Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.279
Filter
1.
J Nanobiotechnology ; 22(1): 315, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840207

ABSTRACT

Chronic hepatitis B poses a significant global burden, modulating immune cells, leading to chronic inflammation and long-term damage. Due to its hepatotropism, the hepatitis B virus (HBV) cannot infect other cells. The mechanisms underlying the intercellular communication among different liver cells in HBV-infected individuals and the immune microenvironment imbalance remain elusive. Exosomes, as important intercellular communication and cargo transportation tools between HBV-infected hepatocytes and immune cells, have been shown to assist in HBV cargo transportation and regulate the immune microenvironment. However, the role of exosomes in hepatitis B has only gradually received attention in recent years. Minimal literature has systematically elaborated on the role of exosomes in reshaping the immune microenvironment of the liver. This review unfolds sequentially based on the biological processes of exosomes: exosomes' biogenesis, release, transport, uptake by recipient cells, and their impact on recipient cells. We delineate how HBV influences the biogenesis of exosomes, utilizing exosomal covert transmission, and reshapes the hepatic immune microenvironment. And based on the characteristics and functions of exosomes, potential applications of exosomes in hepatitis B are summarized and predicted.


Subject(s)
Exosomes , Hepatitis B virus , Hepatitis B, Chronic , Hepatocytes , Liver , Exosomes/immunology , Exosomes/metabolism , Humans , Hepatitis B virus/immunology , Liver/immunology , Liver/virology , Animals , Hepatitis B, Chronic/immunology , Hepatocytes/virology , Hepatocytes/immunology , Cell Communication , Cellular Microenvironment/immunology , Hepatitis B/immunology , Hepatitis B/virology
2.
PLoS One ; 19(5): e0302913, 2024.
Article in English | MEDLINE | ID: mdl-38728358

ABSTRACT

In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.


Subject(s)
Chickens , Hepatocytes , Lipopolysaccharides , Poly I-C , Animals , Hepatocytes/drug effects , Hepatocytes/immunology , Hepatocytes/metabolism , Poly I-C/pharmacology , Lipopolysaccharides/pharmacology , Immunologic Factors/pharmacology , Teichoic Acids/pharmacology , Cells, Cultured , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Coculture Techniques , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Cytokines/metabolism , Antimicrobial Cationic Peptides/pharmacology
3.
Front Cell Infect Microbiol ; 14: 1382029, 2024.
Article in English | MEDLINE | ID: mdl-38817443

ABSTRACT

Infections of hepatotropic viruses cause a wide array of liver diseases including acute hepatitis, chronic hepatitis and the consequently developed cirrhosis and hepatocellular carcinoma (HCC). Among the five classical hepatotropic viruses, hepatitis B virus (HBV) and hepatitis C virus (HCV) usually infect human persistently and cause chronic hepatitis, leading to major troubles to humanity. Previous studies have revealed that several types of inflammasomes are involved in the infections of HBV and HCV. Here, we summarize the current knowledge about their roles in hepatitis B and C. NLRP3 inflammasome can be activated and regulated by HBV and HCV. It is found to exert antiviral function or mediates inflammatory response in viral infections depending on different experimental models. Besides NLRP3 inflammasome, IFI16 and AIM2 inflammasomes participate in the pathological process of hepatitis B, and NALP3 inflammasome may sense HCV infection in hepatocytes. The inflammasomes affect the pathological process of viral hepatitis through its downstream secretion of inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18 or induction of pyroptosis resulting from cleaved gasdermin D (GSDMD). However, the roles of inflammasomes in different stages of viral infection remains mainly unclear. More proper experimental models of viral hepatitis should be developed for specific studies in future, so that we can understand more about the complexity of inflammasome regulation and multifunction of inflammasomes and their downstream effectors during HBV and HCV infections.


Subject(s)
Hepacivirus , Hepatitis B virus , Hepatitis B, Chronic , Hepatitis C, Chronic , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , Hepatitis C, Chronic/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hepacivirus/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/metabolism , Hepatitis B virus/immunology , DNA-Binding Proteins/metabolism , Interleukin-1beta/metabolism , Pyroptosis , Animals , Phosphoproteins/metabolism , Nuclear Proteins/metabolism , Hepatocytes/virology , Hepatocytes/immunology , Interleukin-18/metabolism , Phosphate-Binding Proteins/metabolism , Gasdermins
4.
Viruses ; 16(5)2024 05 07.
Article in English | MEDLINE | ID: mdl-38793619

ABSTRACT

BACKGROUND AND AIMS: The outcomes of HBV infections are related to complex immune imbalances; however, the precise mechanisms by which HBV induces immune dysfunction are not well understood. METHODS: HBV transgenic (HBs-Tg) mice were used to investigate intrahepatic NK cells in two distinct subsets: conventional NK (cNK) and liver-resident NK (LrNK) cells during a chronic HBV infection. RESULTS: The cNK cells, but not the LrNK cells, were primarily responsible for the increase in the number of bulk NK cells in the livers of ageing HBs-Tg mice. The hepatic cNK cells showed a stronger ability to produce IL-10, coupled with a higher expression of CD69, TIGIT and PD-L1, and lower NKG2D expression in ageing HBs-Tg mice. A lower mitochondrial mass and membrane potential, and less polarized localization were observed in the hepatic cNK cells compared with the splenic cNK cells in the HBs-Tg mice. The enhanced galectin-3 (Gal-3) secreted from HBsAg+ hepatocytes accounted for the IL-10 production of hepatic cNK cells via ITGB1 signaling. For humans, LGALS3 and ITGB1 expression is positively correlated with IL-10 expression, and negatively correlated with the poor clinical progression of HCC. CONCLUSIONS: Gal-3-ITGB1 signaling shapes hepatic cNK cells but not LrNK cells during a chronic HBV infection, which may correlate with HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Galectin 3 , Hepatitis B virus , Interleukin-10 , Killer Cells, Natural , Liver Neoplasms , Liver , Mice, Transgenic , Signal Transduction , Animals , Mice , Killer Cells, Natural/immunology , Humans , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Interleukin-10/genetics , Interleukin-10/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/virology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver/pathology , Liver/immunology , Liver/virology , Liver/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Disease Progression , Male , Female , Hepatocytes/virology , Hepatocytes/metabolism , Hepatocytes/immunology , Mice, Inbred C57BL , Galectins/genetics , Galectins/metabolism
5.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793622

ABSTRACT

The pathogenesis of viral infection is attributed to two folds: intrinsic cell death pathway activation due to the viral cytopathic effect, and immune-mediated extrinsic cellular injuries. The immune system, encompassing both innate and adaptive immunity, therefore acts as a double-edged sword in viral infection. Insufficient potency permits pathogens to establish lifelong persistent infection and its consequences, while excessive activation leads to organ damage beyond its mission to control viral pathogens. The innate immune response serves as the front line of defense against viral infection, which is triggered through the recognition of viral products, referred to as pathogen-associated molecular patterns (PAMPs), by host cell pattern recognition receptors (PRRs). The PRRs-PAMPs interaction results in the induction of interferon-stimulated genes (ISGs) in infected cells, as well as the secretion of interferons (IFNs), to establish a tissue-wide antiviral state in an autocrine and paracrine manner. Cumulative evidence suggests significant variability in the expression patterns of PRRs, the induction potency of ISGs and IFNs, and the IFN response across different cell types and species. Hence, in our understanding of viral hepatitis pathogenesis, insights gained through hepatoma cell lines or murine-based experimental systems are uncertain in precisely recapitulating the innate antiviral response of genuine human hepatocytes. Accordingly, this review article aims to extract and summarize evidence made possible with bona fide human hepatocytes-based study tools, along with their clinical relevance and implications, as well as to identify the remaining gaps in knowledge for future investigations.


Subject(s)
Hepatitis Delta Virus , Hepatocytes , Immunity, Innate , Interferons , Receptors, Pattern Recognition , Humans , Hepatitis D/immunology , Hepatitis D/virology , Hepatitis Delta Virus/immunology , Hepatitis Delta Virus/physiology , Hepatocytes/virology , Hepatocytes/immunology , Host-Pathogen Interactions/immunology , Interferons/immunology , Interferons/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology , Receptors, Pattern Recognition/metabolism , Receptors, Pattern Recognition/immunology
6.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793623

ABSTRACT

Hepatitis B virus (HBV) is a major driver of chronic hepatic inflammation, which regularly leads to liver cirrhosis or hepatocellular carcinoma. Immediate innate immune cell response is crucial for the rapid clearance of the infection. Here, natural killer (NK) cells play a pivotal role in direct cytotoxicity and the secretion of antiviral cytokines as well as regulatory function. The aim of this study was to further elucidate NK cell responses triggered by an HBV infection. Therefore, we optimized HBV in vitro models that reliably stimulate NK cells using hepatocyte-like HepG2 cells expressing the Na+-taurocholate co-transporting polypeptide (NTCP) and HepaRG cells. Immune cells were acquired from healthy platelet donors. Initially, HepG2-NTCP cells demonstrated higher viral replication compared to HepaRG cells. Co-cultures with immune cells revealed increased production of interferon-γ and tumor necrosis factor-α by NK cells, which was no longer evident in isolated NK cells. Likewise, the depletion of monocytes and spatial separation from target cells led to the absence of the antiviral cytokine production of NK cells. Eventually, the combined co-culture of isolated NK cells and monocytes led to a sufficient cytokine response of NK cells, which was also apparent when communication between the two immune cell subpopulations was restricted to soluble factors. In summary, our study demonstrates antiviral cytokine production by NK cells in response to HBV+ HepG2-NTCP cells, which is dependent on monocyte bystander activation.


Subject(s)
Coculture Techniques , Cytokines , Hepatitis B virus , Hepatitis B , Killer Cells, Natural , Monocytes , Humans , Killer Cells, Natural/immunology , Monocytes/immunology , Monocytes/virology , Hepatitis B virus/immunology , Hepatitis B virus/physiology , Cytokines/metabolism , Hep G2 Cells , Hepatitis B/immunology , Hepatitis B/virology , Virus Replication , Interferon-gamma/metabolism , Interferon-gamma/immunology , Tumor Necrosis Factor-alpha/metabolism , Hepatocytes/virology , Hepatocytes/immunology
7.
Trends Parasitol ; 40(6): 466-476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714463

ABSTRACT

The Plasmodium parasites that cause malaria undergo asymptomatic development in the parenchymal cells of the liver, the hepatocytes, prior to infecting erythrocytes and causing clinical disease. Traditionally, hepatocytes have been perceived as passive bystanders that allow hepatotropic pathogens such as Plasmodium to develop relatively unchallenged. However, now there is emerging evidence suggesting that hepatocytes can mount robust cell-autonomous immune responses that target Plasmodium, limiting its progression to the blood and reducing the incidence and severity of clinical malaria. Here we discuss our current understanding of hepatocyte cell-intrinsic immune responses that target Plasmodium and how these pathways impact malaria.


Subject(s)
Hepatocytes , Malaria , Plasmodium , Plasmodium/immunology , Plasmodium/physiology , Humans , Malaria/immunology , Malaria/parasitology , Hepatocytes/parasitology , Hepatocytes/immunology , Animals
8.
Immunobiology ; 229(3): 152810, 2024 May.
Article in English | MEDLINE | ID: mdl-38772101

ABSTRACT

BACKGROUND AND AIMS: Activation of the cGAS-STING pathway induces the production of type I interferons, initiating the antiviral immune response, which contributes to the clearance of pathogens. Previous studies have shown that STING agonists promote hepatitis B virus (HBV) clearance; however, few studies have investigated the effect of activating the cGAS-STING pathway in macrophages on HBV. METHODS: The polarization status of HBV particle-stimulated RAW264.7 macrophages was analyzed. After stimulation with HBV particles, the analysis focused on determining whether the DNA sensors in RAW264.7 macrophages recognized the viral double-stranded DNA (dsDNA) and evaluating the activation of the cGAS-STING pathway. Coculture of mouse macrophages and hepatocytes harboring HBV was used to study the antiviral activity of HBV-stimulated RAW264.7 macrophages. RESULTS: After stimulation with HBV particles, HBV relaxed circular DNA (rcDNA) was detected in RAW264.7 macrophages, and the protein expression of phospho-STING, phospho-TBK1, and phospho-IRF3 in the STING pathway was increased, as shown by Western blot analysis, which revealed that M1 polarization of macrophages was caused by increased expression of CD86. RT-PCR analyses revealed elevated expression of M1 macrophage polarization-associated cytokines such as TNFα, IL-1ß, iNOS, and IFNα/ß. In the coculture experiment, both HBsAg and HBeAg expression levels were significantly decreased in AML12-HBV1.3 cells cocultured with the supernatants of HBV-stimulated RAW264.7 macrophages. CONCLUSION: The results suggest that macrophages can endocytose HBV particles. Additionally, viral dsDNA can be recognized by DNA pattern recognition receptors, which in turn activate the cGAS-STING pathway, promoting the M1 polarization of macrophages, while no significant M2 polarization is observed. Macrophages stimulated with HBV particles exhibit enhanced antiviral activity against HBV.


Subject(s)
DNA, Viral , Hepatitis B virus , Macrophages , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Hepatitis B virus/physiology , Hepatitis B virus/immunology , Animals , Nucleotidyltransferases/metabolism , Mice , Macrophages/immunology , Macrophages/virology , Macrophages/metabolism , Membrane Proteins/metabolism , RAW 264.7 Cells , Hepatitis B/immunology , Hepatitis B/virology , Humans , Macrophage Activation/immunology , Hepatocytes/virology , Hepatocytes/immunology , Hepatocytes/metabolism , Interferon Regulatory Factor-3/metabolism
9.
J Math Biol ; 88(6): 75, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689137

ABSTRACT

The aim of this paper is to develop and investigate a novel mathematical model of the dynamical behaviors of chronic hepatitis B virus infection. The model includes exposed infected hepatocytes, intracellular HBV DNA-containing capsids, uses a general incidence function for viral infection covering a variety of special cases available in the literature, and describes the interaction of cytotoxic T lymphocytes that kill the infected hepatocytes and the magnitude of B-cells that send antibody immune defense to neutralize free virions. Further, one time delay is incorporated to account for actual capsids production. The other time delays are used to account for maturation of capsids and free viruses. We start with the analysis of the proposed model by establishing the local and global existence, uniqueness, non-negativity and boundedness of solutions. After defined the threshold parameters, we discuss the stability properties of all possible steady state constants by using the crafty Lyapunov functionals, the LaSalle's invariance principle and linearization methods. The impacts of the three time delays on the HBV infection transmission are discussed through local and global sensitivity analysis of the basic reproduction number and of the classes of infected states. Finally, an application is provided and numerical simulations are performed to illustrate and interpret the theoretical results obtained. It is suggested that, a good strategy to eradicate or to control HBV infection within a host should concentrate on any drugs that may prolong the values of the three delays.


Subject(s)
Adaptive Immunity , Capsid , Computer Simulation , Hepatitis B virus , Hepatitis B, Chronic , Hepatocytes , Mathematical Concepts , Hepatocytes/immunology , Hepatocytes/virology , Hepatitis B virus/immunology , Humans , Capsid/immunology , Adaptive Immunity/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/transmission , Models, Immunological , T-Lymphocytes, Cytotoxic/immunology , Basic Reproduction Number/statistics & numerical data , B-Lymphocytes/immunology , DNA, Viral/immunology , Models, Biological
10.
Arch Virol ; 169(5): 112, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683226

ABSTRACT

Previously, we reported a neutralizing monoclonal antibody, A8A11, raised against a novel conserved epitope within the hepatitis C virus (HCV) E2 protein, that could significantly reduce HCV replication. Here, we report the nucleotide sequence of A8A11 and demonstrate the efficacy of a single-chain variable fragment (scFv) protein that mimics the antibody, inhibits the binding of an HCV virus-like particle to hepatocytes, and reduces viral RNA replication in a cell culture system. More importantly, scFv A8A11 was found to effectively restrict the increase of viral RNA levels in the serum of HCV-infected chimeric mice harbouring human hepatocytes. These results suggest a promising approach to neutralizing-antibody-based therapeutic interventions against HCV infection.


Subject(s)
Epitopes , Hepacivirus , Hepatocytes , Single-Chain Antibodies , Viral Envelope Proteins , Virus Internalization , Hepacivirus/immunology , Hepacivirus/genetics , Hepacivirus/physiology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , Hepatocytes/virology , Hepatocytes/immunology , Animals , Humans , Epitopes/immunology , Mice , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Hepatitis C/virology , Hepatitis C/immunology , Antibodies, Neutralizing/immunology , Virus Replication , Antibodies, Monoclonal/immunology
11.
Nat Immunol ; 25(5): 755-763, 2024 May.
Article in English | MEDLINE | ID: mdl-38641718

ABSTRACT

T cell infiltration into tumors is a favorable prognostic feature, but most solid tumors lack productive T cell responses. Mechanisms that coordinate T cell exclusion are incompletely understood. Here we identify hepatocyte activation via interleukin-6/STAT3 and secretion of serum amyloid A (SAA) proteins 1 and 2 as important regulators of T cell surveillance of extrahepatic tumors. Loss of STAT3 in hepatocytes or SAA remodeled the tumor microenvironment with infiltration by CD8+ T cells, while interleukin-6 overexpression in hepatocytes and SAA signaling via Toll-like receptor 2 reduced the number of intratumoral dendritic cells and, in doing so, inhibited T cell tumor infiltration. Genetic ablation of SAA enhanced survival after tumor resection in a T cell-dependent manner. Likewise, in individuals with pancreatic ductal adenocarcinoma, long-term survivors after surgery demonstrated lower serum SAA levels than short-term survivors. Taken together, these data define a fundamental link between liver and tumor immunobiology wherein hepatocytes govern productive T cell surveillance in cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Hepatocytes , Interleukin-6 , STAT3 Transcription Factor , Serum Amyloid A Protein , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Hepatocytes/metabolism , Hepatocytes/immunology , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Tumor Microenvironment/immunology , Mice, Inbred C57BL , Mice, Knockout , Tumor Escape , Dendritic Cells/immunology , Dendritic Cells/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Signal Transduction , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Cell Line, Tumor
12.
Science ; 384(6691): eabo7027, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38574142

ABSTRACT

Macrophages are functionally heterogeneous cells essential for apoptotic cell clearance. Apoptotic cells are defined by homogeneous characteristics, ignoring their original cell lineage identity. We found that in an interleukin-4 (IL-4)-enriched environment, the sensing of apoptotic neutrophils by macrophages triggered their tissue remodeling signature. Engulfment of apoptotic hepatocytes promoted a tolerogenic phenotype, whereas phagocytosis of T cells had little effect on IL-4-induced gene expression. In a mouse model of parasite-induced pathology, the transfer of macrophages conditioned with IL-4 and apoptotic neutrophils promoted parasitic egg clearance. Knockout of phagocytic receptors required for the uptake of apoptotic neutrophils and partially T cells, but not hepatocytes, exacerbated helminth infection. These findings suggest that the identity of apoptotic cells may contribute to the development of distinct IL-4-driven immune programs in macrophages.


Subject(s)
Apoptosis , Interleukin-4 , Macrophages , Phagocytosis , Schistosomiasis mansoni , Animals , Mice , Apoptosis/immunology , Hepatocytes/immunology , Interleukin-4/genetics , Interleukin-4/metabolism , Macrophages/immunology , Mice, Knockout , Neutrophils/immunology , Phagocytosis/immunology , Schistosomiasis mansoni/genetics , Schistosomiasis mansoni/immunology , Disease Models, Animal
13.
Antiviral Res ; 226: 105896, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679167

ABSTRACT

Immune tolerance to the hepatitis B virus (HBV) is crucial for developing chronic hepatitis B, and the HBV surface antigen (HBsAg) produced and secreted in high amounts is regarded as a key contributor. HBsAg is expressed in HBV-infected hepatocytes and those carrying an HBV integration. Whether either HBsAg secretion or the high antigen amount expressed in the liver determines its immunomodulatory properties, however, remains unclear. We, therefore, developed a novel HBV animal model that allowed us to study the role of secreted HBsAg. We introduced a previously described HBs mutation, C65S, abolishing HBsAg secretion into a replication-competent 1.3-overlength HBV genome and used adeno-associated virus vectors to deliver it to the mouse liver. The AAV-HBV established a carrier state of wildtype and C65S mutant HBV, respectively. We investigated antiviral B- and T-cell immunity in the HBV-carrier mice after therapeutic vaccination. Moreover, we compared the effect of a lacking HBsAg secretion with that of an antiviral siRNA. While missing HBsAg secretion allowed for higher levels of detectable anti-HBs antibodies after therapeutic vaccination, it did neither affect antiviral T-cell responses nor intrahepatic HBV gene expression, irrespective of the starting level. A treatment with HBV siRNA restricting viral antigen expression within hepatocytes, however, improved the antiviral efficacy of therapeutic vaccination, irrespective of the ability of HBV to secrete HBsAg. Our data indicate that clearing HBsAg from blood cannot significantly impact HBV persistence or T-cell immunity. This indicates that a restriction of hepatic viral antigen expression will be required to break HBV immunotolerance.


Subject(s)
Disease Models, Animal , Hepatitis B Surface Antigens , Hepatitis B virus , T-Lymphocytes , Animals , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/immunology , Hepatitis B virus/genetics , Mice , T-Lymphocytes/immunology , Liver/immunology , Liver/virology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Hepatitis B/immunology , Hepatitis B/virology , Mutation , Mice, Inbred C57BL , Dependovirus/genetics , Dependovirus/immunology , Hepatitis B Antibodies/blood , Hepatitis B Antibodies/immunology , Hepatocytes/virology , Hepatocytes/immunology , Humans
14.
Poult Sci ; 103(6): 103741, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670055

ABSTRACT

Fowl adenovirus serotype 4 (FAdV-4) infections result in substantial economic losses in the poultry industry. Recent findings have revealed that FAdV-4 significantly suppresses the host immune response upon infection; however, the specific viral and host factors contributing to this immunomodulatory activity remain poorly characterized. Moreover, diverse cell types exhibit differential immune responses to FAdV-4 infection. To elucidate cell-specific host responses, we performed transcriptomic analysis of FAdV-4 infected leghorn male hepatocellular (LMH) and chicken embryo fibroblast (CEF) cells. Although FAdV-4 replicated more efficiently in LMH cells, it provoked limited interferon-stimulated gene induction. In contrast, FAdV-4 infection triggered robust antiviral responses in CEF cells, including upregulation of cytosolic DNA sensing and interferon-stimulated genes. Knockdown of key cytosolic DNA sensing molecules enhanced FAdV-4 replication in LMH cells while reducing interferon-stimulated gene expression. Our findings reveal cell-specific virus-host interactions that provide insight into FAdV-4 pathogenesis while identifying factors that mediate antiviral immunity against FAdV-4.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Chickens , Fibroblasts , Immunity, Innate , Poultry Diseases , Animals , Male , Fibroblasts/virology , Fibroblasts/immunology , Chick Embryo , Adenoviridae Infections/veterinary , Adenoviridae Infections/immunology , Adenoviridae Infections/virology , Poultry Diseases/virology , Poultry Diseases/immunology , Chickens/immunology , Aviadenovirus/physiology , Aviadenovirus/immunology , Serogroup , Hepatocytes/virology , Hepatocytes/immunology
15.
FEBS Lett ; 598(11): 1354-1365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594179

ABSTRACT

Chronic infection with the hepatitis B virus (HBV) induces progressive hepatic impairment. Achieving complete eradication of the virus remains a formidable challenge. Cytotoxic T lymphocytes, specific to viral antigens, either exhibit a numerical deficiency or succumb to an exhausted state in individuals chronically afflicted with HBV. The comprehension of the genesis and dissemination of stem cell memory T cells (TSCMs) targeting HBV remains inadequately elucidated. We identified TSCMs in subjects with chronic HBV infection and scrutinized their efficacy in a murine model with human hepatocyte transplants, specifically the TK-NOG mice. TSCMs were discerned in all subjects under examination. Introduction of TSCMs into the HBV mouse model precipitated a severe necro-inflammatory response, resulting in the elimination of human hepatocytes. TSCMs may constitute a valuable tool in the pursuit of a remedial therapy for HBV infection.


Subject(s)
Cell Differentiation , Hepatitis B virus , Hepatocytes , Memory T Cells , T-Lymphocytes, Cytotoxic , Animals , Humans , Hepatocytes/virology , Hepatocytes/immunology , Hepatocytes/transplantation , Hepatitis B virus/immunology , Hepatitis B virus/physiology , T-Lymphocytes, Cytotoxic/immunology , Mice , Cell Differentiation/immunology , Memory T Cells/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Male , Female , Disease Models, Animal , Stem Cells/virology , Stem Cells/immunology , Stem Cells/cytology , Adult
16.
J Virol ; 98(3): e0192123, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38319104

ABSTRACT

Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE: Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.


Subject(s)
Genetic Fitness , Hepacivirus , Hepatocytes , Host Microbial Interactions , Immunity, Innate , Mutation , Humans , Cells, Cultured , Endoplasmic Reticulum Stress , Genetic Fitness/genetics , Genetic Fitness/immunology , Hepacivirus/genetics , Hepacivirus/growth & development , Hepacivirus/immunology , Hepacivirus/physiology , Hepatitis C/immunology , Hepatitis C/virology , Hepatocytes/immunology , Hepatocytes/virology , Host Microbial Interactions/immunology , MicroRNAs/metabolism , Serial Passage , Unfolded Protein Response , Viral Tropism , Virion/growth & development , Virion/metabolism , Virus Replication/genetics , Virus Replication/immunology
17.
Nature ; 619(7971): 819-827, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438530

ABSTRACT

Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial1-4. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ). IFNγ-induced PLSCR1 not only restricted SARS-CoV-2 USA-WA1/2020, but was also effective against the Delta B.1.617.2 and Omicron BA.1 lineages. Its robust activity extended to other highly pathogenic coronaviruses, was functionally conserved in bats and mice, and interfered with the uptake of SARS-CoV-2 in both the endocytic and the TMPRSS2-dependent fusion routes. Whole-cell 4Pi single-molecule switching nanoscopy together with bipartite nano-reporter assays found that PLSCR1 directly targeted SARS-CoV-2-containing vesicles to prevent spike-mediated fusion and viral escape. A PLSCR1 C-terminal ß-barrel domain-but not lipid scramblase activity-was essential for this fusogenic blockade. Our mechanistic studies, together with reports that COVID-associated PLSCR1 mutations are found in some susceptible people3,4, identify an anti-coronavirus protein that interferes at a late entry step before viral RNA is released into the host-cell cytosol.


Subject(s)
COVID-19 , Phospholipid Transfer Proteins , SARS-CoV-2 , Animals , Humans , Mice , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chiroptera , COVID-19/immunology , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Exome Sequencing , Hepatocytes/immunology , Hepatocytes/metabolism , Interferon-gamma/immunology , Lung/immunology , Lung/metabolism , Membrane Fusion , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/immunology , Phospholipid Transfer Proteins/metabolism , SARS-CoV-2/classification , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization
18.
Front Immunol ; 14: 1140201, 2023.
Article in English | MEDLINE | ID: mdl-36936935

ABSTRACT

Background: Liver zonation is a unique phenomenon in which the liver exhibits distinct functions among hepatocytes along the radial axis of the lobule. This phenomenon can cause the sectionalized initiation of several liver diseases, including hepatocellular carcinoma (HCC). However, few studies have explored the zonation features of HCC. Methods: Four single-cell RNA sequencing datasets were used to identify hepatocyte-specific zonation markers. Integrative analysis was then performed with a training RNA-seq cohort (616 HCC samples) and an external validating microarray cohort (285 HCC samples) from the International Cancer Genome Consortium, The Cancer Genome Atlas, Gene Expression Omnibus, and EMBL's European Bioinformatics Institute for clustering using non-negative matrix factorization consensus clustering based on zonation genes. Afterward, we evaluated the prognostic value, clinical characteristics, transcriptome and mutation features, immune infiltration, and immunotherapy response of the HCC subclasses. Results: A total of 94 human hepatocyte-specific zonation markers (39 central markers and 55 portal markers) were identified for the first time. Subsequently, three subgroups of HCC, namely Cluster1, Cluster2, and Cluster3 were identified. Cluster1 exhibited a non-zonational-like signature with the worst prognosis. Cluster2 was intensively associated with a central-like signature and exhibited low immune infiltration and sensitivity toward immune blockade therapy. Cluster3 was intensively correlated with a portal-like signature with the best prognosis. Finally, we identified candidate therapeutic targets and agents for Cluster1 HCC samples. Conclusion: The current study established a novel HCC classification based on liver zonation signature. By classifying HCC into three clusters with non-zonational-like (Cluster1), central-like (Cluster2), and portal-like (Cluster3) features, this study provided new perspectives on the heterogeneity of HCC and shed new light on delivering precision medicine for HCC patients.


Subject(s)
Biomarkers , Carcinoma, Hepatocellular , Liver Neoplasms , Liver , Phenotype , Liver/immunology , Liver/metabolism , Liver/pathology , Carcinoma, Hepatocellular/classification , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Hepatocytes/immunology , Hepatocytes/metabolism , Hepatocytes/pathology , Transcriptome , Mutation , Immunotherapy , Liver Neoplasms/classification , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Single-Cell Gene Expression Analysis , Sequence Analysis, RNA , Datasets as Topic , Reproducibility of Results , Cohort Studies , Precision Medicine , Prognosis , Molecular Targeted Therapy , Algorithms , Humans , Animals , Mice
19.
Curr Opin Immunol ; 80: 102267, 2023 02.
Article in English | MEDLINE | ID: mdl-36462263

ABSTRACT

The human liver mediates whole-body metabolism, systemic inflammation and responses to hepatotropic pathogens. Hepatocytes, the most abundant cell type of the liver, have critical roles in each of these activities. The regulation of metabolic pathways, such as glucose metabolism, lipid biosynthesis and oxidation, influences whole-organism functionality. However, the immune potential of the liver in general and hepatocytes in particular is also determined by metabolic ability. The major shifts in cellular metabolism required to drive activity in immune cells are now well-described. Given the unique functions of hepatocytes in systemic metabolism and inflammation, and their ability to mediate local antiviral innate immunity, the metabolic shifts required to facilitate these activities are likely to be complex and challenging to define. In this review, we explore what is known about the complex metabolic rewiring required for hepatocytes to respond appropriately to viral infection. We also discuss how viruses can manipulate hepatocyte metabolism to facilitate infection.


Subject(s)
Hepatocytes , Immunity, Innate , Virus Diseases , Humans , Hepatocytes/immunology , Inflammation/metabolism , Liver , Virus Diseases/immunology
20.
Nature ; 611(7936): 563-569, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36352220

ABSTRACT

Malaria infection involves an obligatory, yet clinically silent liver stage1,2. Hepatocytes operate in repeating units termed lobules, exhibiting heterogeneous gene expression patterns along the lobule axis3, but the effects of hepatocyte zonation on parasite development at the molecular level remain unknown. Here we combine single-cell RNA sequencing4 and single-molecule transcript imaging5 to characterize the host and parasite temporal expression programmes in a zonally controlled manner for the rodent malaria parasite Plasmodium berghei ANKA. We identify differences in parasite gene expression in distinct zones, including potentially co-adaptive programmes related to iron and fatty acid metabolism. We find that parasites develop more rapidly in the pericentral lobule zones and identify a subpopulation of periportally biased hepatocytes that harbour abortive infections, reduced levels of Plasmodium transcripts and parasitophorous vacuole breakdown. These 'abortive hepatocytes', which appear predominantly with high parasite inoculum, upregulate immune recruitment and key signalling programmes. Our study provides a resource for understanding the liver stage of Plasmodium infection at high spatial resolution and highlights the heterogeneous behaviour of both the parasite and the host hepatocyte.


Subject(s)
Gene Expression Regulation , Hepatocytes , Liver , Malaria , Parasites , Plasmodium berghei , Single-Cell Analysis , Animals , Hepatocytes/cytology , Hepatocytes/immunology , Hepatocytes/metabolism , Hepatocytes/parasitology , Liver/anatomy & histology , Liver/cytology , Liver/immunology , Liver/parasitology , Malaria/genetics , Malaria/immunology , Malaria/parasitology , Parasites/genetics , Parasites/immunology , Parasites/metabolism , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Plasmodium berghei/metabolism , Single Molecule Imaging , Sequence Analysis, RNA , Iron/metabolism , Fatty Acids/metabolism , Transcription, Genetic , Genes, Protozoan/genetics , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology
SELECTION OF CITATIONS
SEARCH DETAIL