Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.406
Filter
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(6): 609-615, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38991960

ABSTRACT

OBJECTIVE: To explore whether sivelestat sodium could reduce the expression of mucin 5AC (MUC5AC) in intrahepatic bile duct epithelial cells by inhibiting neutrophil elastase (NE) and thus provide new potential therapeutic ideas for the treatment of intrahepatic bile duct stone (IBDS). METHODS: (1) Bioinformatics analysis: differential gene analysis was performed on gallbladder stone cholecystitis sequencing data based on the gene expression omnibus (GEO) to screen for significantly different genes related to neutrophils and mucins. The search tool for the retrieval of interacting genes database (STRING) was used for protein interaction analysis to predict whether there was an interaction between NE and MUC5AC genes. (2) Animal experiment: a total of 18 male SD rats were divided into the sham-operated group, cholangitis model group and sivelestat sodium treatment group according to the random number table method, with 6 rats in each group. The cholangitis rat model was established by a one-time injection of 1.25 mg/kg lipopolysaccharide (LPS) into the right anterior lobe of the liver of rats in combination with the pre-experiment; the liver of the sham-operated group was injected with an equal volume of saline. After the modelling, 100 mg/kg of sivelestat sodium was injected into the tail vein of the cevalexin treatment group once a day for 5 days, and an equal volume of saline was injected into the tail vein of the sham-operated group and the cholangitis model group. Two weeks later, the rats were euthanized and their liver and bile duct tissues were taken. The pathological changes in the liver and bile duct tissues were observed under the light microscope. Immunohistochemical staining was used to detect the expressions of NE and MUC5AC in liver and bile duct tissues. The protein expressions of NE, MUC5AC and Toll-like receptor 4 (TLR4) were detected by Western blotting. (3) Cell experiment: primary human intrahepatic biliary epithelial cell line (HiBEpiC) was divided into blank control group, NE group (10 nmol/L NE), NE+sivelestat sodium low dose group (10 nmol/L NE+1×10-8 g/L sivelestat sodium 1 mL), NE+sivelestat sodium medium dose group (10 nmol/L NE+1×10-7 g/L sivelestat sodium 1 mL), NE+sivelestat sodium high dose group (10 nmol/L NE+1×10-6 g/L sivelestat sodium 1 mL). Cells were collected after 48 hours of culture, and EdU was performed to detect the proliferative activity of cells; enzyme linked immunosorbent assay (ELISA) and Western blotting were performed to detect the expression of MUC5AC in cells. RESULTS: (1) Bioinformatics analysis: the NE gene (ELANE) had a reciprocal relationship with MUC5AC. (2) Animal experiment: light microscopy showed that hepatocyte edema, hepatocyte diffuse point and focal necrosis, confluent area fibrous tissue and intrahepatic bile ducts hyperplasia and inflammatory cell infiltration in the cholangitis model group; hepatic lobule structure of sivelestat sodium treatment group was clear, and the degree of peripheral inflammatory cell infiltration was reduced compared with the cholangitis model group. Immunohistochemical staining showed that the expressions of NE and MUC5AC were increased in the cholangitis model group compared with the sham-operated group, and the expressions of NE and MUC5AC were decreased in the sivelestat sodium group compared with the cholangitis model group [NE (A value): 5.23±2.02 vs. 116.67±23.06, MUC5AC (A value): 5.40±3.09 vs. 23.81±7.09, both P < 0.05]. Western blotting showed that the protein expressions of NE, MUC5AC, and TLR4 in the hepatic biliary tissues of the cholangitis model group were significantly higher than those of the sham-operated group; and the protein expressions of NE, MUC5AC, and TLR4 in the liver biliary tissues of the sivelestat sodium treatment group were significantly higher than those of the sham-operated group (NE/ß-actin: 0.38±0.04 vs. 0.70±0.10, MUC5AC/ß-actin: 0.37±0.03 vs. 0.61±0.05, TLR4/ß-actin: 0.39±0.10 vs. 0.93±0.15, all P < 0.05). (3) Cell experiment: fluorescence microscopy showed that the proliferation of HiBEpiC cells in each group was good, and there was no significant difference in the proportion of positive cells. ELISA and Western blotting showed that the expressions of MUC5AC in cells of the NE group were significantly higher than those of the blank control group. The expressions of MUC5AC in the NE+different dose of sivelestat sodium group were significantly lower than those in the NE group, and showed a decreasing trend with the increase of sevastatin sodium concentration, especially in the highest dose group [MUC5AC (µg/L): 3.46±0.20 vs. 6.33±0.52, MUC5AC/ß-actin: 0.45±0.07 vs. 1.75±0.10, both P < 0.05]. CONCLUSIONS: LPS can upregulate the expression of NE and MUC5AC in rats with cholangitis, while sodium sivelestat can reduce the expression of MUC5AC in in intrahepatic biliary epithelial cells by inhibiting NE, providing a new direction for the treatment of IBDS.


Subject(s)
Bile Ducts, Intrahepatic , Glycine , Leukocyte Elastase , Mucin 5AC , Rats, Sprague-Dawley , Sulfonamides , Animals , Mucin 5AC/metabolism , Male , Rats , Leukocyte Elastase/metabolism , Glycine/analogs & derivatives , Glycine/pharmacology , Sulfonamides/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects
2.
Cells ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38994928

ABSTRACT

Activation of the CXCL12/CXCR4/ACKR3 axis is known to aid myocardial repair through ischemia-triggered hypoxia-inducible factor-1α (HIF-1α). To enhance the upregulation of HIF-1α, we administered roxadustat, a novel prolyl hydroxylase inhibitor (PHI) clinically approved by the European Medicines Agency 2021 for the treatment of renal anemia, with the purpose of improving LV function and attenuating ischemic cardiomyopathy. METHODS: We evaluated roxadustat's impact on HIF-1 stimulation, cardiac remodeling, and function after MI. Therefore, we analyzed nuclear HIF-1 expression, the mRNA and protein expression of key HIF-1 target genes (RT-PCR, Western blot), inflammatory cell infiltration (immunohistochemistry), and apoptosis (TUNEL staining) 7 days after MI. Additionally, we performed echocardiography in male and female C57BL/6 mice 28 days post-MI. RESULTS: We found a substantial increase in nuclear HIF-1, associated with an upregulation of HIF-1α target genes like CXCL12/CXCR4/ACKR3 at the mRNA and protein levels. Roxadustat increased the proportion of myocardial reparative M2 CD206+ cells, suggesting beneficial alterations in immune cell migration and a trend towards reduced apoptosis. Echocardiography showed that roxadustat treatment significantly preserved ejection fraction and attenuated subsequent ventricular dilatation, thereby reducing adverse remodeling. CONCLUSIONS: Our findings suggest that roxadustat is a promising clinically approved treatment option to preserve myocardial function by attenuating adverse remodeling.


Subject(s)
Glycine , Hypoxia-Inducible Factor 1, alpha Subunit , Isoquinolines , Mice, Inbred C57BL , Myocardial Infarction , Ventricular Remodeling , Animals , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Mice , Ventricular Remodeling/drug effects , Glycine/analogs & derivatives , Glycine/pharmacology , Glycine/therapeutic use , Male , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Apoptosis/drug effects , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Myocardium/pathology , Myocardium/metabolism
3.
J Cancer Res Clin Oncol ; 150(7): 334, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969842

ABSTRACT

PURPOSE: Proteasome inhibitors (PIs), which cause cell death via tumor suppressor and pro-apoptotic proteins, are integral to treatment of many hematologic malignancies but are limited by their gastrointestinal adverse effects. Evidence regarding these PI-related adverse effects is scant. In this study, we evaluated gastrointestinal adverse events caused by PIs and compared gastrointestinal toxicities between bortezomib, carfilzomib, and ixazomib. METHODS: We conducted a retrospective study of cancer patients treated with PIs at a tertiary care cancer center to investigate the clinical characteristics of PI-related gastrointestinal adverse events. RESULTS: Our sample comprised 973 patients with PI exposure and stool studies ordered between January 2017 and December 2022. Of these, 193 patients (20%) had PI-related gastrointestinal toxicity based on clinical symptoms and stool study results. The most common symptom was diarrhea, present in 169 (88% of those with gastrointestinal toxicity). Twenty-two (11%) required hospitalization, and 71 (37%) developed recurrence of symptoms. Compared to bortezomib or carfilzomib, ixazomib had a longer interval from PI initiation to the onset of gastrointestinal symptoms (313 days vs 58 days vs 89 days, p = 0.002) and a significantly lower percentage of diarrhea-predominant presentation of gastrointestinal toxicity (71% vs 96% vs 91%, p = 0.048). CONCLUSION: While PI-related gastrointestinal toxicities have various presentations and courses based on different regimens, the vast majority of patients presented with milder disease behavior. Despite a considerably high rate of hospitalization and recurrence after treatment necessitating optimization of clinical management, our cohort demonstrates favorable outcomes without long-term consequences.


Subject(s)
Boron Compounds , Bortezomib , Gastrointestinal Diseases , Glycine , Proteasome Inhibitors , Humans , Proteasome Inhibitors/adverse effects , Male , Female , Retrospective Studies , Middle Aged , Boron Compounds/adverse effects , Boron Compounds/therapeutic use , Aged , Glycine/analogs & derivatives , Glycine/adverse effects , Bortezomib/adverse effects , Bortezomib/administration & dosage , Gastrointestinal Diseases/chemically induced , Oligopeptides/adverse effects , Adult , Aged, 80 and over
4.
Gan To Kagaku Ryoho ; 51(5): 529-533, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38881063

ABSTRACT

Cancer cachexia causes anorexia and metabolic disorders, eventually leading to sarcopenia, which in turn contributes to the development of functional disabilities. Although anamorelin hydrochloride tablets are marketed to treat cancer cachexia, their efficacy varies significantly among patients. Here, we investigated the efficacy of anamorelin and the factors associated with weight gain. The factors that contributed to weight gain in patients before starting anamorelin were as follows: the patients' disease stage had not progressed to refractory cachexia based on the cancer cachexia classification of the European Palliative Care Research Collaborative; the patients had received fewer lines of anticancer treatment at the start of oral administration of anamorelin; and the patients had not met all the criteria for starting treatment with anamorelin, namely, C-reactive protein level >0.5 mg/dL, hemoglobin level <12 g/dL, and albumin level <3.2 g/dL. These results suggest that early administration of anamorelin hydrochloride tablets may increase the response rate when cancer cachexia is diagnosed.


Subject(s)
Cachexia , Neoplasms , Weight Gain , Humans , Cachexia/drug therapy , Cachexia/etiology , Neoplasms/complications , Male , Female , Aged , Middle Aged , Weight Gain/drug effects , Aged, 80 and over , Glycine/analogs & derivatives , Glycine/therapeutic use , Glycine/administration & dosage , Hydrazines/therapeutic use , Hydrazines/administration & dosage , Oligopeptides
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124561, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38833884

ABSTRACT

To satisfy the public's urgent demand for food safety and protect the ecological environment, sensitive detection of glyphosate holds paramount importance. Here, we discovered that glyphosate can engage in specific interactions with iron organic frameworks (Fe-MOFs) nanozymes, enabling a selective detection of glyphosate. Based on this principle, an innovative colorimetric and fluorescent dual-mode detection approach was devised. Specifically, Fe-MOFs were synthesized at room temperature, exhibiting remarkable peroxidase-mimic activity. These nanozymes catalyze the conversion of colorless and fluorescent 3,3',5,5'-Tetramethylbenzidine (TMB) into blue oxidized and nonfluorescent TMB (oxTMB) in the presence of H2O2. However, the introduction of glyphosate disrupts this process by interacting with Fe-MOFs, significantly inhibiting the catalytic activity of Fe-MOFs through both physical (electrostatic and hydrogen bonding) and chemical interactions. This suppression further hindered the conversion of TMB to oxTMB, resulting in a reduction in absorbance and a corresponding enhancement in fluorescence. The method offers a colorimetric and fluorescence dual-mode detection capability with enhanced applicability. Notably, our approach avoids complex material modifications and is more stable and cost-effective than the traditional enzyme inhibition methods. This innovative detection technique holds immense potential for practical applications and provides a fresh perspective for the detection of pesticide residues.


Subject(s)
Colorimetry , Glycine , Glyphosate , Iron , Metal-Organic Frameworks , Spectrometry, Fluorescence , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Iron/chemistry , Iron/analysis , Metal-Organic Frameworks/chemistry , Colorimetry/methods , Spectrometry, Fluorescence/methods , Benzidines/chemistry , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry , Catalysis , Herbicides/analysis , Nanostructures/chemistry
6.
Rapid Commun Mass Spectrom ; 38(17): e9843, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38924168

ABSTRACT

RATIONALE: 1,2-Diacyl-sn-glycero-3-phospho-O-[N-(2-hydroxyethyl)glycines] (PHEGs) are a class of rare aminophospholipids found specifically in brown algae, including kombu seaweed. Despite their potential importance in algal physiology, a comprehensive mass spectrometry (MS) characterization, useful to understand their biological behaviour, is still lacking. METHODS: To establish the structural regiochemical features of PHEGs, we employed hydrophilic interaction liquid chromatography (HILIC). Following separation, the isolated band of PHEGs was analyzed using MS techniques. This included multistage tandem MS experiments, performed in both positive and negative electrospray ionization modes at low and high resolution. RESULTS: By comparing MS/MS and MS3 spectra acquired in negative ion mode, the regiochemical rules for PHEG identification were established. The most abundant PHEG species in kombu seaweed, from both Laminaria ochroleuca (European Atlantic) and Laminaria longissima (Japan), was identified as PHEG 20:4/20:4. Less abundant species included PHEG 20:4/20:5 and hydroxylated forms of both PHEG 20:4/20:4 (i.e. 40:8;O) and 20:4/20:5 (40:9;O). The presence of a lyso PHEG 20:4 was consistently detected but at very low levels. CONCLUSIONS: This study employed MS analysis to elucidate the regiochemical patterns of PHEGs in kombu seaweed. We identified PHEG 20:4/20:4 as the dominant species, along with several less abundant variants, including hydroxylated forms. These findings provide valuable insights into the potential roles and metabolism of PHEGs in brown algae, paving the way for further investigation into their biological functions.


Subject(s)
Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Seaweed/chemistry , Phospholipids/chemistry , Phospholipids/analysis , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Phaeophyceae/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Laminaria/chemistry , Chromatography, Liquid/methods , Edible Seaweeds
7.
Mar Drugs ; 22(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38921582

ABSTRACT

Cyclic glycine-proline (cGP), a prevalent marine cyclic dipeptide, possesses a distinct pyrrolidine-2,5-dione scaffold, which contributes to the chemical diversity and broad bioactivities of cGP. The diverse sources from marine-related, endogenous biological, and synthetic pathways and the in vitro and in vivo activities of cGP are reviewed. The potential applications for cGP are also explored. In particular, the pivotal roles of cGP in regulating insulin-like growth factor-1 homeostasis, enhancing neuroprotective effects, and improving neurotrophic function in central nervous system diseases are described. The potential roles of this endogenous cyclic peptide in drug development and healthcare initiatives are also highlighted. This review underscores the significance of cGP as a fundamental building block in drug discovery with exceptional drug-like properties and safety. By elucidating the considerable value of cGP, this review aims to reignite interest in cGP-related research within marine medicinal chemistry and synthetic biology.


Subject(s)
Aquatic Organisms , Dipeptides , Peptides, Cyclic , Animals , Dipeptides/pharmacology , Dipeptides/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Drug Discovery/methods , Glycine/pharmacology , Glycine/analogs & derivatives
8.
Vet Med Sci ; 10(4): e1470, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923734

ABSTRACT

BACKGROUND: The intestine of young ruminants is in the developmental stage and has weaker resistance to the changes of external environment. Improving intestinal health is vital to promoting growth of young ruminants. This study investigated effects of guanidino acetic acid (GAA) and rumen-protected betaine (RPB) supplementation on growth, dietary nutrient digestion and GAA metabolism in the small intestine of sheep. METHODS: Eighteen healthy Kazakh rams (27.46 ± 0.10 kg of body weight and 3-month old) were categorized into control, test group I and test group II, which were fed a basal diet, 1500 mg/kg GAA and 1500 mg/kg GAA + 600 mg/kg RPB, respectively. RESULTS: Compared with control group, test group II had increased (p < 0.05) average daily gain, plasma creatine level, ether extract (EE) and phosphorus digestibility on day 30. On day 60, the EE apparent digestibility, jugular venous plasma GAA, GAA content in the duodenal mucosa and GAA content in the jejunal and ileal mucosa of test group II were higher (p < 0.05) than other groups. Transcriptome analysis revealed that the differentially expressed genes (DEGs) involved in the duodenal pathways of oxidative phosphorylation and non-alcoholic fatty liver disease were significantly altered in test group II versus test group I (p < 0.05). Moreover, in the jejunum, the MAPK signalling pathway, complement and coagulation cascade and B-cell receptor signalling pathway were significantly enriched, with ATPase, solute carrier transporter protein, DHFR, SI, GCK, ACACA and FASN being the significantly DEGs (p < 0.05). CONCLUSION: Dietary supplementation of RPB on top of GAA in sheep diets may promote sheep growth and development by improving the body's energy, amino acid, glucose and lipid metabolism capacity.


Subject(s)
Animal Feed , Betaine , Creatine , Diet , Dietary Supplements , Digestion , Glycine , Animals , Dietary Supplements/analysis , Betaine/metabolism , Betaine/administration & dosage , Animal Feed/analysis , Diet/veterinary , Male , Digestion/drug effects , Creatine/metabolism , Glycine/analogs & derivatives , Glycine/administration & dosage , Glycine/metabolism , Sheep/physiology , Sheep/metabolism , Sheep, Domestic/physiology , Sheep, Domestic/metabolism , Animal Nutritional Physiological Phenomena/drug effects , Random Allocation , Nutrients/metabolism
9.
Environ Health ; 23(1): 58, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926689

ABSTRACT

BACKGROUND: The prevalence of metabolic syndrome (MetS) in American adults increased from 37.6% in the 2011-12 period to 41.8% in 2017-2018. Environmental exposure, particularly to common compounds such as glyphosate, has drawn increasing attention as a potential risk factor. METHODS: We employed three cycles of data (2013-2018) from the National Health and Nutrition Examination Survey (NHANES) in a cross-sectional study to examine potential associations between urine glyphosate measurements and MetS incidence. We first created a MetS score using exploratory factor analysis (EFA) of the International Diabetes Federation (IDF) criteria for MetS, with data drawn from the 2013-2018 NHANES cycles, and validated this score independently on an additional associated metric, the albumin-to-creatinine (ACR) ratio. The score was validated via a machine learning approach in predicting the ACR score via binary classification and then used in multivariable regression to test the association between quartile-categorized glyphosate exposure and the MetS score. RESULTS: In adjusted multivariable regressions, regressions between quartile-categorized glyphosate exposure and MetS score showed a significant inverted U-shaped or saturating dose‒response profile, often with the largest effect for exposures in quartile 3. Exploration of potential effect modification by sex, race, and age category revealed significant differences by race and age, with older people (aged > 65 years) and non-Hispanic African American participants showing larger effect sizes for all exposure quartiles. CONCLUSIONS: We found that urinary glyphosate concentration is significantly associated with a statistical score designed to predict MetS status and that dose-response coefficient is nonlinear, with advanced age and non-Hispanic African American, Mexican American and other Hispanic participants exhibiting greater effect sizes.


Subject(s)
Glycine , Glyphosate , Herbicides , Nutrition Surveys , Humans , Glycine/analogs & derivatives , Glycine/urine , Cross-Sectional Studies , Male , Female , Middle Aged , Adult , Herbicides/urine , Aged , Metabolic Syndrome/urine , Metabolic Syndrome/epidemiology , Metabolic Syndrome/chemically induced , United States/epidemiology , Environmental Exposure/analysis , Young Adult , Risk Factors , Environmental Pollutants/urine
10.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928116

ABSTRACT

Achromobacter insolitus and Achromobacter aegrifaciens, bacterial degraders of the herbicide glyphosate, were found to induce phosphonatase (phosphonoacetaldehyde hydrolase, EC 3.11.1.1) when grown on minimal media with glyphosate as the sole source of phosphorus. The phosphonatases of the strains were purified to an electrophoretically homogeneous state and characterized. The enzymes differed in their kinetic characteristics and some other parameters from the previously described phosphonatases. The phosphonatase of A. insolitus was first revealed to separate into two stable forms, which had similar kinetic characteristics but interacted differently with affinity and ion-exchange resins. The genomes of the investigated bacteria were sequenced. The phosphonatase genes were identified, and their context was determined: the bacteria were shown to have gene clusters, which, besides the phosphonatase operon, included genes for LysR-type transcription activator (substrate sensor) and putative iron-containing oxygenase PhnHD homologous to monooxygenases PhnY and TmpB of marine organophosphonate degraders. Genes of 2-aminoethylphosphonate aminotransferase (PhnW, EC 2.6.1.37) were absent in the achromobacterial phosphonatase operons; instead, we revealed the presence of genes encoding the putative flavin oxidase HpnW. In silico simulation showed 1-hydroxy-2-aminoethylphosphonate to be the most likely substrate of the new monooxygenase, and a number of glycine derivatives structurally similar to glyphosate to be substrates of flavin oxidase.


Subject(s)
Achromobacter , Glycine , Glyphosate , Operon , Soil Microbiology , Glycine/analogs & derivatives , Achromobacter/genetics , Operon/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Herbicides , Multigene Family , Kinetics , Gene Expression Regulation, Bacterial/drug effects
11.
BMC Pulm Med ; 24(1): 283, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886709

ABSTRACT

OBJECTIVE: This comparative analysis aimed to investigate the efficacy of Sivelestat Sodium Hydrate (SSH) combined with Ulinastatin (UTI) in the treatment of sepsis with acute respiratory distress syndrome (ARDS). METHODS: A control group and an observation group were formed with eighty-four cases of patients with sepsis with ARDS, with 42 cases in each group. The control group was intravenously injected with UTI based on conventional treatment, and the observation group was injected with SSH based on the control group. Both groups were treated continuously for 7 days, and the treatment outcomes and efficacy of both groups were observed. The Murray Lung Injury Score (MLIS), Sequential Organ Failure Assessment (SOFA), and Acute Physiology and Chronic Health Evaluation II (APACHE II) were compared. Changes in respiratory function, inflammatory factors, and oxidative stress indicators were assessed. The occurrence of adverse drug reactions was recorded. RESULTS: The total effective rate in the observation group (95.24%) was higher than that in the control group (80.95%) (P < 0.05). The mechanical ventilation time, intensive care unit (ICU) hospitalization time, and duration of antimicrobial medication in the observation group were shorter and multiple organ dysfunction syndrome incidence was lower than those in the control group (P < 0.05). The mortality rate of patients in the observation group (35.71%) was lower than that in the control group (52.38%), but there was no statistically significant difference between the two groups (P > 0.05). MLIS, SOFA, and APACHE II scores in the observation group were lower than the control group (P < 0.05). After treatment, respiratory function, inflammation, and oxidative stress were improved in the observation group (P < 0.05). Adverse reactions were not significantly different between the two groups (P > 0.05). CONCLUSION: The combination of SSH plus UTI improves lung injury and pulmonary ventilation function, and reduces inflammation and oxidative stress in patients with sepsis and ARDS.


Subject(s)
Drug Therapy, Combination , Glycine , Glycoproteins , Respiratory Distress Syndrome , Sepsis , Sulfonamides , Humans , Male , Sepsis/drug therapy , Sepsis/complications , Respiratory Distress Syndrome/drug therapy , Female , Middle Aged , Glycoproteins/administration & dosage , Glycoproteins/therapeutic use , Aged , Glycine/analogs & derivatives , Glycine/therapeutic use , Glycine/administration & dosage , Sulfonamides/administration & dosage , Sulfonamides/therapeutic use , Treatment Outcome , Respiration, Artificial , APACHE , Adult , Multiple Organ Failure/etiology , Multiple Organ Failure/drug therapy , Oxidative Stress/drug effects , Organ Dysfunction Scores , Intensive Care Units , Trypsin Inhibitors/administration & dosage , Trypsin Inhibitors/therapeutic use
12.
Sci Total Environ ; 942: 173685, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38825192

ABSTRACT

Pesticide mixtures are frequently utilized in agriculture, yet their cumulative effects on aquatic organisms remain poorly understood. Aquatic animals can be effective bioindicators and invasive bivalves, owing to their widespread distribution, provide an opportunity to assess these impacts. Glyphosate and imidacloprid, among the most prevalent pesticides globally, are frequently detected in freshwater systems in South America. This study aims to understand the cumulative effects of pesticide mixtures on aquatic organisms, using invasive Corbicula largillierti clams from a natural stream in northwestern Argentina. We conducted 48-hour exposure experiments using two concentrations of imidacloprid (20 and 200 µg L-1 a.i), two concentrations of glyphosate (0.3 and 3 mg L-1 a.i), and two combinations of these pesticides (both at low and high concentrations, respectively), simulating the direct contamination of both pesticides based on their agronomic recipe and observed values in Argentine aquatic environments. Clam metabolism was assessed through the examination of multiple oxidative stress parameters and measuring oxygen consumption rate as a proxy for standard metabolic rate (SMR). Our findings revealed that imidacloprid has a more pronounced effect compared to glyphosate. Imidacloprid significantly decreased clam SMR and cellular levels of reduced glutathione (GSH). However, when both pesticides were present, also cellular glycogen and thiobarbituric acid-reactive substances (TBARS) were affected. Proteins and glutathione S-Transferase (GST) activity were unaffected by either pesticide or their mixture at the assayed concentrations, highlighting the need to test several stress parameters to detect toxicological impacts. Our results indicated additive effects of imidacloprid and glyphosate across all measured parameters. The combination of multiple physiological and cytological biomarkers in invasive bivalves offers significant potential to enhance biomonitoring sensitivity and obtain insights into the origins and cellular mechanisms of chemical impacts. These studies can improve pollution regulatory policies and pesticide management.


Subject(s)
Biomarkers , Corbicula , Glycine , Glyphosate , Neonicotinoids , Nitro Compounds , Water Pollutants, Chemical , Neonicotinoids/toxicity , Animals , Nitro Compounds/toxicity , Water Pollutants, Chemical/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Biomarkers/metabolism , Argentina , Corbicula/drug effects , Herbicides/toxicity , Environmental Monitoring , Oxidative Stress/drug effects , Insecticides/toxicity
13.
Chemosphere ; 361: 142423, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830461

ABSTRACT

This study investigates the effects of glyphosate-based herbicide (GLY) and pure emamectin benzoate (EB) insecticide on the brackish copepod Pseudodiaptomus annandalei. The 96h median lethal concentration (96 h LC50) was higher in the GLY exposure (male: 3420.96 ± 394.67 µg/L; female: 3093.46 ± 240.67 µg/L) than in the EB (male: 79.10 ± 7.30 µg/L; female: 6.38 ± 0.72 µg/L). Based on the result of 96h LC50, we further examined the effects of GLY and EB exposures at sub-lethal concentrations on the naupliar production of P. annandalei. Subsequently, a multigenerational experiment was conducted to assess the long-term impact of GLY and EB at concentrations 375 µg/L, and 0.025 µg/L respectively determined by sub-lethal exposure testing. During four consecutive generations, population growth, clutch size, prosome length and width, and sex ratio were measured. The copepods exposed to GLY and EB showed lower population growth but higher clutch size than the control group in most generations. Gene expression analysis indicated that GLY and EB exposures resulted in the downregulation of reproduction-related (vitellogenin) and growth-related (myosin heavy chain) genes, whereas a stress-related gene (heat shock protein 70) was upregulated after multigenerational exposure. The results of the toxicity test after post-multigenerational exposure indicated that the long-term GLY-exposed P. annandalei displayed greater vulnerability towards GLY toxicity compared to newly-exposed individuals. Whereas, the tolerance of EB was significantly higher in the long-term exposed copepod than in newly-exposed individuals. This suggests that P. annandalei might have greater adaptability towards EB toxicity than towards GLY toxicity. This study reports for the first time the impacts of common pesticides on the copepod P. annandalei, which have implications for environmental risk assessment and contributes to a better understanding of copepod physiological responses towards pesticide contaminations.


Subject(s)
Copepoda , Glycine , Glyphosate , Herbicides , Insecticides , Ivermectin , Reproduction , Water Pollutants, Chemical , Animals , Copepoda/drug effects , Copepoda/genetics , Glycine/analogs & derivatives , Glycine/toxicity , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Herbicides/toxicity , Reproduction/drug effects , Insecticides/toxicity , Female , Water Pollutants, Chemical/toxicity , Male , Gene Expression/drug effects
14.
Pan Afr Med J ; 47: 114, 2024.
Article in English | MEDLINE | ID: mdl-38828426

ABSTRACT

Chronic kidney disease (CKD) is commonly complicated by anemia. Treating dialysis-dependent patients with anemia, including daprodustat and other inhibitors of prolyl hydroxylase of hypoxia-inducible factor, recombinant human erythropoietin (rhEPO), and iron supplements. We conducted this study to test our postulation; daprodustat is superior to rhEPO and other conventional treatments respecting efficacy and safety parameters. We made systematic search through PubMed, Web of Science, Scopus, and Cochrane. Seven unique trials were eventually included for systematic review; six of them with a sample size of 759 patients entered our network meta-analysis (NMA). Daprodustat 25-30 mg was associated with the greatest change in serum hemoglobin (MD=1.86, 95%CI= [1.20; 2.52]), ferritin (MD= -180.84, 95%CI= [-264.47; -97.20]), and total iron binding capacity (TIBC) (MD=11.03, 95%CI= [3.15; 18.92]) from baseline values. Dialysis-dependent patients with anemia had a significant increment in serum Hemoglobin and TIBC and a reduction in serum ferritin, in a dose-dependent manner, when administered daprodustat.


Subject(s)
Anemia , Barbiturates , Ferritins , Glycine , Hemoglobins , Renal Dialysis , Renal Insufficiency, Chronic , Humans , Anemia/drug therapy , Anemia/etiology , Hemoglobins/analysis , Hemoglobins/metabolism , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/complications , Glycine/analogs & derivatives , Glycine/administration & dosage , Ferritins/blood , Barbiturates/administration & dosage , Network Meta-Analysis , Erythropoietin/administration & dosage , Recombinant Proteins/administration & dosage , Dose-Response Relationship, Drug , Iron/administration & dosage
15.
Ecotoxicol Environ Saf ; 280: 116549, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38852467

ABSTRACT

Roundup®, a prominent glyphosate-based herbicide (GBH), holds a significant position in the global market. However, studies of its effects on aquatic invertebrates, including molluscs are limited. Pomacea canaliculata, a large freshwater snail naturally thrives in agricultural environments where GBH is extensively employed. Our investigation involved assessing the impact of two concentrations of GBH (at concentrations of 19.98 mg/L and 59.94 mg/L, corresponding to 6 mg/L and 18 mg/L glyphosate) during a 96 h exposure experiment on the intestinal bacterial composition and metabolites of P. canaliculata. Analysis of the 16 S rRNA gene demonstrated a notable reduction in the alpha diversity of intestinal bacteria due to GBH exposure. Higher GBH concentration caused a significant shift in the relative abundance of dominant bacteria, such as Bacteroides and Paludibacter. We employed widely-targeted metabolomics analysis to analyze alterations in the hepatopancreatic metabolic profile as a consequence of GBH exposure. The shifts in metabolites primarily affected lipid, amino acid, and glucose metabolism, resulting in compromised immune and adaptive capacities in P. canaliculata. These results suggested that exposure to varying GBH concentrations perpetuates adverse effects on intestinal and hepatopancreatic health of P. canaliculata. This study provides an understanding of the negative effects of GBH on P. canaliculata and may sheds light on its potential implications for other molluscs.


Subject(s)
Gastrointestinal Microbiome , Glycine , Glyphosate , Hepatopancreas , Herbicides , Water Pollutants, Chemical , Animals , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Gastrointestinal Microbiome/drug effects , Water Pollutants, Chemical/toxicity , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Snails/drug effects , RNA, Ribosomal, 16S/genetics , Metabolomics
16.
Mol Med Rep ; 30(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38873985

ABSTRACT

Macrophage pyroptosis mediates vascular inflammation and atherosclerosis (AS). Hydrogen sulfide (H2S) exerts a protective role in preventing inflammation and AS. However, its molecular mechanisms of regulating the pyroptosis signaling pathway and inhibiting macrophage pyroptosis remain unexplored. The present study aimed to determine whether H2S mitigates macrophage pyroptosis by downregulating the pyroptosis signaling pathway and S­sulfhydrating caspase­1 under the stimulation of oxidized low­density lipoprotein (ox­LDL), a pro­atherosclerotic factor. Macrophages derived from THP­1 monocytes were pre­treated using exogenous H2S donors sodium hydrosulfide (NaHS) and D,L­propargylglycine (PAG), a pharmacological inhibitor of endogenous H2S­producing enzymes, alone or in combination. Subsequently, cells were stimulated with ox­LDL or the desulfhydration reagent dithiothreitol (DTT) in the presence or absence of NaHS and/or PAG. Following treatment, the levels of H2S in THP­1 derived macrophages were measured by a methylene blue colorimetric assay. The pyroptotic phenotype of THP­1 cells was observed and evaluated by light microscopy, Hoechst 33342/propidium iodide fluorescent staining and lactate dehydrogenase (LDH) release assay. Caspase­1 activity in THP­1 cells was assayed by caspase­1 activity assay kit. Immunofluorescence staining was used to assess the accumulation of active caspase­1. Western blotting and ELISA were performed to determine the expression of pyroptosis­specific markers (NLRP3, pro­caspase­1, caspase­1, GSDMD and GSDMD­N) in cells and the secretion of pyroptosis­related cytokines [interleukin (IL)­1ß and IL­18] in the cell­free media, respectively. The S­sulfhydration of pro­caspase­1 in cells was assessed using a biotin switch assay. ox­LDL significantly induced macrophage pyroptosis by activating the pyroptosis signaling pathway. Inhibition of endogenous H2S synthesis by PAG augmented the pro­pyroptotic effects of ox­LDL. Conversely, exogenous H2S (NaHS) ameliorated ox­LDL­and ox­LDL + PAG­induced macrophage pyroptosis by suppressing the activation of the pyroptosis signaling pathway. Mechanistically, ox­LDL and the DTT increased caspase­1 activity and downstream events (IL­1ß and IL­18 secretion) of the caspase­1­dependent pyroptosis pathway by reducing S­sulfhydration of pro­caspase­1. Conversely, NaHS increased S­sulfhydration of pro­caspase­1, reducing caspase­1 activity and caspase­1­dependent macrophage pyroptosis. The present study demonstrated the molecular mechanism by which H2S ameliorates macrophage pyroptosis by suppressing the pyroptosis signaling pathway and S­sulfhydration of pro­caspase­1, thereby suppressing the generation of active caspase-1 and activity of caspase-1.


Subject(s)
Caspase 1 , Hydrogen Sulfide , Lipoproteins, LDL , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pyroptosis , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Pyroptosis/drug effects , Humans , Caspase 1/metabolism , Macrophages/metabolism , Macrophages/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Phosphate-Binding Proteins/metabolism , THP-1 Cells , Intracellular Signaling Peptides and Proteins/metabolism , Signal Transduction/drug effects , Gasdermins , Alkynes , Glycine/analogs & derivatives , Sulfides
17.
J Cardiothorac Surg ; 19(1): 399, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937755

ABSTRACT

BACKGROUND: We aimed to assess the efficacy of the neutrophil elastase inhibitor, sivelestat, in the treatment of sepsis-induced acute respiratory distress syndrome (ARDS) and septic cardiomyopathy (SCM). METHODS: Between January 2019 and December 2021, we conducted a randomized trial on patients who had been diagnosed with sepsis-induced acute respiratory distress syndrome (ARDS) and septic cardiomyopathy (SCM) at Wuhan Union Hospital. The patients were divided into two groups by random envelop method, the Sivelestat group and the Control group. We measured the serum concentrations of Interleukin (IL)-6, IL-8, Tumor necrosis factor-α (TNF-α), and High-mobility group box 1 (HMGB1) at five time points, which were the baseline, 12 h, 24 h, 48 h, and 72 h after admission to the ICU. We evaluated the cardiac function by sonography and the heart rate variability (HRV) with 24-hour Holter recording between the time of admission to the intensive care unit (ICU) and 72 h after Sivelestat treatment. RESULTS: From January 2019 to December 2021, a total of 70 patients were included in this study. The levels of IL-6, IL-8, and TNF-α were significantly lower in the Sivelestat group at different time points (12 h, 24 h, 48 h, and 72 h). HMGB1 levels were significantly lower at 72 h after Sivelestat treatment (19.46 ± 2.63pg/mL vs. 21.20 ± 2.03pg/mL, P = 0.003). The stroke volume (SV), tricuspid annular plane systolic excursion (TAPSE), early to late diastolic transmitral flow velocity (E/A), early (e') and late (a') diastoles were significantly low in the Control group compared with the Sivelestat group. Tei index was high in the Control group compared with the Sivelestat group (0.60 ± 0.08 vs. 0.56 ± 0.07, P = 0.029). The result of HRV showed significant differences in standard deviation of normal-to-normal intervals (SDNN), low frequency (LF), and LF/HF (high frequency) between the two groups. CONCLUSIONS: Sivelestat can significantly reduce the levels of serum inflammatory factors, improve cardiac function, and reduce heart rate variability in patients with Sepsis-induced ARDS and SCM.


Subject(s)
Cardiomyopathies , Glycine , Respiratory Distress Syndrome , Sepsis , Sulfonamides , Humans , Male , Female , Glycine/analogs & derivatives , Glycine/therapeutic use , Cardiomyopathies/drug therapy , Cardiomyopathies/blood , Sepsis/drug therapy , Sepsis/complications , Sepsis/blood , Middle Aged , Respiratory Distress Syndrome/drug therapy , Sulfonamides/therapeutic use , Treatment Outcome , Aged , Serine Proteinase Inhibitors/therapeutic use
18.
Mikrochim Acta ; 191(7): 423, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38922503

ABSTRACT

A ratiometric fluorescence sensing strategy has been developed for the determination of Cu2+ and glyphosate with high sensitivity and specificity based on OPD (o-phenylenediamine) and glutathione-stabilized gold nanoclusters (GSH-AuNCs). Water-soluble 1.75-nm size GSH-AuNCs with strong red fluorescence and maximum emission wavelength at 682 nm were synthesized using GSH as the template. OPD was oxidized by Cu2+, which produced the bright yellow fluorescence oxidation product 2,3-diaminophenazine (DAP) with a maximum fluorescence emission peak at 570 nm. When glyphosate existed in the system, the chelation between glyphosate and Cu2+ hindered the formation of DAP and reduced the fluorescence intensity of the system at the wavelength of 570 nm. Meanwhile, the fluorescence intensity at the wavelength of 682 nm remained basically stable. It exhibited a good linear relationship towards Cu2+ and glyphosate in water in the range 1.0-10 µM and 0.050-3.0 µg/mL with a detection limit of 0.547 µM and 0.0028 µg/mL, respectively. The method was also used for the semi-quantitative determination of Cu2+ and glyphosate in water by fluorescence color changes visually detected by the naked eyes in the range 1.0-10 µM and 0.30-3.0 µg/mL, respectively. The sensing strategy showed higher sensitivity, more obvious color changes, and better disturbance performance, satisfying with the detection demands of Cu2+ and glyphosate in environmental water samples. The study provides a reliable detection strategy in the environment safety fields.


Subject(s)
Colorimetry , Copper , Glycine , Glyphosate , Gold , Limit of Detection , Metal Nanoparticles , Phenylenediamines , Spectrometry, Fluorescence , Water Pollutants, Chemical , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Phenylenediamines/chemistry , Gold/chemistry , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/analysis , Colorimetry/methods , Glutathione/chemistry , Glutathione/analysis , Herbicides/analysis , Fluorescent Dyes/chemistry
19.
Sci Total Environ ; 945: 174163, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38906309

ABSTRACT

A novel dual-signal fluorometric and colorimetric probe FMDH (5-FAM-Met-Asp-His-NH2), incorporating a tripeptide (Met-Asp-His-NH2) linked to 5-carboxyfluorescein (5-FAM), was firstly synthesised. FMDH demonstrated exceptional selectivity and sensitivity, rapid response, wide pH response range and robust anti-interference capabilities for monitoring Cu2+. This was achieved through a distinctive naked-eye colorimetric and fluorescent quenching behaviour. A good linearity within the range of 0-3 µM (R2 = 0.9914) was attained, and the limit of detection (LOD) for Cu2+ was 47.4 nM. Furthermore, the FMDH-Cu2+ ensemble responded to glyphosate with notable selectivity and sensitivity. A good linear correlation (R2 = 0.9926) was observed at the lower concentration range (2.4-7.8 µM) and achieving a detection limit as low as 29.9 nM. The response time of FMDH with Cu2+ and glyphosate were less than 20 s, and the pH range of 7-11 that was suitable for practical application under physiological pH conditions. MTT assays confirmed that FMDH offers good permeability and low toxicity, facilitating successful application in imaging analysis of Cu2+ and glyphosate in living cells and zebrafish. In addition, FMDH was employed in the detection of these analytes in real water samples. Cost-effective, highly sensitive and easily prepared FMDH-impregnated test strips were developed for the efficient visual detection of Cu2+ and glyphosate under 365 nm UV light. Increasing concentrations of Cu2+ and glyphosate resulted in notable colour changes under 365 nm UV light, enabling visual semi-quantitative analysis via a smartphone colour-analysis App.


Subject(s)
Colorimetry , Copper , Fluorometry , Glycine , Glyphosate , Water Pollutants, Chemical , Copper/analysis , Glycine/analogs & derivatives , Glycine/analysis , Colorimetry/methods , Water Pollutants, Chemical/analysis , Fluorometry/methods , Fluorescent Dyes/chemistry , Herbicides/analysis , Limit of Detection , Peptides , Environmental Monitoring/methods , Animals
20.
PLoS One ; 19(6): e0302721, 2024.
Article in English | MEDLINE | ID: mdl-38935660

ABSTRACT

OBJECTIVE: To investigate the therapeutic effect and mechanism of sivelestat sodium on acute lung injury (AIL). METHODS: A rat model for ALI/acute respiratory distress syndrome (ALI/ARDS) was established. Pathological examination of lung tissue was conducted to assess lung injury. Blood gas in the arteries was measured using a blood analyzer. Changes in PaO2, PaO2/FiO2, and lung wet/dry (W/D) weight ratio were carefully compared. ELISA assay was conducted to estimate cell adhesion and inflammation response. Finally, real-time reverse transcription polymerase chain reaction and western blotting assay was used to determine the activation of PI3K/AKT/mTOR pathway. RESULTS: ARDS in vivo model was successfully constructed by LPS injection. Compared with the sham group, PaO2 and PaO2/FiO2 were significantly lower in the vehicle group, while the lung W/D ratio, the lung injury score, NE, VCAM-1, IL-8 andTNF-αwere significantly increased. After treatment with different doses of sivelestat sodium, we found PaO2, PaO2/FiO2 were prominently increased, while the lung W/D ratio, the lung injury score, NE, VCAM-1, IL-8, TNF-α levels were decreased in the dose-dependent manner. Meanwhile, compared with the vehicle group, the expression levels of Bax, PI3K, Akt and mTOR were significantly lower, and the expression of Bcl-2 was significantly higher after injection with sivelestat sodium. CONCLUSION: Sivelestat sodium has an interventional effect on ALI in sepsis by inhibiting the PI3K/AKT/mTOR signalling pathway.


Subject(s)
Acute Lung Injury , Glycine , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Sulfonamides , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats , Male , Glycine/analogs & derivatives , Glycine/pharmacology , Glycine/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Lung/drug effects , Lung/metabolism , Lung/pathology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL