Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.561
Filter
1.
Curr Microbiol ; 81(9): 293, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090416

ABSTRACT

Hot springs are inhabited by specific microbial communities which are reservoirs of novel taxa. In this work strain 4228-RoLT was isolated from the Solnechny hot spring, Uzon Caldera, Kamchatka. Cells of the strain 4228-RoLT were Gram-negative rods forming multicellular filaments. The strain grew optimally at 60 °C and pH 7.0 and fermented various organic compounds including polysaccharides (microcrystalline cellulose, xylan, chitin, starch, dextrin, dextran, beta-glucan, galactomannan, glucomannan, mannan). Major fatty acids were iso-C17:0, C16:0, C18:0, C20:0, iso-C19:0, anteiso-C17:0 and C22:0. Genome of the strain was of 3.25 Mbp with GC content of 54.2%. Based on the whole genome comparisons and phylogenomic analysis the new isolate was affiliated to a novel species of Thermanaerothrix genus within Anaerolineae class of phylum Chloroflexota, for which the name T. solaris sp. nov. was proposed with 4228-RoLT (= VKM B-3776 T = UQM 41594 T = BIM B-2058 T) as the type strain. 114 CAZymes including 43 glycoside hydrolases were found to be encoded in the genome of strain 4228-RoLT. Cell-bound and extracellular enzymes of strain 4228-RoLT were active against starch, dextran, mannan, xylan and various kinds of celluloses, with the highest activity against beta-glucan. Altogether, growth experiments, enzymatic activities determination and genomic analysis suggested that T. solaris strain 4228-RoLT could serve as a source of glycosidases suitable for plant biomass hydrolysis.


Subject(s)
Base Composition , Hot Springs , Phylogeny , Hot Springs/microbiology , Hydrolysis , Genome, Bacterial , Fatty Acids/metabolism , RNA, Ribosomal, 16S/genetics , Polysaccharides/metabolism , DNA, Bacterial/genetics , Bacterial Typing Techniques
2.
Environ Microbiol ; 26(9): e16691, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39206712

ABSTRACT

Elemental sulfur (S8 0)-oxidising Sulfolobales (Archaea) dominate high-temperature acidic hot springs (>80°C, pH <4). However, genomic analyses of S8 0-oxidising members of the Sulfolobales reveal a patchy distribution of genes encoding sulfur oxygenase reductase (SOR), an S8 0 disproportionating enzyme attributed to S8 0 oxidation. Here, we report the S8 0-dependent growth of two Sulfolobales strains previously isolated from acidic hot springs in Yellowstone National Park, one of which associated with bulk S8 0 during growth and one that did not. The genomes of each strain encoded different sulfur metabolism enzymes, with only one encoding SOR. Dialysis membrane experiments showed that direct contact is not required for S8 0 oxidation in the SOR-encoding strain. This is attributed to the generation of hydrogen sulfide (H2S) from S8 0 disproportionation that can diffuse out of the cell to solubilise bulk S8 0 to form soluble polysulfides (Sx 2-) and/or S8 0 nanoparticles that readily diffuse across dialysis membranes. The Sulfolobales strain lacking SOR required direct contact to oxidise S8 0, which could be overcome by the addition of H2S. High concentrations of S8 0 inhibited the growth of both strains. These results implicate alternative strategies to acquire and metabolise sulfur in Sulfolobales and have implications for their distribution and ecology in their hot spring habitats.


Subject(s)
Hot Springs , Oxidation-Reduction , Sulfur , Sulfur/metabolism , Hot Springs/microbiology , Hydrogen Sulfide/metabolism , Sulfides/metabolism , Sulfolobaceae/metabolism , Sulfolobaceae/genetics
3.
Extremophiles ; 28(3): 43, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217229

ABSTRACT

We acquired and analyzed metagenome and 16S/18S rRNA gene amplicon data of green-colored microbial mats from two hot springs within the Onikobe geothermal region (Miyagi Prefecture, Japan). The two collection sites-Tamago and Warabi-were in proximity and had the same temperature (40 °C), but the Tamago site was connected to a nearby stream, whereas the Warabi site was isolated. Both the amplicon and metagenome data suggest the bacterial, especially cyanobacterial, dominance of the mats; other abundant groups include Chloroflexota, Pseudomonadota, Bacteroidota/Chlorobiota, and Deinococcota. At finer resolution, however, the taxonomic composition entirely differed between the mats. A total of 5 and 21 abundant bacterial 16S rRNA gene OTUs were identified for Tamago and Warabi, respectively; of these, 12 are putative chlorophyll- or rhodopsin-based phototrophs. The presence of phylogenetically diverse microbial eukaryotes was noted, with ciliates and amoebozoans being the most abundant eukaryote groups for Tamago and Warabi, respectively. Fifteen metagenome-assembled genomes (MAGs) were obtained, represented by 13 bacteria, one ciliate (mitochondrion), and one giant virus. A total of 15 novel taxa, including a new deeply branching Chlorobiota species, is noted from the amplicon and MAG data, highlighting the importance of environmental sequencing in uncovering hidden microorganisms.


Subject(s)
Hot Springs , Hot Springs/microbiology , Japan , RNA, Ribosomal, 16S/genetics , Metagenome , Microbiota , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Phylogeny
5.
Nat Commun ; 15(1): 7506, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39209850

ABSTRACT

The geosphere and the microbial biosphere have co-evolved for ~3.8 Ga, with many lines of evidence suggesting a hydrothermal habitat for life's origin. However, the extent that contemporary thermophiles and their hydrothermal habitats reflect those that likely existed on early Earth remains unknown. To address this knowledge gap, 64 geochemical analytes were measured and 1022 metagenome-assembled-genomes (MAGs) were generated from 34 chemosynthetic high-temperature springs in Yellowstone National Park and analysed alongside 444 MAGs from 35 published metagenomes. We used these data to evaluate co-variation in MAG taxonomy, metabolism, and phylogeny as a function of hot spring geochemistry. We found that cohorts of MAGs and their functions are discretely distributed across pH gradients that reflect different geochemical provinces. Acidic or circumneutral/alkaline springs harbor MAGs that branched later and are enriched in sulfur- and arsenic-based O2-dependent metabolic pathways that are inconsistent with early Earth conditions. In contrast, moderately acidic springs sourced by volcanic gas harbor earlier-branching MAGs that are enriched in anaerobic, gas-dependent metabolisms (e.g. H2, CO2, CH4 metabolism) that have been hypothesized to support early microbial life. Our results provide insight into the influence of redox state in the eco-evolutionary feedbacks between thermophiles and their habitats and suggest moderately acidic springs as early Earth analogs.


Subject(s)
Hot Springs , Metagenome , Phylogeny , Hot Springs/microbiology , Hot Springs/chemistry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Hydrogen-Ion Concentration , Archaea/genetics , Archaea/classification , Archaea/metabolism , Genome, Microbial , Ecosystem , Microbiota/genetics
6.
Nat Commun ; 15(1): 6560, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095478

ABSTRACT

Methanogenic hydrocarbon degradation can be carried out by archaea that couple alkane oxidation directly to methanogenesis, or by syntrophic associations of bacteria with methanogenic archaea. However, metagenomic analyses of methanogenic environments have revealed other archaea with potential for alkane degradation but apparent inability to form methane, suggesting the existence of other modes of syntrophic hydrocarbon degradation. Here, we provide experimental evidence supporting the existence of a third mode of methanogenic degradation of hydrocarbons, mediated by syntrophic cooperation between archaeal partners. We collected sediment samples from a hot spring sediment in Tengchong, China, and enriched Hadarchaeota under methanogenic conditions at 60 °C, using hexadecane as substrate. We named the enriched archaeon Candidatus Melinoarchaeum fermentans DL9YTT1. We used 13C-substrate incubations, metagenomic, metatranscriptomic and metabolomic analyses to show that Ca. Melinoarchaeum uses alkyl-coenzyme M reductases (ACRs) to activate hexadecane via alkyl-CoM formation. Ca. Melinoarchaeum likely degrades alkanes to carbon dioxide, hydrogen and acetate, which can be used as substrates by hydrogenotrophic and acetoclastic methanogens such as Methanothermobacter and Methanothrix.


Subject(s)
Alkanes , Archaea , Methane , Alkanes/metabolism , Methane/metabolism , Archaea/metabolism , Archaea/genetics , Hot Springs/microbiology , Geologic Sediments/microbiology , Phylogeny , Oxidoreductases/metabolism , Oxidoreductases/genetics , China , Carbon Dioxide/metabolism , Biodegradation, Environmental , Oxidation-Reduction
7.
Int J Biol Macromol ; 276(Pt 2): 133974, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029824

ABSTRACT

This study explored the metagenome of the Pir Panjal Hot Spring (PPHS) to identify thermostable hydrolases. The carboxypeptidase (CarP) gene was successfully amplified and cloned into Escherichia coli DH5-α cells, followed by expression in E. coli BL21-DE3 cells. The CarP enzyme was comprehensively characterized in vitro. Sequencing analysis revealed an open reading frame encoding a functional protein of 504 amino acids, with a molecular weight of 58.65 kDa and an isoelectric point of 4.81. The CarP protein was purified using Ni-His affinity chromatography, and the experimental molecular weight matched in silico predictions. The enzyme exhibited significant thermostability and alkaliphilic properties, with optimal activity at 70 °C and pH 10.0. Additionally, the presence of Zn+2 ions at concentrations of 5 and 10 mmol/L enhanced protease activity by 1.4 and 1.5-fold, respectively. This study reports the discovery of a novel, multifunctional, and thermostable CarP from hot-spring metagenomes. The enzyme's stability against high temperatures, metal ions, surfactants, and inhibitors, along with its specific substrate interactions, highlights its potential for various biotechnological applications.


Subject(s)
Carboxypeptidases , Enzyme Stability , Hot Springs , Metagenome , Hot Springs/microbiology , Carboxypeptidases/genetics , Carboxypeptidases/chemistry , Carboxypeptidases/metabolism , Hydrogen-Ion Concentration , Cloning, Molecular , Substrate Specificity , Altitude , Hot Temperature , Amino Acid Sequence , Escherichia coli/genetics , Phylogeny
8.
Environ Sci Pollut Res Int ; 31(32): 44848-44862, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954336

ABSTRACT

Northeastern Algeria boasts numerous hot springs, yet these hydrothermal sites remain largely unexplored for their microbial ecology. The present study explores the bacterial abundance and diversity within two distinct Algerian hot springs (Hammam Saïda and Hammam Debagh) and investigates the link between the prevailing bacteria with geochemical parameters. High-throughput 16S rRNA gene sequencing of water and sediment samples revealed a bacterial dominance of 99.85-91.16% compared to Archaea (0.14-0.66%) in both springs. Interestingly, Saïda hot spring, characterized by higher temperatures and sodium content, harbored a community dominated by Pseudomonadota (51.13%), whereas Debagh, a Ca-Cl-SO4 type spring, was primarily populated by Bacillota with 55.33%. Bacteroidota displayed even distribution across both sites. Additional phyla, including Chloroflexota, Deinococcota, Cyanobacteriota, and Chlorobiota, were also present. Environmental factors, particularly temperature, sodium, potassium, and alkalinity, significantly influenced bacterial diversity and composition. These findings shed light on the interplay between distinct microbial communities and their associated geochemical properties, providing valuable insights for future research on biogeochemical processes in these unique ecosystems driven by distinct environmental conditions, including potential applications in bioremediation and enzyme discovery.


Subject(s)
Bacteria , Hot Springs , RNA, Ribosomal, 16S , Hot Springs/microbiology , Algeria , Biodiversity , Archaea
9.
Astrobiology ; 24(7): 734-753, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38985714

ABSTRACT

Jotun springs in Svalbard, Norway, is a rare warm environment in the Arctic that actively forms travertine. In this study, we assessed the microbial ecology of Jotun's active (aquatic) spring and dry spring transects. We evaluated the microbial preservation potential and mode, as well as the astrobiological relevance of the travertines to marginal carbonates mapped at Jezero Crater on Mars (the Mars 2020 landing site). Our results revealed that microbial communities exhibited spatial dynamics controlled by temperature, fluid availability, and geochemistry. Amorphous carbonates and silica precipitated within biofilm and on the surface of filamentous microorganisms. The water discharged at the source is warm, with near neutral pH, and undersaturated in silica. Hence, silicification possibly occurred through cooling, dehydration, and partially by a microbial presence or activities that promote silica precipitation. CO2 degassing and possible microbial contributions induced calcite precipitation and travertine formation. Jotun revealed that warm systems that are not very productive in carbonate formation may still produce significant carbonate buildups and provide settings favorable for fossilization through silicification and calcification. Our findings suggest that the potential for amorphous silica precipitation may be essential for Jezero Crater's marginal carbonates because it significantly increases the preservation potential of putative martian organisms.


Subject(s)
Exobiology , Hot Springs , Arctic Regions , Hot Springs/microbiology , Hot Springs/chemistry , Mars , Silicon Dioxide/chemistry , Svalbard , Carbonates/chemistry , Carbonates/analysis , Microbiota , Temperature , Biofilms
10.
Environ Geochem Health ; 46(8): 274, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958770

ABSTRACT

Fluoride-enriched groundwater is a serious threat for groundwater supply around the world. The medium-low temperature fluoride-enriched geothermal groundwater resource is widely distributed in the circum-Wugongshan area. And the fluoride concentration of all geothermal samples exceeds the WHO permissible limit of 1.5 mg/L. The Self-Organizing Map method, hydrochemical and isotopic analysis are used to decipher the driving factors and genetic mechanism of fluoride-enriched geothermal groundwater. A total of 19 samples collected from the circum-Wugongshan geothermal belt are divided into four clusters by the self-organizing map. Cluster I, Cluster II, Cluster III, and Cluster IV represent the geothermal groundwater with the different degree of fluoride concentration pollution, the different hydrochemical type, and the physicochemical characteristic. The high F- concentration geothermal groundwater is characterized by HCO3-Na with alkalinity environment. The δD and δ18O values indicate that the geothermal groundwater origins from the atmospheric precipitation with the recharge elevation of 1000-2100 m. The dissolution of fluoride-bearing minerals is the main source of fluoride ions in geothermal water. Moreover, groundwater fluoride enrichment is also facilitated by water-rock interaction, cation exchange and alkaline environment. Additionally, the health risk assessment result reveals that the fluorine-enriched geothermal groundwater in the western part of Wugongshan area poses a more serious threat to human health than that of eastern part. The fluoride health risks of geothermal groundwater for different group show differentiation, 100% for children, 94.74% for adult females, and 68.42% for adult males, respectively. Compared with adult females and adult males, children faced the greatest health risks. The results of this study provide scientific evaluation for the utilization of geothermal groundwater and the protection of human health around the Wugongshan area.


Subject(s)
Fluorides , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Fluorides/analysis , China , Humans , Risk Assessment , Water Pollutants, Chemical/analysis , Female , Male , Child , Environmental Monitoring , Adult , Child, Preschool , Adolescent , Young Adult , Infant , Cold Temperature , Hot Springs/chemistry
11.
Article in English | MEDLINE | ID: mdl-39083039

ABSTRACT

Taiwan is situated in the subtropical region and its geographical location and topographical features contribute to a rich ecological diversity and scenic landscapes. We investigated the diversity of methanogens in different environments of Taiwan using a culture-dependent method. This report presents the characterization and taxonomy of six hydrogenotrophic methanogens obtained from cold seep sediments (strain FWC-SCC1T and FWC-SCC3T), marine sediments (strain CWC-02T and YWC-01T), estuarine sediments (strain Afa-1T), and a hot spring well (strain Wushi-C6T) in Taiwan. The proposed names of the six novel species are Methanoculleus frigidifontis (type strain FWC-SCC1T=BCRC AR10056T=NBRC 113993T), Methanoculleus oceani (CWC-02T=BCRC AR10055T=NBRC 113992T), Methanoculleus methanifontis (FWC-SCC3T=BCRC AR10057T=NBRC 113994T), Methanoculleus nereidis (YWC-01T=BCRC AR10060T=NBRC 114597T), Methanoculleus formosensis (Afa-1T=BCRC AR10054T=NBRC 113995T), and Methanoculleus caldifontis (Wushi-06T=BCRC AR10059T= NBRC 114596T).


Subject(s)
DNA, Archaeal , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Taiwan , RNA, Ribosomal, 16S/genetics , Geologic Sediments/microbiology , DNA, Archaeal/genetics , Methanomicrobiaceae/genetics , Methanomicrobiaceae/classification , Methanomicrobiaceae/isolation & purification , Base Composition , Hot Springs/microbiology
12.
Curr Microbiol ; 81(9): 287, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075266

ABSTRACT

Microbial xylanases are enzymes of great importance due to their wide industrial applications, especially in the degradation of lignocellulosic biomass into fermentable sugars. This study aimed to describe the production optimization and partial characterization of an ultra-thermostable, acidophilic, cellulase-free xylanase from an obligate thermophilic eubacterium Geobacillus thermoleovorans strain-AKNT10 (Ac.No. LT158229) isolated from a hot-spring of Puga Valley located at an altitude of 4419 m in Ladakh, India. The optimization of cultural conditions improved enzyme yield by 10.49-fold under submerged fermentation. The addition of 1% (w/v) xylose induced the enzyme synthesis by ~ 165 and 371% when supplemented in the fermentation medium containing wheat bran (WB) 1 and 3%, respectively. The supplementation of sucrose reduced the xylanase production by ~ 25%. Results of partial characterization exhibited that xylanase was optimally active at pH 6.0 and 100 °C. Enzyme retained > 75%, > 83%, and > 84% of activity at 4 °C for 28 days, 100 °C for 60 min, and pHs 3-8 for 60 min, respectively. An outstanding property of AKNT10-xylanase, was the retention of > 71% residual activity at extreme conditions (121 °C and 15 psi pressure) for 15 min. Enzymatic saccharification showed that enzyme was also capable to liberate maximum reducing sugars within 4-8 h under optimized conditions thus it could be a potential candidate for the bioconversion of lignocellulosic biomass as well as other industrial purposes. To the best of our knowledge, this is the first report on such an ultra-thermo-pressure-tolerant xylanase optimally active at pH 6 and 100 °C from the genus Geobacillus.


Subject(s)
Dietary Fiber , Endo-1,4-beta Xylanases , Enzyme Stability , Fermentation , Geobacillus , Geobacillus/enzymology , Geobacillus/genetics , Dietary Fiber/metabolism , Hydrogen-Ion Concentration , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/chemistry , Hot Springs/microbiology , Temperature , India , Xylose/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Culture Media/chemistry
13.
Nature ; 632(8027): 1118-1123, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048824

ABSTRACT

Methane is the second most abundant climate-active gas, and understanding its sources and sinks is an important endeavour in microbiology, biogeochemistry, and climate sciences1,2. For decades, it was thought that methanogenesis, the ability to conserve energy coupled to methane production, was taxonomically restricted to a metabolically specialized group of archaea, the Euryarchaeota1. The discovery of marker genes for anaerobic alkane cycling in metagenome-assembled genomes obtained from diverse habitats has led to the hypothesis that archaeal lineages outside the Euryarchaeota are also involved in methanogenesis3-6. Here we cultured Candidatus Methanosuratincola verstraetei strain LCB70, a member of the archaeal class Methanomethylicia (formerly Verstraetearchaeota) within the phylum Thermoproteota, from a terrestrial hot spring. Growth experiments combined with activity assays, stable isotope tracing, and genomic and transcriptomic analyses demonstrated that this thermophilic archaeon grows by means of methyl-reducing hydrogenotrophic methanogenesis. Cryo-electron tomography revealed that Ca. M. verstraetei are coccoid cells with archaella and chemoreceptor arrays, and that they can form intercellular bridges connecting two to three cells with continuous cytoplasm and S-layer. The wide environmental distribution of Ca. M. verstraetei suggests that they might play important and hitherto overlooked roles in carbon cycling within diverse anoxic habitats.


Subject(s)
Hot Springs , Methane , Methane/metabolism , Hot Springs/microbiology , Archaea/genetics , Archaea/metabolism , Archaea/classification , Cryoelectron Microscopy , Phylogeny , Genome, Archaeal/genetics
14.
Syst Appl Microbiol ; 47(5): 126528, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959749

ABSTRACT

A novel facultatively anaerobic moderately thermophilic bacteria, strains 4137-MeT and 4148-MeT, were isolated from hot springs of Karmadon and Ursdon, respectively (North Ossetia, Russian Federation). Gram-negative, motile rods were present singly, in pairs, rosettes, and aggregates, or formed biofilms. Both strains grew optimally at 50-55 °C, pH 7.0 and did not require sodium chloride or yeast extract for growth. They were chemoorganoheterotrophs, growing on mono-, di- and polysaccharides (cellulose, starch, xylan, lichenan, galactan, xyloglucan, mannan, xanthan gum, guar gum) as well as proteinaceous substrates (gelatin, peptone, beef and yeast extract). Growth under anaerobic conditions was observed in presence and absence of external electron acceptors. Sulfur, thiosulfate, arsenate, Fe-citrate, and ferrihydrite were reduced with acetate, starch, or yeast extract as electron donors. The respiratory quinone was MK-7. Major cellular fatty acids of both strains were iso-C15:0, anteiso-C17:0, C15:0, iso-C16:0 and additionally iso-C17:0 for strain 4137-MeT. The size of the genome and genomic DNA G + C content of strain 4137-MeT were 3.24 Mb. and 29.9 %, respectively; for strain 4148-MeT - 3.33 Mb and 30.7 %. According to the 16S rRNA gene sequence and conserved protein sequences phylogenies, strains 4137-MeT and 4148-MeT represented a distinct lineage of the family Melioribacteraceae within the class Ignavibacteria. Based on phylogenetic analysis and phenotypic features, the novel isolates were assigned to a novel genus, for which the name Rosettibacter gen. nov. is proposed. Strain 4148-MeT represents its type species Rosettibacter primus sp. nov., while strain 4137-MeT represents a new species Rosettibacter firmus sp. nov.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Hot Springs , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Hot Springs/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Fatty Acids/chemistry , Anaerobiosis , Russia , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Genome, Bacterial/genetics , Vitamin K 2/chemistry , Vitamin K 2/analysis , Vitamin K 2/analogs & derivatives
15.
Syst Appl Microbiol ; 47(5): 126541, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39084153

ABSTRACT

A novel strictly anaerobic hyperthermophilic archaeon, strain 4213-coT, was isolated from a terrestrial hot spring in the Uzon Caldera, Kamchatka (Russian Federation). Coccoid cells were present singly, in pairs, or aggregates, and occasionally were motile. The strain grew at 75-100 °C and within a pH range of 5.4-8.2 with the optimum at 92 °C and pH 6.4-6.7. Strain 4213-coT was a chemoorganoheterotroph, growing on proteinaceous substrates and mono-, di- and polysaccharides (starch, guar gum, xanthan gum). It did not require sodium chloride for growth. The complete genome of strain 4213-coT was 1.74 Mbp in size; its G+C content was 36.18 %. Genome analysis allowed to identify 25 genes encoding glycosidases involved in polysaccharide hydrolysis as well as genes of ADP-forming acetate-CoA ligase, lactate dehydrogenase and two [NiFe] hydrogenases responsible for acetate, lactate and hydrogen formation during fermentation. Moreover gene cluster encoding archaellum subunits was found. According to the phylogenomic analysis strain 4213-coT formed a species-level phylogenetic lineage within Ignisphaera genus. Our phylogenomic analysis also supports the delineation of the Ignisphaera genus into a separate family Ignisphaeraceae, as recently published. Here we propose a novel species Ignisphaera cupida, sp. nov. with type strain 4213-coT (=JCM 39446T=VKM B-3715T=UQM 41593T). Ecogenomic analysis showed that representatives of the Ignisphaera are thermophilic archaea, the majority of them were found in terrestrial hot springs and deep-sea hydrothermal vents. This study allowed a better understanding of physiology and ecology of Ignisphaeraceae - a rather understudied archaeal group.


Subject(s)
Base Composition , Hot Springs , Phylogeny , Hot Springs/microbiology , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Archaeal/genetics , DNA, Archaeal/chemistry , Russia , Genome, Archaeal , Hydrogen-Ion Concentration , Hydrolysis , Hot Temperature , Archaea/classification , Archaea/genetics , Archaea/isolation & purification
16.
Antonie Van Leeuwenhoek ; 117(1): 103, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042225

ABSTRACT

Genus Thermus is the main focus of researcher among the thermophiles. Members of this genus are the inhabitants of both natural and artificial thermal environments. We performed phylogenomic analyses and comparative genomic studies to unravel the genomic diversity among the strains belonging to the genus Thermus in geographically different thermal springs. Sixteen Thermus strains were isolated and sequenced from hot springs, Qucai hot springs in Tibet and Tengchong hot springs in Yunnan, China. 16S rRNA gene based phylogeny and phylogenomic analyses based on concatenated set of 971 Orthologous Protein Families (supermatrix and gene content methods) revealed a mixed distribution of the Thermus strains. Whole genome based phylogenetic analysis showed, all 16 Thermus strains belong to five species; Thermus oshimai (YIM QC-2-109, YIM 1640, YIM 1627, 77359, 77923, 77838), Thermus antranikianii (YIM 73052, 77412, 77311, 71206), Thermus brokianus (YIM 73518, 71318, 72351), Thermus hydrothermalis (YIM 730264 and 77927) and one potential novel species 77420 forming clade with Thermus thalpophilus SYSU G00506T. Although the genomes of different strains of Thermus of same species were highly similar in their metabolic pathways, but subtle differences were found. CRISPR loci were detected through genome-wide screening, which showed that Thermus isolates from two different thermal locations had well developed defense system against viruses and adopt similar strategy for survival. Additionally, comparative genome analysis screened competence loci across all the Thermus genomes which could be helpful to acquire DNA from environment. In the present study it was found that Thermus isolates use two mechanism of incomplete denitrification pathway, some Thermus strains produces nitric oxide while others nitrious oxide (dinitrogen oxide), which show the heterotrophic lifestyle of Thermus genus. All isolated organisms encoded complete pathways for glycolysis, tricarboxylic acid and pentose phosphate. Calvin Benson Bassham cycle genes were identified in genomes of T. oshimai and T. antranikianii strains, while genomes of all T. brokianus strains and organism 77420 were lacking. Arsenic, cadmium and cobalt-zinc-cadmium resistant genes were detected in genomes of all sequenced Thermus strains. Strains 77,420, 77,311, 73,518, 77,412 and 72,351 genomes were found harboring genes for siderophores production. Sox gene clusters were identified in all sequenced genomes, except strain YIM 730264, suggesting a mode of chemolithotrophy. Through the comparative genomic analysis, we also identified 77420 as the genome type species and its validity as novel organism was confirmed by whole genome sequences comparison. Although isolate 77420 had 99.0% 16S rRNA gene sequence similarity with T. thalpophilus SYSU G00506T but based on ANI 95.86% (Jspecies) and digital DDH 68.80% (GGDC) values differentiate it as a potential novel species. Similarly, in the phylogenomic tree, the novel isolate 77,420 forming a separate branch with their closest reference type strain T. thalpophilus SYSU G00506T.


Subject(s)
Genome, Bacterial , Genomics , Hot Springs , Phylogeny , RNA, Ribosomal, 16S , Thermus , Thermus/genetics , Thermus/classification , Thermus/isolation & purification , Hot Springs/microbiology , RNA, Ribosomal, 16S/genetics , Tibet , China , DNA, Bacterial/genetics , Sequence Analysis, DNA
17.
J Hazard Mater ; 476: 135017, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38936185

ABSTRACT

Biodegradation stands as an eco-friendly and effective approach for organic contaminant remediation. However, research on microorganisms degrading sodium benzoate contaminants in extreme environments remains limited. In this study, we report to display the isolation of a novel hot spring enriched cultures with sodium benzoate (400 mg/L) as the sole carbon source. The results revealed that the phylum Pseudomonadota was the potential sodium benzoate degrader and a novel genus within the family Geminicoccaceae of this phylum. The isolated strain was named Benzoatithermus flavus SYSU G07066T and was isolated from HNT-2 hot spring samples. Genomic analysis revealed that SYSU G07066T carried benABC genes and physiological experiments indicated the ability to utilize sodium benzoate as a sole carbon source for growth, which was further confirmed by transcriptomic data with expression of benABC. Phylogenetic analysis suggested that Horizontal Gene Transfer (HGT) plays a significant role in acquiring sodium benzoate degradation capability among prokaryotes, and SYSU G07066T might have acquired benABC genes through HGT from the family Acetobacteraceae. The discovery of the first microorganism with sodium benzoate degradation function from a hot spring enhances our understanding of the diverse functions within the family Geminicoccaceae. This study unearths the first novel genus capable of efficiently degrading sodium benzoate and its evolution history at high temperatures, holding promising industrial applications, and provides a new perspective for further exploring the application potential of hot spring "microbial dark matter".


Subject(s)
Biodegradation, Environmental , Hot Springs , Phylogeny , Sodium Benzoate , Sodium Benzoate/metabolism , Hot Springs/microbiology , Water Pollutants, Chemical/metabolism , Multiomics
18.
Extremophiles ; 28(2): 29, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900286

ABSTRACT

Hot spring environments encompass broad physicochemical ranges, in which temperature and pH account for crucial factors shaping hot spring microbial community and diversity. However, the presence of photosynthetic microbial mats adjacent to boiling hot spring vents, where fluid temperatures extend beyond photosynthetic capability, questions the microbial profiles and the actual temperatures of such adjacent mats. Therefore, this study aims to characterize thermophilic microbial communities at Pong Dueat Pa Pae hot spring using next-generation sequencing, including investigating hot spring mineralogy. Results suggest that Pong Dueat Pa Pae hot spring precipitates comprise mainly silica which also acts as the main preservative medium for microbial permineralization. Molecular results revealed the presence of cyanobacterial and Chloroflexi species in the thick, orange and green subaerial mats surrounding the vents, suggesting the mats would be at least 30 °C cooler than source vents despite constantly receiving geyser splashes. Bacterial abundance was considerably higher than archaeal (97.9% versus 2.1%). Cyanobacterial (mainly Synechococcus and Leptolygbya) and Chloroflexi species (mainly Roseiflexus) accounted for almost half (40.04%) of the bacterial community, while DHVEG-6 and Thaumarchaeota comprised dominant members (> 90%) of the archaeal fraction. This study updates and provides insights into thermophilic microbial community composition and mineralogy of hot springs in Thailand.


Subject(s)
Hot Springs , Microbiota , Hot Springs/microbiology , Thailand , Cyanobacteria/metabolism , Cyanobacteria/genetics , Chloroflexi/genetics , Chloroflexi/metabolism
19.
J Basic Microbiol ; 64(8): e2400157, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38859671

ABSTRACT

Growing evidence suggests that the hydrochemical properties of geothermal fumaroles may play a crucial role in shaping the diversity and functions of microbial communities in various environments. In the present study, the impact of geothermal furaneols on the microbial communities and their metabolic functions across the rock-soil-plant continuum was explored considering varying distances from the fumarole source. The results revealed that bacterial phylum Proteobacteria was predominant in all sample types, except in the 10 m rock sample, irrespective of the sampling distance. Archaeal phyla, such as Euryarchaeota and Crenarchaeota, were more prevalent in rock and soil samples, whereas bacterial phyla were more prevalent in plant samples. Thermoacidophilic archaeons, including Picrophilus, Ferroplasma, and Thermogymnomonas were dominant in rocks and soil samples of 1 and 5 m distances; acidophilic mesophiles, including Ferrimicrobium and Granulicella were abundant in the rhizoplane samples, whereas rhizosphere-associated microbes including Pseudomonas, Pedobacter, Rhizobium, and Novosphingobium were found dominant in the rhizosphere samples. The functional analysis highlighted the higher expression of sulfur oxidative pathways in the rock and soil samples; dark iron oxidation and nitrate/nitrogen respiratory functions in the rhizosphere samples. The findings underscore microbial adaptations across the rock-soil-plant continuum, emphasizing the intricate relationship between geothermal fumaroles and microbial communities in adjacent ecosystems. These insights offer a crucial understanding of the evolution of microbial life and highlight their pivotal roles in shaping ecosystem dynamics and functions.


Subject(s)
Archaea , Bacteria , Microbiota , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Archaea/classification , Archaea/genetics , Archaea/metabolism , Archaea/isolation & purification , Ecosystem , Phylogeny , Rhizosphere , Hot Springs/microbiology , RNA, Ribosomal, 16S/genetics , Plants/microbiology , Soil/chemistry
20.
Exp Dermatol ; 33(6): e15113, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855894

ABSTRACT

The mineral content of thermal spring water (TSW) applied to the skin surface can directly influence the skin barrier. Indeed, our previous study showed that Avène TSW (ATSW), a low mineral content thermal spring water, protects the stratum corneum from dehydration compared to a mineral-rich TSW (MR-TSW) and maintains skin surface ultrastructure. While many TSWs have been recognized to have beneficial effects on skin, little is known about their localized and specific effects on skin barrier biomechanics at the nanometric scale. The aim of this study was to compare the effects of ATSW with a reference, MR-TSW, on the biomechanical barrier properties of the skin under homeostasis conditions using atomic force microscopy (AFM). AFM was used to obtain a precise nanomechanical mapping of the skin surface after three applications of both TSW. This provides specific information on the skin topographical profile and elasticity. The topographic profile of skin samples showed a specific compaction of the skin layers after application of MR-TSW, characterized by an increase of the total number of external skin layers, compared to non-treated samples. By contrast, ATSW did not modify the skin topographic profile. High-resolution force/volume acquisitions to capture the elastic modulus showed that it was directly correlated with skin rigidity. The elastic modulus strongly and significantly increased after MR-TSW application compared to non-treated skin. By contrast, applications of ATSW did not increase elastic modulus. These data demonstrate that applications of MR-TSW significantly modified skin barrier properties by increasing skin surface layer compaction and skin rigidity. By contrast, ATSW did not modify the topographical profile of skin explants nor induce mechanical stress at the level of the stratum corneum, indicating it does not disrupt the biophysical properties linked to skin surface integrity.


Subject(s)
Microscopy, Atomic Force , Skin , Humans , Elastic Modulus , Biomechanical Phenomena , Mineral Waters , Hot Springs , Skin Physiological Phenomena , Elasticity
SELECTION OF CITATIONS
SEARCH DETAIL