volunteers, and from an inducible mouse model of FD, was performed, and the transcriptomic profiles of both models were combined to build a robust FD BMSC genetic signature. Pathways related to Gαs activation, cytokine signaling, and extracellular matrix deposition were identified. To assess the modulation of several key secreted factors in FD pathogenesis, cytokines and other factors were measured in culture media. Cytokines were also screened in a collection of plasma samples from patients with FD, and positive correlations of several cytokines to their disease burden score, as well as to one another and bone turnover markers, were found. These data support the pro-inflammatory, pro-osteoclastic behavior of FD BMSCs and point to several cytokines and other secreted factors as possible therapeutic targets and/or circulating biomarkers for FD.


Subject(s)
Fibrous Dysplasia of Bone , Mesenchymal Stem Cells , Transcriptome , Humans , Animals , Mesenchymal Stem Cells/metabolism , Transcriptome/genetics , Mice , Fibrous Dysplasia of Bone/genetics , Fibrous Dysplasia of Bone/metabolism , Fibrous Dysplasia of Bone/pathology , Male , Female , Cytokines/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/genetics , Adult , Middle Aged
8.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791144

ABSTRACT

Cellular myxoma is a benign soft tissue tumor frequently associated with GNAS mutation that may morphologically resemble low-grade myxofibrosarcoma. This study aimed to identify the undescribed methylation profile of cellular myxoma and compare it to myxofibrosarcoma. We performed molecular analysis on twenty cellular myxomas and nine myxofibrosarcomas and analyzed the results using the methylation-based DKFZ sarcoma classifier. A total of 90% of the cellular myxomas had GNAS mutations (four loci had not been previously described). Copy number variations were found in all myxofibrosarcomas but in none of the cellular myxomas. In the classifier, none of the cellular myxomas reached the 0.9 threshold. Unsupervised t-SNE analysis demonstrated that cellular myxomas form their own clusters, distinct from myxofibrosarcomas. Our study shows the diagnostic potential and the limitations of molecular analysis in cases where morphology and immunohistochemistry are not sufficient to distinguish cellular myxoma from myxofibrosarcoma, particularly regarding GNAS wild-type tumors. The DKFZ sarcoma classifier only provided a valid prediction for one myxofibrosarcoma case; this limitation could be improved by training the tool with a more considerable number of cases. Additionally, the classifier should be introduced to a broader spectrum of mesenchymal neoplasms, including benign tumors like cellular myxoma, whose distinct methylation pattern we demonstrated.


Subject(s)
DNA Copy Number Variations , DNA Methylation , Fibrosarcoma , Myxoma , Humans , Myxoma/genetics , Myxoma/diagnosis , Myxoma/pathology , Fibrosarcoma/genetics , Fibrosarcoma/pathology , Fibrosarcoma/diagnosis , Fibrosarcoma/metabolism , Middle Aged , Female , Aged , Male , Adult , Mutation , Diagnosis, Differential , GTP-Binding Protein alpha Subunits, Gs/genetics , Chromogranins/genetics , Aged, 80 and over , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/diagnosis , Soft Tissue Neoplasms/pathology
9.
Nature ; 629(8011): 481-488, 2024 May.
Article in English | MEDLINE | ID: mdl-38632411

ABSTRACT

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.


Subject(s)
Heterotrimeric GTP-Binding Proteins , Receptors, Calcium-Sensing , Humans , Calcium/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/chemistry , Models, Molecular , Protein Binding , Protein Multimerization , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/chemistry , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/metabolism , Binding Sites , Protein Structure, Secondary , Substrate Specificity
10.
BMC Pediatr ; 24(1): 271, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664677

ABSTRACT

BACKGROUND: Pseudohypoparathyroidism (PHP) is caused by loss-of-function mutations at the GNAS gene (as in the PHP type 1A; PHP1A), de novo or inherited at heterozygous state, or by epigenetic alterations at the GNAS locus (as in the PHP1B). The condition of PHP refers to a heterogeneous group of disorders that share common clinical and biological features of PTH resistance. Manifestations related to resistance to other hormones are also reported in many patients with PHP, in association with the phenotypic picture of Albright hereditary osteodystrophy characterized by short stature, round facies, subcutaneous ossifications, brachydactyly, mental retardation and, in some subtypes, obesity. The purpose of our study is to report a new mutation in the GNAS gene and to describe the significant phenotypic variability of three sisters with PHP1A bearing the same mutation. CASE PRESENTATION: We describe the cases of three sisters with PHP1A bearing the same mutation but characterized by a significantly different phenotypic picture at onset and during follow-up in terms of clinical features, auxological pattern and biochemical changes. Clinical exome sequencing revealed a never before described heterozygote mutation in the GNAS gene (NM_000516.5 c.118_139 + 51del) of autosomal dominant maternal transmission in the three siblings, confirming the diagnosis of PHP1A. CONCLUSIONS: This study reported on a novel mutation of GNAS gene and highlighted the clinical heterogeneity of PHP1A characterized by wide genotype-phenotype variability. The appropriate diagnosis has crucial implications for patient care and long-term multidisciplinary follow-up.


Subject(s)
Chromogranins , GTP-Binding Protein alpha Subunits, Gs , Pseudohypoparathyroidism , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , Pseudohypoparathyroidism/genetics , Pseudohypoparathyroidism/diagnosis , Chromogranins/genetics , Female , Child , Phenotype , Pedigree , Mutation , Adolescent , Child, Preschool
11.
Cardiovasc Pathol ; 71: 107632, 2024.
Article in English | MEDLINE | ID: mdl-38492686

ABSTRACT

PURPOSE: Cardiac myxomas (CMs) are the second most common benign primary cardiac tumors, mainly originating within the left atrium. Approximately 5% of CM cases are associated with Carney Complex (CNC), an autosomal dominant multiple neoplasia syndrome often caused by germline mutations in the protein kinase A regulatory subunit 1A (PRKAR1A). Data concerning PRKAR1A alterations in sporadic myxomas are variable and sparse, with PRKAR1A mutations reported to range from 0% to 87%. Therefore, we investigated the frequency of PRKAR1A mutations in sporadic CM using next-generation sequencing (NGS). Additionally, we explored mutations in the catalytic domain of the Protein Kinase A complex (PRKACA) and examined the presence of GNAS mutations as another potential driver. METHODS AND RESULTS: This study retrospectively collected histological and clinical data from 27 patients with CM. First, we ruled out the possibility of underlying CNC through clinical evaluations and standardized interviews for each patient. Second, we performed PRKAR1A immunohistochemistry (IHC) analysis and graded the reactivity of myxoma cells semi-quantitatively. NGS was then applied to analyze the coding regions of PRKAR1A, PRKACA, and GNAS in all 27 cases. Of the 27 sporadic CM cases, 13 (48%) harbored mutations in PRKAR1A. Among these 13 mutant cases, six displayed more than one mutation in PRKAR1A. Most of the identified mutations resulted in premature stop codons or affected splicing. In PRKAR1A mutant CM cases, the loss of PRKAR1A protein expression was significantly more common. In two cases with missense mutations, protein expression remained preserved. Furthermore, a single mutation was detected in the catalytic domain of the protein kinase A complex, while no GNAS mutations were found. CONCLUSION: We identified a relatively high frequency of PRKAR1A mutations in sporadic CM. These PRKAR1A mutations may also represent an important oncogenic mechanism in sporadic myxomas, as already known in CM cases associated with CNC.


Subject(s)
Chromogranins , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit , GTP-Binding Protein alpha Subunits, Gs , Heart Neoplasms , Myxoma , Humans , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Chromogranins/genetics , Heart Neoplasms/genetics , Heart Neoplasms/pathology , Heart Neoplasms/enzymology , Middle Aged , Female , Male , Myxoma/genetics , Myxoma/pathology , Myxoma/enzymology , Adult , Aged , Retrospective Studies , DNA Mutational Analysis , Genetic Predisposition to Disease , Mutation , Young Adult , Phenotype , High-Throughput Nucleotide Sequencing , Adolescent , Carney Complex/genetics , Carney Complex/enzymology , Carney Complex/pathology , Biomarkers, Tumor/genetics , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits
12.
J Pediatr Endocrinol Metab ; 37(5): 467-471, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38529810

ABSTRACT

OBJECTIVES: Inactivating GNAS mutations result in varied phenotypes depending on parental origin. Maternally inherited mutations typically lead to hormone resistance and Albright's hereditary osteodystrophy (AHO), characterised by short stature, round facies, brachydactyly and subcutaneous ossifications. Paternal inheritance presents with features of AHO or ectopic ossification without hormone resistance. This report describes the case of a child with osteoma cutis and medulloblastoma. The objective of this report is to highlight the emerging association between inactivating germline GNAS mutations and medulloblastoma, aiming to shed light on its implications for tumor biology and promote future development of targeted surveillance strategies to improve outcomes in paediatric patients with these mutations. CASE PRESENTATION: A 12-month-old boy presented with multiple plaque-like skin lesions. Biopsy confirmed osteoma cutis, prompting genetic testing which confirmed a heterozygous inactivating GNAS mutation. At 2.5 years of age, he developed neurological symptoms and was diagnosed with a desmoplastic nodular medulloblastoma, SHH molecular group, confirmed by MRI and histology. Further analysis indicated a biallelic loss of GNAS in the tumor. CONCLUSIONS: This case provides important insights into the role of GNAS as a tumor suppressor and the emerging association between inactivating GNAS variants and the development of medulloblastoma. The case underscores the importance of careful neurological assessment and ongoing vigilance in children with known inactivating GNAS variants or associated phenotypes. Further work to establish genotype-phenotype correlations is needed to inform optimal management of these patients.


Subject(s)
Cerebellar Neoplasms , Chromogranins , GTP-Binding Protein alpha Subunits, Gs , Medulloblastoma , Ossification, Heterotopic , Skin Diseases, Genetic , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , Male , Chromogranins/genetics , Medulloblastoma/genetics , Medulloblastoma/pathology , Ossification, Heterotopic/genetics , Ossification, Heterotopic/pathology , Skin Diseases, Genetic/genetics , Skin Diseases, Genetic/pathology , Skin Diseases, Genetic/complications , Infant , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/complications , Prognosis , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/pathology , Mutation
13.
Nature ; 629(8014): 1182-1191, 2024 May.
Article in English | MEDLINE | ID: mdl-38480881

ABSTRACT

G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Gα subunit1. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G-protein complex. By monitoring the transitions of the stimulatory Gs protein in complex with the ß2-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα switch regions and the α5 helix that weaken the G-protein-receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the α-helical domain against the nucleotide-bound Ras-homology domain correlates with α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events.


Subject(s)
Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gs , Receptors, Adrenergic, beta-2 , Humans , Binding Sites , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/drug effects , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/pharmacology , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Receptors, Adrenergic, beta-2/metabolism , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/ultrastructure , Time Factors , Enzyme Activation/drug effects , Protein Domains , Protein Structure, Secondary , Signal Transduction/drug effects
14.
Int J Cancer ; 154(11): 1987-1998, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38319157

ABSTRACT

Approximately 5% of colorectal cancers (CRCs) have a gain-of-function mutation in the GNAS gene, which leads to the activation of cAMP-dependent signaling pathways and associates with poor prognosis. We investigated the effect of an activating GNAS mutation in CRC cell lines on gene expression and cell proliferation in vitro, and tumor growth in vivo. GNAS-mutated (GNASmt) HCT116 cells showed stimulated synthesis of cAMP as compared to parental (Par) cells. The most upregulated gene in the GNASmt cells was cAMP-hydrolyzing phosphodiesterase 4D (PDE4D) as detected by RNA sequencing. To further validate our finding, we analyzed PDE4D expression in a set of human CRC tumors (n = 35) and demonstrated overexpression in GNAS mutant CRC tumors as compared to GNAS wild-type tumors. The GNASmt HCT116 cells proliferated more slowly than the Par cells. PDE4 inhibitor Ro 20-1724 and PDE4D subtype selective inhibitor GEBR-7b further suppressed the proliferation of GNASmt cells without an effect on Par cells. The growth inhibitory effect of these inhibitors was also seen in the intrinsically GNAS-mutated SK-CO-1 CRC cell line having high levels of cAMP synthesis and PDE4D expression. In vivo, GNASmt HCT116 cells formed smaller tumors than the Par cells in nude mice. In conclusion, our findings demonstrate that GNAS mutation results in the growth suppression of CRC cells. Moreover, the GNAS mutation-induced overexpression of PDE4D provides a potential avenue to impede the proliferation of CRC cells through the use of PDE4 inhibitors.


Subject(s)
Chromogranins , Colorectal Neoplasms , Cyclic Nucleotide Phosphodiesterases, Type 4 , GTP-Binding Protein alpha Subunits, Gs , Animals , Humans , Mice , Chromogranins/genetics , Chromogranins/metabolism , Colorectal Neoplasms/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , HCT116 Cells , Mice, Nude , Mutation , Phosphodiesterase 4 Inhibitors/pharmacology
16.
Biol Chem ; 405(5): 297-309, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38353111

ABSTRACT

G proteins are interacting partners of G protein-coupled receptors (GPCRs) in eukaryotic cells. Upon G protein activation, the ability of the Gα subunit to exchange GDP for GTP determines the intracellular signal transduction. Although various studies have successfully shown that both Gαs and Gαi have an opposite effect on the intracellular cAMP production, with the latter being commonly described as "more active", the functional analysis of Gαs is a comparably more complicated matter. Additionally, the thorough investigation of the ubiquitously expressed variants of Gαs, Gαs(short) and Gαs(long), is still pending. Since the previous experimental evaluation of the activity and function of the Gαs isoforms is not consistent, the focus was laid on structural investigations to understand the GTPase activity. Herein, we examined recombinant human Gαs by applying an established methodological setup developed for Gαi characterization. The ability for GTP binding was evaluated with fluorescence and fluorescence anisotropy assays, whereas the intrinsic hydrolytic activity of the isoforms was determined by a GTPase assay. Among different nucleotide probes, BODIPY FL GTPγS exhibited the highest binding affinity towards the Gαs subunit. This work provides a deeper understanding of the Gαs subunit and provides novel information concerning the differences between the two protein variants.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs , Humans , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Guanine Nucleotides/metabolism , Guanine Nucleotides/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Guanosine Triphosphate/metabolism
17.
J Pediatr Endocrinol Metab ; 37(3): 289-295, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38353264

ABSTRACT

OBJECTIVES: Pseudohypoparathyroidism type 1A (PHP1A) encompasses the association of resistance to multiple hormones, features of Albright hereditary osteodystrophy and decreased Gsα activity. Little is known about the early signs of PHP1A, with a delay in diagnosis. We report two PHP1A cases and their clinical and biochemical findings during a 20-year follow-up. CASE PRESENTATION: Clinical suspicion was based on obesity, TSH resistance and ectopic ossifications which appeared several months before PTH resistance, at almost 3 years of age. Treatment with levothyroxine, calcitriol and calcium was required in both patients. DNA sequencing of GNAS gene detected a heterozygous pathogenic variant within exon 7 (c.569_570delAT) in patient one and a deletion from XLAS to GNAS-exon 5 on the maternal allele in patient 2. In patient 1, ectopic ossifications that required surgical excision were found. Noticeably, patient 2 displayed adult short stature, intracranial calcifications and psychomotor delay. In terms of weight, despite early diagnosis of obesity, dietary measures were established successfully in both cases. CONCLUSIONS: GNAS mutations should be considered in patients with obesity, ectopic ossifications and TSH resistance presented in early infancy. These cases emphasize the highly heterogeneous clinical picture PHP1A patients may present, especially in terms of final height and cognitive impairment.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs , Pseudohypoparathyroidism , Adult , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , Pseudohypoparathyroidism/diagnosis , Pseudohypoparathyroidism/genetics , Mutation , Obesity , Thyrotropin , Chromogranins/genetics
18.
JCI Insight ; 9(5)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38290008

ABSTRACT

Pseudohypoparathyroidism type 1B (PHP1B) results from aberrant genomic imprinting at the GNAS gene. Defining the underlying genetic cause in new patients is challenging because various genetic alterations (e.g., deletions, insertions) within the GNAS genomic region, including the neighboring STX16 gene, can cause PHP1B, and the genotype-epigenotype correlation has not been clearly established. Here, by analyzing patients with PHP1B with a wide variety of genotypes and epigenotypes, we identified a GNAS differentially methylated region (DMR) of distinct diagnostic value. This region, GNAS AS2, was hypomethylated in patients with genetic alterations located centromeric but not telomeric of this DMR. The AS2 methylation status was captured by a single probe of the methylation-sensitive multiplex ligation-dependent probe amplification (MS-MLPA) assay utilized to diagnose PHP1B. In human embryonic stem cells, where NESP55 transcription regulates GNAS methylation status on the maternal allele, AS2 methylation depended on 2 imprinting control regions (STX16-ICR and NESP-ICR) essential for NESP55 transcription. These results suggest that the AS2 methylation status in patients with PHP1B reflects the position at which the genetic alteration affects NESP55 transcription during an early embryonic period. Therefore, AS2 methylation levels can enable mechanistic PHP1B categorization based on genotype-epigenotype correlation and, thus, help identify the underlying molecular defect in patients.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs , Pseudohypoparathyroidism , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , DNA Methylation , Pseudohypoparathyroidism/genetics , Pseudohypoparathyroidism/diagnosis , Genomic Imprinting , Alleles , Chromogranins/genetics
19.
Neoplasia ; 49: 100965, 2024 03.
Article in English | MEDLINE | ID: mdl-38245923

ABSTRACT

BACKGROUND: The demethylation agent decitabine (DAC) is a pivotal non-intensive alternative treatment for acute myeloid leukemia (AML). However, patient responses to DAC are highly variable, and predictive biomarkers are warranted. Herein, the DNA methylation landscape of patients treated with a DAC-based combination regimen was compared with that of patients treated with standard chemotherapy to develop a molecular approach for predicting clinical response to DAC. METHODS: Twenty-five non-M3 AML patients were enrolled and subjected to DNA methylation sequencing and profiling to identify differentially methylated regions (DMRs) and genes of interest. Moreover, the effects of a DAC-based regimen on apoptosis and gene expression were explored using Kasumi-1 and K562 cells. RESULTS: Overall, we identified 541 DMRs that were specifically responsive to DAC, among which 172 DMRs showed hypomethylation patterns upon treatment and were aligned with the promoter regions of 182 genes. In particular, GNAS was identified as a critical DAC-responsive gene, with in vitro GNAS downregulation leading to reduced cell apoptosis induced by DAC and cytarabine combo treatment. CONCLUSIONS: We found that GNAS is a DAC-sensitive gene in AML and may serve as a prognostic biomarker to assess the responsiveness of patients with AML to DAC-based therapy.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Humans , Decitabine/pharmacology , Decitabine/therapeutic use , Azacitidine/pharmacology , Azacitidine/therapeutic use , DNA Methylation , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Chromogranins/genetics , Chromogranins/therapeutic use , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/therapeutic use
20.
Nature ; 626(7997): 128-135, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38233523

ABSTRACT

The assembly and specification of synapses in the brain is incompletely understood1-3. Latrophilin-3 (encoded by Adgrl3, also known as Lphn3)-a postsynaptic adhesion G-protein-coupled receptor-mediates synapse formation in the hippocampus4 but the mechanisms involved remain unclear. Here we show in mice that LPHN3 organizes synapses through a convergent dual-pathway mechanism: activation of Gαs signalling and recruitment of phase-separated postsynaptic protein scaffolds. We found that cell-type-specific alternative splicing of Lphn3 controls the LPHN3 G-protein-coupling mode, resulting in LPHN3 variants that predominantly signal through Gαs or Gα12/13. CRISPR-mediated manipulation of Lphn3 alternative splicing that shifts LPHN3 from a Gαs- to a Gα12/13-coupled mode impaired synaptic connectivity as severely as the overall deletion of Lphn3, suggesting that Gαs signalling by LPHN3 splice variants mediates synapse formation. Notably, Gαs-coupled, but not Gα12/13-coupled, splice variants of LPHN3 also recruit phase-transitioned postsynaptic protein scaffold condensates, such that these condensates are clustered by binding of presynaptic teneurin and FLRT ligands to LPHN3. Moreover, neuronal activity promotes alternative splicing of the synaptogenic Gαs-coupled variant of LPHN3. Together, these data suggest that activity-dependent alternative splicing of a key synaptic adhesion molecule controls synapse formation by parallel activation of two convergent pathways: Gαs signalling and clustered phase separation of postsynaptic protein scaffolds.


Subject(s)
Alternative Splicing , Receptors, G-Protein-Coupled , Receptors, Peptide , Synapses , Animals , Mice , Alternative Splicing/genetics , GTP-Binding Protein alpha Subunits, G12-G13 , GTP-Binding Protein alpha Subunits, Gs , Ligands , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/deficiency , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Synapses/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL