Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.968
Filter
1.
Commun Biol ; 7(1): 850, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992096

ABSTRACT

Plant pathogens cause billions of dollars of crop loss every year and are a major threat to global food security. Identifying and characterizing pathogens effectors is crucial towards their improved control. Because of their poor sequence conservation, effector identification is challenging, and current methods generate too many candidates without indication for prioritizing experimental studies. In most phyla, effectors contain specific sequence motifs which influence their localization and targets in the plant. Therefore, there is an urgent need to develop bioinformatics tools tailored for pathogen effectors. To circumvent these limitations, we have developed MOnSTER a specific tool that identifies clusters of motifs of protein sequences (CLUMPs). MOnSTER can be fed with motifs identified by de novo tools or from databases such as Pfam and InterProScan. The advantage of MOnSTER is the reduction of motif redundancy by clustering them and associating a score. This score encompasses the physicochemical properties of AAs and the motif occurrences. We built up our method to identify discriminant CLUMPs in oomycetes effectors. Consequently, we applied MOnSTER on plant parasitic nematodes and identified six CLUMPs in about 60% of the known nematode candidate parasitism proteins. Furthermore, we found co-occurrences of CLUMPs with protein domains important for invasion and pathogenicity. The potentiality of this tool goes beyond the effector characterization and can be used to easily cluster motifs and calculate the CLUMP-score on any set of protein sequences.


Subject(s)
Amino Acid Motifs , Computational Biology , Animals , Computational Biology/methods , Plant Diseases/parasitology , Plant Diseases/microbiology , Plants/parasitology , Oomycetes/genetics , Oomycetes/metabolism , Nematoda/genetics , Helminth Proteins/genetics , Helminth Proteins/metabolism , Helminth Proteins/chemistry , Software
2.
Mol Plant Pathol ; 25(7): e13491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961768

ABSTRACT

Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.


Subject(s)
Endoplasmic Reticulum , Tylenchoidea , Animals , Endoplasmic Reticulum/metabolism , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Helminth Proteins/metabolism , Helminth Proteins/genetics , Plant Immunity , Nicotiana/parasitology , Nicotiana/immunology , Nicotiana/genetics , Solanum lycopersicum/parasitology , Solanum lycopersicum/immunology , Solanum lycopersicum/genetics , Plant Diseases/parasitology , Plant Diseases/immunology , Plant Roots/parasitology , Plant Roots/immunology , Host-Parasite Interactions
3.
Parasite ; 31: 39, 2024.
Article in English | MEDLINE | ID: mdl-38995112

ABSTRACT

Echinococcus granulosus sensu lato is a platyhelminth parasite and the etiological cause of cystic echinococcosis (CE), a zoonotic and neglected disease that infects animals and humans worldwide. As a part of the biological arsenal of the parasite, cathepsin L proteases are a group of proteins that are believed to be essential for parasite penetration, immune evasion, and establishment in the tissues of the host. In this work, we have cloned and sequenced a new putative cathepsin L protease from Echinococcus canadensis (EcCLP1). The bioinformatic analysis suggests that EcCLP1 could be synthesized as a zymogen and activated after proteolytic cleavage. The multiple sequence alignment with other cathepsin proteases reveals important functional conserved features like a conserved active site, an N-linked glycosylation residue, a catalytic triad, an oxyanion hole, and three putative disulfide bonds. The phylogenetic analysis suggests that EcCLP1 could indeed be a cathepsin L cysteine protease from clade 1 as it grouped with cathepsins from other species in this clade. Modeling studies suggest that EcCLP1 has two domains forming a cleft where the active site is located and an occluding role for the propeptide. The transcriptomic analysis reveals different levels of cathepsin transcript expression along the different stages of the parasite life cycle. The whole-mount immunohistochemistry shows an interesting superficial punctate pattern of staining which suggests a secretory pattern of expression. The putative cathepsin L protease characterized here may represent an interesting tool for diagnostic purposes, vaccine design, or a new pharmacological target for antiparasitic intervention.


Title: Caractérisation moléculaire d'EcCLP1, une nouvelle protéase putative de type cathepsine L d'Echinococcus canadensis. Abstract: Echinococcus granulosus sensu lato est un Plathelminthe parasite et la cause étiologique de l'échinococcose kystique (EK), une maladie zoonotique et négligée qui infecte les animaux et les humains dans le monde entier. En tant que partie de l'arsenal biologique du parasite, les protéases de type cathepsine L sont un groupe de protéines considérées comme essentielles à la pénétration du parasite, l'évasion immunitaire et son établissement dans les tissus de l'hôte. Dans ce travail, nous avons cloné et séquencé une nouvelle protéase putative de type cathepsine L d'Echinococcus canadensis (EcCLP1). L'analyse bioinformatique suggère qu'EcCLP1 pourrait être synthétisée sous forme de zymogène et activée après clivage protéolytique. L'alignement de séquences multiples avec d'autres protéases de type cathepsine révèle d'importantes caractéristiques fonctionnelles conservées telles qu'un site actif conservé, un résidu de glycosylation lié à N, une triade catalytique, un trou oxyanion et trois liaisons disulfure putatives. L'analyse phylogénétique suggère qu'EcCLP1 pourrait en effet être une protéase de type cathepsine L du clade 1 car elle se regroupe avec les cathepsines d'autres espèces de ce clade. Les études de modélisation suggèrent qu'EcCLP1 possède deux domaines formant une fente où se trouve le site actif et un rôle d'occlusion pour le propeptide. L'analyse transcriptomique révèle différents niveaux d'expression du transcrit de la cathepsine au cours des différentes étapes du cycle de vie du parasite. L'immunohistochimie de montages entiers montre un intéressant motif de coloration ponctuée superficielle qui suggère un modèle d'expression sécrétoire. La protéase putative de type cathepsine L caractérisée ici peut représenter un outil intéressant à des fins de diagnostic, de conception de vaccins ou une nouvelle cible pharmacologique pour une intervention antiparasitaire.


Subject(s)
Amino Acid Sequence , Cathepsin L , Echinococcus , Phylogeny , Animals , Cathepsin L/genetics , Echinococcus/enzymology , Echinococcus/genetics , Echinococcus/classification , Sequence Alignment , Cloning, Molecular , Helminth Proteins/genetics , Helminth Proteins/chemistry , Life Cycle Stages , Echinococcosis/parasitology , Catalytic Domain , Gene Expression Profiling
4.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928010

ABSTRACT

The identification of novel drug targets in plant-parasitic nematodes (PPNs) is imperative due to the loss of traditional nematicides and a lack of replacements. Chemosensation, which is pivotal for PPNs in locating host roots, has become a focus in nematode behavioral research. However, its underlying molecular basis is still indistinct in such a diverse group of PPNs. To characterize genes participating in chemosensation in the Javanese root-knot nematode Meloidogyne javanica, RNA-sequencing of the second-stage juveniles (J2s) treated with tomato root exudate (TRE) for 1 h and 6 h was performed. Genes related to chemosensation in M. javanica mainly responded to TRE treatment at 1 h. Moreover, a gene ontology (GO) analysis underscored the significance of the neuropeptide G protein-coupled receptor signaling pathway. Consequently, the repertoire of putative neuropeptides in M. javanica, including FMRFamide-like peptides (FLPs), insulin-like peptides (ILPs), and neuropeptide-like peptides (NLPs), were outlined based on a homology analysis. The gene Mjflp-14a, harboring two neuropeptides, was significantly up-regulated at 1 h TRE treatment. Through peptide synthesis and J2 treatment, one of the two neuropeptides (MjFLP-14-2) was proven to influence the J2 chemotaxis towards tomato root tips. Overall, our study reinforces the potential of nematode neuropeptides as novel targets and tools for root-knot nematode control.


Subject(s)
Neuropeptides , Plant Roots , Solanum lycopersicum , Tylenchoidea , Animals , Tylenchoidea/physiology , Neuropeptides/metabolism , Neuropeptides/genetics , Plant Roots/parasitology , Plant Roots/metabolism , Plant Roots/genetics , Solanum lycopersicum/parasitology , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Diseases/parasitology , Plant Diseases/genetics , Chemotaxis , Helminth Proteins/metabolism , Helminth Proteins/genetics
5.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928141

ABSTRACT

Unlike sedentary plant-parasitic nematodes, migratory plant endoparasitic nematodes (MPENs) are unable to establish permanent feeding sites, and all developmental stages (except eggs) can invade and feed on plant tissues and can be easily overlooked because of the unspecific symptoms. They cause numerous economic losses in agriculture, forestry, and horticulture. In order to understand the pathogenetic mechanism of MPENs, here we describe research on functions and host targets focused on currently identified effectors from six MPENs, namely Radopholus similis, Pratylenchus spp., Ditylenchus destructor, Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Hirschmanniella oryzae. This information will provide valuable insights into understanding MPEN effectors and for future fostering advancements in plant protection.


Subject(s)
Host-Parasite Interactions , Plant Diseases , Plants , Animals , Plant Diseases/parasitology , Plants/parasitology , Nematoda/pathogenicity , Helminth Proteins/metabolism
6.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928413

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease that significantly impacts quality of life by disrupting CD4+ T cell immune homeostasis. The identification of a low-side-effect drug for RA treatment is urgently needed. Our previous study suggests that Trichinella spiralis paramyosin (Ts-Pmy) has immunomodulatory effects, but its potential effect on CD4+ T cell response in RA remains unclear. In this study, we used a murine model to investigate the role of rTs-Pmy in regulating CD4+ T cell differentiation in collagen-induced arthritis (CIA). Additionally, we assessed the impact of rTs-Pmy on CD4+ T cell differentiation towards the Th1 and Th17 phenotypes, which are associated with inflammatory responses in arthritis, using in vitro assays. The results demonstrated that rTs-Pmy administration reduced arthritis severity by inhibiting Th1 and Th17 response while enhancing Treg response. Prophylactic administration of Ts-Pmy showed superior efficacy on CIA compared to therapeutic administration. Furthermore, in vitro assays demonstrated that rTs-Pmy could inhibit the differentiation of CD4+ T cells into Th1 and Th17 while inducing the production of Tregs, suggesting a potential mechanism underlying its therapeutic effects. This study suggests that Ts-Pmy may ameliorate CIA by restoring the immune balance of CD4+ T cells and provides new insights into the mechanism through which helminth-derived proteins exert their effects on autoimmune diseases.


Subject(s)
Arthritis, Experimental , CD4-Positive T-Lymphocytes , Cell Differentiation , Th17 Cells , Trichinella spiralis , Tropomyosin , Animals , Trichinella spiralis/immunology , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Experimental/drug therapy , Mice , Cell Differentiation/drug effects , Tropomyosin/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th1 Cells/immunology , Male , Helminth Proteins/pharmacology , Helminth Proteins/therapeutic use , Helminth Proteins/immunology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/drug therapy , T-Lymphocytes, Regulatory/immunology , Disease Models, Animal , Mice, Inbred DBA
7.
Sci Rep ; 14(1): 12979, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839868

ABSTRACT

Subcutaneous dirofilariasis, caused by the parasitic nematode Dirofilaria repens, is a growing concern in Europe, affecting both dogs and humans. This study focused on D. repens Dr20/22, a protein encoded by an alt (abundant larval transcript) gene family. While well-documented in L3 larvae of other filariae species, this gene family had not been explored in dirofilariasis. The research involved cloning Dr20/22 cDNA, molecular characterization, and evaluating its potential application in the diagnosis of dirofilariasis. Although Real-Time analysis revealed mRNA expression in both adult worms and microfilariae, the native protein remained undetected in lysates from both developmental stages. This suggests the protein's specificity for L3 larvae and may be related to a process called SLTS (spliced leader trans-splicing), contributing to stage-specific gene expression. The specificity of the antigen for invasive larvae positions it as a promising early marker for dirofilariasis. However, ELISA tests using sera from infected and uninfected dogs indicated limited diagnostic utility. While further research is required, our findings contribute to a deeper understanding of the molecular and immunological aspects of host-parasite interactions and could offer insights into the parasite's strategies for evading the immune system.


Subject(s)
Dirofilaria repens , Dirofilariasis , Dog Diseases , Animals , Dogs , Dirofilariasis/immunology , Dirofilariasis/parasitology , Dirofilaria repens/genetics , Dirofilaria repens/immunology , Dog Diseases/parasitology , Dog Diseases/immunology , Antibodies, Helminth/immunology , Antibodies, Helminth/blood , Helminth Proteins/genetics , Helminth Proteins/immunology , Helminth Proteins/metabolism , Antigens, Helminth/immunology , Antigens, Helminth/genetics , Larva/immunology , Antibody Formation/immunology
8.
Vet Res ; 55(1): 78, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877574

ABSTRACT

Endoplasmic reticulum stress (ERS) and oxidative stress (OS) are adaptive responses of the body to stressor stimulation. Although it has been verified that Trichinella spiralis (T. spiralis) can induce ERS and OS in the host, their association is still unclear. Therefore, this study explored whether T. spiralis-secreted serpin-type serine protease inhibitor (TsAdSPI) is involved in regulating the relationship between ERS and OS in the host intestine. In this study, mice jejunum and porcine small intestinal epithelial cells (IECs) were detected using qPCR, western blotting, immunohistochemistry (IHC), immunofluorescence (IF), and detection kits. The results showed that ERS- and OS-related indexes changed significantly after TsAdSPI stimulation, and Bip was located in IECs, indicating that TsAdSPI could induce ERS and OS in IECs. After the use of an ERS inhibitor, OS-related indexes were inhibited, suggesting that TsAdSPI-induced OS depends on ERS. When the three ERS signalling pathways, ATF6, IRE1, and PERK, were sequentially suppressed, OS was only regulated by the PERK pathway, and the PERK-eif2α-CHOP-ERO1α axis played a key role. Similarly, the expression of ERS-related indexes and the level of intracellular Ca2+ were inhibited after adding the OS inhibitor, and the expression of ERS-related indexes decreased significantly after inhibiting calcium transfer. This finding indicated that TsAdSPI-induced OS could affect ERS by promoting Ca2+ efflux from the endoplasmic reticulum. The detection of the ERS and OS sequences revealed that OS occurred before ERS. Finally, changes in apoptosis-related indexes were detected, and the results indicated that TsAdSPI-induced ERS and OS could regulate IEC apoptosis. In conclusion, TsAdSPI induced OS after entering IECs, OS promoted ERS by enhancing Ca2+ efflux, and ERS subsequently strengthened OS by activating the PERK-eif2α-CHOP-ERO1α axis. ERS and OS induced by TsAdSPI synergistically promoted IEC apoptosis. This study provides a foundation for exploring the invasion mechanism of T. spiralis and the pathogenesis of host intestinal dysfunction after invasion.


Subject(s)
Endoplasmic Reticulum Stress , Epithelial Cells , Oxidative Stress , Serpins , Trichinella spiralis , Animals , Endoplasmic Reticulum Stress/drug effects , Trichinella spiralis/physiology , Mice , Oxidative Stress/drug effects , Swine , Serpins/metabolism , Serpins/genetics , Serine Proteinase Inhibitors/pharmacology , Helminth Proteins/metabolism , Helminth Proteins/genetics , Jejunum/drug effects
9.
Immun Inflamm Dis ; 12(6): e1321, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888451

ABSTRACT

BACKGROUND: For decades, studies have demonstrated the anti-inflammatory potential of proteins secreted by helminths in allergies and asthma. Previous studies have demonstrated the immunomodulatory capabilities of Succinate Coenzyme A ligase beta-like protein (SUCLA-ß) derived from Trichinella spiralis, a crucial excretory product of this parasite. OBJECTIVE: To explore the therapeutic potential of SUCLA-ß in alleviating and controlling ovalbumin (OVA)-induced allergic asthma, as well as its influence on host immune modulation. METHODS: In this research, we utilized the rTs-SUCLA-ß protein derived from T. spiralis to investigate its potential in mitigating airway inflammation in a murine model of asthma induced by OVA sensitization/stimulation, both pre- and post-challenge. The treatment's efficacy was assessed by quantifying the extent of inflammation in the lungs. RESULTS: Treatment with rTs-SUCLA-ß demonstrated efficacy in ameliorating OVA-induced airway inflammation, as evidenced by a reduction in eosinophil infiltration, levels of OVA-specific Immunoglobulin E, interferon-γ, interleukin (IL)-9, and IL-17A, along with an elevation in IL-10. The equilibrium between Th17 and Treg cells plays a pivotal role in modulating the abundance of inflammatory cells within the organism, thereby ameliorating inflammation and alleviating symptoms associated with allergic asthma. CONCLUSIONS AND CLINICAL RELEVANCE: Our data revealed that T. spiralis-derived Ts-SUCLA-ß protein may inhibit the allergic airway inflammation by regulating host immune responses.


Subject(s)
Asthma , Helminth Proteins , Ovalbumin , Trichinella spiralis , Trichinella spiralis/immunology , Animals , Asthma/immunology , Asthma/drug therapy , Mice , Ovalbumin/immunology , Helminth Proteins/immunology , Helminth Proteins/pharmacology , Mice, Inbred BALB C , Disease Models, Animal , Female , Cytokines/metabolism , Cytokines/immunology , Immunoglobulin E/immunology , Lung/immunology , Lung/parasitology , Lung/pathology , T-Lymphocytes, Regulatory/immunology , Hypersensitivity/immunology , Hypersensitivity/drug therapy , Th17 Cells/immunology
10.
Mol Biochem Parasitol ; 259: 111632, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38834134

ABSTRACT

Spirocerca lupi is a parasitic nematode affecting predominantly domestic dogs. It causes spirocercosis, a disease that is often fatal. The assembled draft genome of S. lupi consists of 13,627 predicted protein-coding genes and is approximately 150 Mb in length. Several known anthelmintic gene targets such as for ß-Tubulin, glutamate, and GABA receptors as well as known vaccine gene targets such as cysteine protease inhibitor and cytokines were identified in S. lupi by comparing orthologs of C. elegans anthelmintic gene targets as well as orthologs to known vaccine candidates. New anthelmintic targets were predicted through an inclusion-exclusion strategy and new vaccine targets were predicted through an immunoinformatics approach. New anthelminthic targets include DNA-directed RNA polymerases, chitin synthase, polymerases, and other enzymes. New vaccine targets include cuticle collagens. These gene targets provide a starting platform for new drug identification and vaccine design.


Subject(s)
Anthelmintics , Genome, Helminth , Thelazioidea , Vaccines , Animals , Anthelmintics/pharmacology , Vaccines/immunology , Vaccines/genetics , Thelazioidea/genetics , Thelazioidea/immunology , Thelazioidea/drug effects , Dogs , Spirurida Infections/parasitology , Spirurida Infections/prevention & control , Spirurida Infections/veterinary , Spirurida Infections/immunology , Dog Diseases/parasitology , Dog Diseases/prevention & control , Helminth Proteins/genetics , Helminth Proteins/immunology
11.
Sci Rep ; 14(1): 12969, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839835

ABSTRACT

Schistosomiasis, caused by Schistosoma trematodes, is a significant global health concern, particularly affecting millions in Africa and Southeast Asia. Despite efforts to combat it, the rise of praziquantel (PZQ) resistance underscores the need for new treatment options. Protein kinases (PKs) are vital in cellular signaling and offer potential as drug targets. This study focused on focal adhesion kinase (FAK) as a candidate for anti-schistosomal therapy. Transcriptomic and proteomic analyses of adult S. mekongi worms identified FAK as a promising target due to its upregulation and essential role in cellular processes. Molecular docking simulations assessed the binding energy of FAK inhibitors to Schistosoma FAK versus human FAK. FAK inhibitor 14 and PF-03814735 exhibited strong binding to Schistosoma FAK with minimal binding for human FAK. In vitro assays confirmed significant anti-parasitic activity against S. mekongi, S. mansoni, and S. japonicum, comparable to PZQ, with low toxicity in human cells, indicating potential safety. These findings highlight FAK as a promising target for novel anti-schistosomal therapies. However, further research, including in vivo studies, is necessary to validate efficacy and safety before clinical use. This study offers a hopeful strategy to combat schistosomiasis and reduce its global impact.


Subject(s)
Proteomics , Schistosoma , Schistosomiasis , Transcriptome , Animals , Humans , Proteomics/methods , Schistosoma/drug effects , Schistosoma/genetics , Schistosoma/metabolism , Schistosomiasis/drug therapy , Molecular Docking Simulation , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Helminth Proteins/metabolism , Helminth Proteins/genetics , Gene Expression Profiling/methods , Protein Kinase Inhibitors/pharmacology , Proteome/metabolism
12.
Parasite ; 31: 32, 2024.
Article in English | MEDLINE | ID: mdl-38912916

ABSTRACT

The plerocercoid larvae of Spirometra mansoni are etiological agents of human and animal sparganosis. Annexins are proteins with important roles in parasites. However, our knowledge of annexins in S. mansoni is still inadequate. In this study, 18 new members of the Annexin (ANX) family were characterized in S. mansoni. The clustering analysis demonstrated that all the SmANXs were divided into two main classes, consistent with the patterns of conserved motif organization. The 18 SmANXs were detected at all developmental stages (plerocercoid, adult, and egg) and displayed ubiquitous but highly variable expression patterns in all tissues/organs studied. The representative member rSmANX18 was successfully cloned and expressed. The protein was immunolocalized in the tegument and parenchyma of the plerocercoid and in the tegument, parenchyma, uterus and egg shell of adult worms. The recombinant protein can bind phospholipids with high affinity in a Ca2+-dependent manner, shows high anticoagulant activity and combines with FITC to recognize apoptotic cells. Annexin gene polymorphism and conservative core motif permutation were found in both cestodes and trematodes. SmANXs also revealed high genetic diversity among Platyhelminthes of medical interest. Our findings lay a foundation for further studies on the biological functions of ANXs in S. mansoni as well as other taxa in which ANXs occur.


Title: La famille des gènes des annexines chez Spirometra mansoni (Cestoda : Diphyllobothriidae) et son schéma phylogénétique parmi les Plathelminthes d'intérêt médical. Abstract: Les larves plérocercoïdes de Spirometra mansoni sont des agents étiologiques de la sparganose humaine et animale. Les annexines sont des protéines jouant un rôle important chez les parasites. Cependant, nos connaissances sur les annexines chez S. mansoni sont encore insuffisantes. Dans cette étude, 18 nouveaux membres de la famille des annexines (ANX) ont été caractérisés chez S. mansoni. L'analyse de regroupement a démontré que tous les SmANX étaient divisées en deux classes principales, ce qui correspond aux modèles d'organisation des motifs conservés. Les 18 SmANX ont été détectées à tous les stades de développement (plérocercoïde, adulte et œuf) et présentaient des modèles d'expression omniprésents mais très variables dans tous les tissus/organes étudiés. Le membre représentatif rSmANX18 a été cloné et exprimé avec succès. La protéine a été immunolocalisée dans le tégument et le parenchyme du plérocercoïde ainsi que dans le tégument, le parenchyme, l'utérus et la coquille d'œuf des vers adultes. La protéine recombinante peut se lier aux phospholipides avec une affinité élevée de manière dépendante du Ca2+, présente une activité anticoagulante élevée et se combine avec le FITC pour reconnaître les cellules apoptotiques. Un polymorphisme du gène de l'annexine et une permutation conservatrice du motif central ont été trouvés chez les cestodes et les trématodes. Les SmANX ont également révélé une grande diversité génétique parmi les Plathelminthes d'intérêt médical. Nos résultats jettent les bases pour des études plus approfondies sur les fonctions biologiques des ANX chez S. mansoni ainsi que dans d'autres taxons dans lesquels les ANX sont présents.


Subject(s)
Annexins , Phylogeny , Spirometra , Animals , Spirometra/genetics , Annexins/genetics , Annexins/chemistry , Amino Acid Sequence , Helminth Proteins/genetics , Helminth Proteins/chemistry , Multigene Family , Humans , Female , Genetic Variation , Recombinant Proteins/genetics
13.
Nat Commun ; 15(1): 5226, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890291

ABSTRACT

IL-33 plays a significant role in inflammation, allergy, and host defence against parasitic helminths. The model gastrointestinal nematode Heligmosomoides polygyrus bakeri secretes the Alarmin Release Inhibitor HpARI2, an effector protein that suppresses protective immune responses and asthma in its host by inhibiting IL-33 signalling. Here we reveal the structure of HpARI2 bound to mouse IL-33. HpARI2 contains three CCP-like domains, and we show that it contacts IL-33 primarily through the second and third of these. A large loop which emerges from CCP3 directly contacts IL-33 and structural comparison shows that this overlaps with the binding site on IL-33 for its receptor, ST2, preventing formation of a signalling complex. Truncations of HpARI2 which lack the large loop from CCP3 are not able to block IL-33-mediated signalling in a cell-based assay and in an in vivo female mouse model of asthma. This shows that direct competition between HpARI2 and ST2 is responsible for suppression of IL-33-dependent responses.


Subject(s)
Asthma , Helminth Proteins , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Nematospiroides dubius , Animals , Interleukin-33/metabolism , Interleukin-33/chemistry , Nematospiroides dubius/immunology , Helminth Proteins/metabolism , Helminth Proteins/chemistry , Helminth Proteins/immunology , Mice , Female , Interleukin-1 Receptor-Like 1 Protein/metabolism , Asthma/immunology , Asthma/metabolism , Humans , Signal Transduction , Strongylida Infections/immunology , Strongylida Infections/parasitology , Strongylida Infections/metabolism , Protein Binding , Disease Models, Animal , Binding Sites , Mice, Inbred BALB C , Mice, Inbred C57BL
14.
BMC Vet Res ; 20(1): 252, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851737

ABSTRACT

BACKGROUND: The insulin/insulin-like signalling (IIS) pathway is common in mammals and invertebrates, and the IIS pathway is unknown in Fasciola gigantica. In the present study, the IIS pathway was reconstructed in F. gigantica. We defined the components involved in the IIS pathway and investigated the transcription profiles of these genes for all developmental stages of F. gigantica. In addition, the presence of these components in excretory and secretory products (ESPs) was predicted via signal peptide annotation. RESULTS: The core components of the IIS pathway were detected in F. gigantica. Among these proteins, one ligand (FgILP) and one insulin-like molecule binding protein (FgIGFBP) were analysed. Interestingly, three receptors (FgIR-1/FgIR-2/FgIR-3) were detected, and a novel receptor, FgIR-3, was screened, suggesting novel functions. Fg14-3-3ζ, Fgirs, and Fgpp2a exhibited increased transcription in 42-day-old juveniles and 70-day-old juveniles, while Fgilp, Fgigfb, Fgsgk-1, Fgakt-1, Fgir-3, Fgpten, and Fgaap-1 exhibited increased transcription in metacercariae. FgILP, FgIGFBP, FgIR-2, FgIR-3, and two transcription factors (FgHSF-1 and FgSKN-1) were predicted to be present in FgESPs, indicating their exogenous roles. CONCLUSIONS: This study helps to elucidate the signal transduction pathway of IIS in F. gigantica, which will aid in understanding the interaction between flukes and hosts, as well as in understanding fluke developmental regulation, and will also lay a foundation for further characterisation of the IIS pathways of trematodes.


Subject(s)
Fasciola , Helminth Proteins , Insulin , Signal Transduction , Animals , Fasciola/genetics , Fasciola/metabolism , Insulin/metabolism , Helminth Proteins/metabolism , Helminth Proteins/genetics
15.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892261

ABSTRACT

Flatworms are known for their remarkable regenerative ability, one which depends on totipotent cells known as germinative cells in cestodes. Depletion of germinative cells with hydroxyurea (HU) affects the regeneration of the parasite. Here, we studied the reduction and recovery of germinative cells in T. crassiceps cysticerci after HU treatment (25 mM and 40 mM of HU for 6 days) through in vitro assays. Viability and morphological changes were evaluated. The recovery of cysticerci's mobility and morphology was evaluated at 3 and 6 days, after 6 days of treatment. The number of proliferative cells was evaluated using EdU. Our results show morphological changes in the size, shape, and number of evaginated cysticerci at the 40 mM dose. The mobility of cysticerci was lower after 6 days of HU treatment at both concentrations. On days 3 and 6 of recovery after 25 mM of HU treatment, a partial recovery of the proliferative cells was observed. Proteomic and Gene Ontology analyses identified modifications in protein groups related to DNA binding, DNA damage, glycolytic enzymes, cytoskeleton, skeletal muscle, and RNA binding.


Subject(s)
Cell Proliferation , Hydroxyurea , Taenia , Hydroxyurea/pharmacology , Animals , Cell Proliferation/drug effects , Taenia/drug effects , Taenia/genetics , Taenia/growth & development , Taenia/metabolism , Proteomics/methods , Helminth Proteins/metabolism , Helminth Proteins/genetics , Proteome/metabolism , Cysticercus/drug effects , Cysticercus/metabolism
16.
Infect Genet Evol ; 122: 105609, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38806077

ABSTRACT

Nuclear hormone receptors (NHRs) are emerging target candidates against nematode infection and resistance. However, there is a lack of comprehensive information on NHR-coding genes in parasitic nematodes. In this study, we curated the nhr gene family for 60 major parasitic nematodes from humans and animals. Compared with the free-living model organism Caenorhabditis elegans, a remarkable contraction of the nhr family was revealed in parasitic species, with genetic diversification and conservation unveiled among nematode Clades I (10-13), III (16-42), IV (33-35) and V (25-64). Using an in vitro biosystem, we demonstrated that 40 nhr genes in a blood-feeding nematode Haemonchus contortus (clade V; barber's pole worm) were responsive to host serum and one nhr gene (i.e., nhr-64) was consistently stimulated by anthelmintics (i.e., ivermectin, thiabendazole and levamisole); Using a high-throughput RNA interference platform, we knocked down 43 nhr genes of H. contortus and identified at least two genes that are required for the viability (i.e., nhr-105) and development (i.e., nhr-17) of the infective larvae of this parasitic nematode in vitro. Harnessing this preliminary functional atlas of nhr genes for H. contortus will prime the biological studies of this gene family in nematode genetics, infection, and anthelmintic metabolism within host animals, as well as the promising discovery of novel intervention targets.


Subject(s)
Haemonchus , Larva , RNA Interference , Receptors, Cytoplasmic and Nuclear , Animals , Larva/genetics , Haemonchus/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Multigene Family , Phylogeny , Anthelmintics/pharmacology , Genome, Helminth , Helminth Proteins/genetics , Helminth Proteins/metabolism , Humans
17.
Acta Trop ; 255: 107247, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729330

ABSTRACT

Fatty acid binding proteins (FABPs) have emerged as attractive vaccination candidates for several platyhelminth species. To explore the physiological functions of Echinococcus multilocularis (E. multilocularis) FABP, the molecular characteristics of EmFABP1 were analyzed by online software, and the regulatory roles of rEmFABP1 protein in murine macrophages were further investigated. The emfabp1 gene encodes 133 amino acids with the characteristic ß-barrel shape of the cytoplasmic FABP family. Natural EmFABP1 protein is predominantly expressed in protoscoleces tegument and germinal layer cells and is also detected in cyst fluid and exosomes of E. multilocularis. rEmFABP1 protein demonstrated a notable suppression of phagocytic activity and nitric oxide production in murine macrophages. Additionally, the protein was observed to promote apoptosis and regulate cytokine expression in macrophages. These findings suggested that E. multilocularis FABP1 is critical in modifying macrophage physiological processes and that this protein may have immunomodulatory roles during infection.


Subject(s)
Echinococcus multilocularis , Fatty Acid-Binding Proteins , Helminth Proteins , Macrophages , Phagocytosis , Animals , Echinococcus multilocularis/genetics , Echinococcus multilocularis/immunology , Macrophages/immunology , Macrophages/parasitology , Mice , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Helminth Proteins/genetics , Helminth Proteins/metabolism , Helminth Proteins/immunology , Nitric Oxide/metabolism , Apoptosis , Cytokines/metabolism , RAW 264.7 Cells
18.
Mol Biochem Parasitol ; 259: 111621, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38705360

ABSTRACT

Neurocysticercosis is the leading cause for acquired epilepsy worldwide, and it is caused by the larval stage of the parasite Taenia solium. Several proteins of this stage have been characterized and studied to understand the parasite-host interaction, however, the proteins from the early cysticercus stages (the postoncospheral form) have not yet been characterized. The study of the postoncospheral form proteins is important to understand the host-parasite relationship in the early stages of infection. The aim of this work was to identify postoncospheral form antigenic proteins using sera from neurocysticercosis patients. T. solium activated oncospheres were cultured in HCT-8 cells to obtain the postoncospheral form. Soluble total and excretory/secretory proteins were obtained from the postoncospheral form and were incubated with both pool sera and individual serum of neurocysticercosis positive human patients. Immunoblotting showed target antigenic proteins with apparent molecular weights of 23 kDa and 46-48 kDa. The 46-48 kDa antigen bands present in soluble total and excretory/secretory postoncospheral form proteins were analyzed by LC-MS/MS; proteins identified were: nuclear elongation factor 1 alpha, enolase, unnamed protein product/antigen diagnostic GP50, calcium binding protein calreticulin precursor and annexin. The postoncospheral form expresses proteins related to interaction with the host, some of these proteins are predicted to be exosomal proteins. In conclusion, postoncospheral proteins are consistent targets of the humoral immune response in human and may serve as targets for diagnosis and vaccines.


Subject(s)
Antigens, Helminth , Helminth Proteins , Neurocysticercosis , Taenia solium , Taenia solium/immunology , Taenia solium/genetics , Antigens, Helminth/immunology , Animals , Humans , Neurocysticercosis/immunology , Neurocysticercosis/parasitology , Neurocysticercosis/diagnosis , Helminth Proteins/immunology , Helminth Proteins/genetics , Helminth Proteins/chemistry , Tandem Mass Spectrometry , Antibodies, Helminth/blood , Antibodies, Helminth/immunology , Chromatography, Liquid , Molecular Weight
19.
Vet Parasitol ; 329: 110196, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763120

ABSTRACT

Monogeneans are parasitic flatworms that represent a significant threat to the aquaculture industry. Species like Neobenedenia melleni (Capsalidae) and Rhabdosynochus viridisi (Diplectanidae) have been identified as causing diseases in farmed fish. In the past years, molecular research on monogeneans of the subclass Monopisthocotylea has focused on the generation of genomic and transcriptomic information and the identification in silico of some protein families of veterinary interest. Proteomic analysis has been suggested as a powerful tool to investigate proteins in parasites and identify potential targets for vaccine development and diagnosis. To date, the proteomic dataset for monogeneans has been restricted to a species of the subclass Polyopisthocotylea, while in monopisthocotyleans there is no proteomic data. In this study, we present the first proteomic data on two monopisthocotylean species, Neobenedenia sp. and R. viridisi, obtained from three distinct sample types: tissue, excretory-secretory products (ESPs), and eggs. A total of 1691 and 1846 expressed proteins were identified in Neobenedenia sp. and R. viridisi, respectively. The actin family was the largest protein family, followed by the tubulin family and the heat shock protein 70 (HSP70) family. We focused mainly on ESPs because they are important to modulate the host immune system. We identified proteins of the actin, tubulin, HSP70 and HSP90 families in both tissue and ESPs, which have been recognized for their antigenic activities in parasitic flatworms. Furthermore, our study uncovered the presence of proteins within ESPs, such as annexin, calcium-binding protein, fructose bisphosphate aldolase, glutamate dehydrogenase, myoferlin, and paramyosin, that are targets for immunodiagnostic and vaccine development and hold paramount relevance in veterinary medicine. This study expands our knowledge of monogeneans and identified proteins that, in other platyhelminths are potential targets for vaccines and drug discovery.


Subject(s)
Aquaculture , Fish Diseases , Proteomics , Animals , Fish Diseases/parasitology , Vaccines/immunology , Helminth Proteins/genetics , Helminth Proteins/immunology , Helminth Proteins/analysis , Trematode Infections/veterinary , Trematode Infections/parasitology , Trematode Infections/diagnosis , Biomarkers , Trematoda/genetics , Trematoda/immunology , Platyhelminths/genetics , Platyhelminths/immunology
20.
PLoS Pathog ; 20(5): e1012268, 2024 May.
Article in English | MEDLINE | ID: mdl-38814989

ABSTRACT

The eggs of the blood fluke Schistosoma mansoni are the main cause of the clinical manifestations of chronic schistosomiasis. After laying, the egg "winners" attach to the endothelium of the mesenteric vein and, after a period of development, induce the growth of a small granuloma, which facilitates their passage to the intestinal lumen. Egg "losers" carried by the bloodstream to non-specific tissues also undergo full development and induce large granuloma formation, but their life ends there. Although these trapped eggs represent a dead end in the parasite life cycle, the vast majority of studies attempting to describe the biology of the S. mansoni eggs have studied these liver-trapped "losers" instead of migrating intestinal "winners". This raises the fundamental question of how these eggs differ. With robust comparative transcriptomic analysis performed on S. mansoni eggs isolated 7 weeks post infection, we show that gene expression is critically dependent on tissue localization, both in the early and late stages of development. While mitochondrial genes and venom allergen-like proteins are significantly upregulated in mature intestinal eggs, well-described egg immunomodulators IPSE/alpha-1 and omega-1, together with micro-exon genes, are predominantly expressed in liver eggs. In addition, several proteases and protease inhibitors previously implicated in egg-host interactions display clear tissue-specific gene expression patterns. These major differences in gene expression could be then reflected in the observed different ability of liver and intestinal soluble egg antigens to elicit host immune responses and in the shorter viability of miracidia hatched from liver eggs. Our comparative analysis provides a new perspective on the biology of parasite's eggs in the context of their development and tissue localization. These findings could contribute to a broader and more accurate understanding of parasite eggs interactions with the host, which have historically been often restricted to liver eggs and sometimes inaccurately generalized.


Subject(s)
Liver , Schistosoma mansoni , Schistosomiasis mansoni , Animals , Schistosoma mansoni/immunology , Schistosoma mansoni/genetics , Liver/parasitology , Liver/immunology , Liver/metabolism , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Mice , Ovum/metabolism , Ovum/immunology , Intestines/parasitology , Intestines/immunology , Antigens, Helminth/immunology , Helminth Proteins/genetics , Helminth Proteins/metabolism , Helminth Proteins/immunology , Female , Egg Proteins
SELECTION OF CITATIONS
SEARCH DETAIL