Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.083
Filter
1.
J Evol Biol ; 37(8): 947-959, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38963804

ABSTRACT

Eusociality, where units that previously reproduced independently function as one entity, is of major interest in evolutionary biology. Obligate eusociality is characterized by morphologically differentiated castes and reduced conflict. We explore conditions under which morphological castes may arise in the Hymenoptera and factors constraining their evolution. Control over offspring morphology and behaviour seems likely to be decoupled. Provisioners (queens and workers) can influence offspring morphology directly through the nutrition they provide, while adult offspring control their own behaviour. Provisioners may, however, influence worker behaviour indirectly if offspring modify their behaviour in response to their morphology. If manipulation underlies helping, we should not see helping evolve before specialized worker morphology, yet empirical observations suggest that behavioural castes precede morphological castes. We use evolutionary invasion analyses to show how the evolution of a morphologically differentiated worker caste depends on the prior presence of a behavioural caste: specialist worker morphology will be mismatched with behaviour unless some offspring already choose to work. A mother's certainty about her offspring's behaviour is also critical-less certainty results in greater mismatch. We show how baseline worker productivity can affect the likelihood of a morphological trait being favoured by natural selection. We then show how under a decoupled control scenario, morphologically differentiated castes should be less and less likely to be lost as they become more specialized. We also suggest that for eusociality to be evolutionarily irreversible, workers must be unable to functionally replace reproductives and reproductives must be unable to reproduce without help from workers.


Subject(s)
Biological Evolution , Animals , Social Behavior , Hymenoptera/anatomy & histology , Hymenoptera/physiology , Female , Behavior, Animal , Models, Biological , Selection, Genetic
2.
J Environ Manage ; 365: 121625, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959772

ABSTRACT

This is the first study providing long-term data on the dynamics of bees and wasps and their parasitoids for the evidence-based management of reed beds. Ten years ago, we identified Lipara (Chloropidae) - induced galls on common reed (Phragmites australis, Poaceae) as a critically important resource for specialized bees and wasps (Hymenoptera: Aculeata). We found that they were surprisingly common in relatively newly formed anthropogenic habitats, which elicited questions about the dynamics of bees and wasps and their parasitoids in newly formed reed beds of anthropogenic origin. Therefore, in the winter and spring of 2022/23, we sampled reed galls from the same set of reed beds of anthropogenic and natural origin as those in 2012/13. At 10 sites, the number of sampled galls was similar in both time periods (80-122% of the value from 2012/13); 12 sites experienced a moderate decline (30-79% of the value from 2012/13), and the number of galls at six sampling sites was only 3-23% of their abundance in 2012/13. Spontaneous development was associated with increasing populations. After 10 years of spontaneous development, the populations of bees and wasps (including their parasitoids) bound to Lipara-induced reed galls increased in abundance and species richness or remained at their previous levels, which was dependent on the sampling site. The only identified threat consisted of reclamation efforts. The effects of habitat age were limited, and the assemblages in habitats of near-natural and anthropogenic origin largely overlapped. However, several species were consistently present at lower abundances in the anthropogenic habitats and vice versa. In conclusion, we provided evidence-based support for the establishment of oligotrophic reed beds of anthropogenic origin as management tools providing sustainable habitats for specialized reed gall-associated aculeate hymenopteran inquilines, including the threatened species.


Subject(s)
Ecosystem , Wasps , Animals , Wasps/physiology , Hymenoptera/physiology , Poaceae , Bees/parasitology , Plant Tumors/parasitology
3.
PLoS One ; 19(6): e0302283, 2024.
Article in English | MEDLINE | ID: mdl-38900825

ABSTRACT

Pollination biology in the widespread species Impatiens capensis Meerb. has only been studied in America, specifically in zones of the U.S.A. and Canada. In this study, we investigated the pollination biology of I. capensis using an integrative identification approach using morphological and molecular tools in four populations of Northwest Poland. We also determined and compared the functional characteristics of the pollinators of the introduced species from the study sites and the native ones reported, for the latter collecting information from bibliographic sources. Visitors were identified using standard morphological keys, including identifying and classifying insect mouthparts. Molecular identification was carried out using mitochondrial DNA's cytochrome oxidase subunit I (COI). We morphologically identified 20 species of visitors constituted by 17 pollinators and three nectar robbers. DNA barcoding of 59 individuals proved the identification of 18 species (also 18 BINs). The frequency of pollinator species was primarily made up of representatives of both Hymenoptera (75%) and Diptera (21%). The morphological traits, such as the chewing and sucking mouthparts, small and big body height, and robber and pollinator behavior explained mainly the native and introduced visitors' arrangements that allow pollination success. However, to understand the process comprehensively, further investigation of other causalities in pollination success and understanding the diversity of pollinators in outer native ranges are necessary.


Subject(s)
Impatiens , Introduced Species , Pollination , Pollination/physiology , Animals , Impatiens/physiology , Impatiens/genetics , Diptera/physiology , Diptera/anatomy & histology , Poland , DNA Barcoding, Taxonomic , Hymenoptera/physiology
4.
Learn Mem ; 31(5)2024 May.
Article in English | MEDLINE | ID: mdl-38862163

ABSTRACT

In his treatise on arthropod brains, Hans von Alten (1910) focuses on a specific functional group of insects-the flying Hymenoptera-which exhibit a spectrum of lifestyles ranging from solitary to social. His work presents a distinctive comparative neuro-anatomical approach rooted in an eco-evolutionary and eco-behavioral background. We regard his publication as an exceptionally valuable source of information and seek to inspire the research community dedicated to the study of the insect brain to explore its insights further, even after more than 110 years. We have translated and annotated his work, expecting it to engage researchers not just with its remarkable drawings but also with its substantive content and exemplary research strategy. The present text is designed to complement von Alten's publication, situating it within the temporal context of nineteenth-century and early twentieth-century studies, and to draw connections to contemporary perspectives, especially concerning a central brain structure: the mushroom body.


Subject(s)
Biological Evolution , Brain , Cognition , Hymenoptera , Animals , Brain/physiology , Brain/anatomy & histology , Cognition/physiology , History, 20th Century , Hymenoptera/physiology , Hymenoptera/anatomy & histology , History, 19th Century , Adaptation, Physiological/physiology , Mushroom Bodies/physiology , Mushroom Bodies/anatomy & histology
5.
Sci Rep ; 14(1): 9535, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664543

ABSTRACT

One of the challenges in augmentative biological control programs is the definition of releasing strategy for natural enemies, especially when macro-organisms are involved. Important information about the density of insects to be released and frequency of releases usually requires a great number of experiments, which implies time and space that are not always readily available. In order to provide science-based responses for these questions, computational models offer an in silico option to simulate different biocontrol agent releasing scenarios. This allows decision-makers to focus their efforts to more feasible options. The major insect pest in sugarcane crops is the sugarcane borer Diatraea saccharalis, which can be managed using the egg parasitoid Trichogramma galloi. The current strategy consists in releasing 50,000 insects per hectare for each release, in three weekly releases. Here, we present a simulation model to check whether this releasing strategy is optimal against the sugarcane borer. A sensitive analysis revealed that the population of the pest is more affected by the number of releases rather than by the density of parasitoids released. Only the number of releases demonstrated an ability to drive the population curve of the pest towards a negative growth. For example, releasing a total of 600,000 insects per hectare in three releases led to a lower pest control efficacy that releasing only 250,000 insects per hectare in five releases. A higher number of releases covers a wider range of time, increasing the likelihood of releasing parasitoids at the correct time given that the egg stage is short. Based on these results, it is suggested that, if modifications to the releasing strategy are desired, increasing the number of releases from 3 to 5 at weekly intervals is most likely preferable.


Subject(s)
Computer Simulation , Pest Control, Biological , Saccharum , Animals , Saccharum/parasitology , Pest Control, Biological/methods , Moths/parasitology , Hymenoptera/physiology , Lepidoptera/physiology , Lepidoptera/parasitology
6.
Neotrop Entomol ; 53(3): 514-530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38687425

ABSTRACT

The concept of Ecosystem Services (ES) recognizes the importance of natural ecosystems in supporting human well-being. Hymenoptera, a diverse group of insects including ants, bees, and wasps, play crucial roles in providing ESs. Despite their significance, the provision of ESs by Hymenoptera is often undervalued, leading to ecosystem degradation and loss of important services. This study focuses on the association between Hymenoptera and a rupicolous bromeliad species (Encholirium spectabile) and explores the ESs promoted directly and indirectly by these insects. The study area is located in the Caatinga region of Brazil, characterized by irregular rainfall and a dry season. The results show that Hymenoptera, particularly bees, ants, and wasps, provide a range of ESs including pollination, honey production, pest control, cultural symbolism, and educational value. These services are vital for plant reproduction, food production, and ecosystem functioning in both seasons; there are no differences in species richness between seasons, but rather in species composition. Understanding the importance of Hymenoptera for ESs is crucial for informing conservation and management practices to ensure the sustainability of natural ecosystems. The study highlights the need for conservation actions to protect the intricate ecological relationships between Hymenoptera and bromeliads, which indirectly support ESs by providing habitat and resources, especially during droughts when resources are scarce in the region. By recognizing the importance of bromeliads in supporting Hymenopteran communities, conservation efforts can focus on preserving these critical ecological interactions and maintaining ES provision.


Subject(s)
Bromeliaceae , Ecosystem , Hymenoptera , Animals , Brazil , Hymenoptera/physiology , Pollination , Bees , Seasons , Wasps/physiology , Ants
7.
J Econ Entomol ; 117(3): 858-864, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38520739

ABSTRACT

The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a major pest of wheat (Triticum aestivum L., Poales: Poaceae) across the northern Great Plains of North America. Cephus cinctus has a wide host range, attacking numerous wild grasses and cultivated cereals in crop and grassland habitats, where it is, in turn, attacked by 2 native braconid parasitoids. Quantitative assessments of C. cinctus infestation and parasitism levels in different grass species across the full spectrum of available hosts are important in assessing the extent to which grasslands, or specific constituent grass species, may be reservoirs of pests or parasitoids moving into wheat. We quantified infestation and parasitism levels in over 25,000 stems collected from 17 grass species and wheat spanning 35 sites in central Montana, United States, over 2 yr. Infestation levels in 5 grass species, primarily wheatgrasses, were high (38%-65%) and similar to the levels observed in wheat (55%). In contrast, the majority of grass species (12 of 17) had significantly lower levels of infestation (<10%), suggesting that most grasses are not important reservoirs of C. cinctus. Parasitism levels in highly infested wheatgrasses were, on average, 3 times higher than those in cultivated wheat, suggesting that these grasses could provide important conservation habitat for parasitoids. Future work examining the relative performance of pests and parasitoids in these grasses will be important in gauging their relative value as plant materials to bolster parasitoid conservation in reseeded grassland habitats.


Subject(s)
Hymenoptera , Poaceae , Animals , Hymenoptera/physiology , Poaceae/parasitology , Montana , Grassland , Wasps/physiology , Triticum/parasitology , Pest Control, Biological , Host-Parasite Interactions
8.
PLoS One ; 19(3): e0283916, 2024.
Article in English | MEDLINE | ID: mdl-38457456

ABSTRACT

Functional response describes the number of hosts attacked by a parasitoid in relation to host densities and plays an important role by connecting behavioral-level processes with community-level processes. Most functional response studies were carried out using simple experimental designs where the insects were confined to a plain and small arena with different host densities during a fixed period of time. With these designs, other factors that might affect the functional response of parasitoids were not analyzed, such as fecundity, age, and experience. We proposed a series of latent-variables Markovian models that comprised an integrated approach of functional response and egg production models to estimate the realized lifetime reproductive success of parasitoids. As a case study, we used the parasitoids Anagyrus cachamai and A. lapachosus (Hymenoptera: Encyrtidae), two candidate agents for neoclassical biocontrol of the Puerto Rican cactus pest mealybug, Hypogeococcus sp. (Hemiptera: Pseudococcidae). The tested species were assessed according to their physiology and prior experience. We estimated the number of mature eggs after emergence, egg production on the first day, egg production rate, the proportion of eggs resorbed, egg resorption threshold, and egg storage capacity. Anagyrus cachamai and A. lapachosus both presented a type III functional response. However, the two parasitoids behaved differently; for A. cachamai, the number of parasitized hosts decreased with female age and depended on the number of mature eggs that were available for oviposition, whereas A. lapachosus host parasitism increased with female age and was modulated by its daily egg load and previous experience. The methodology presented may have large applicability in pest control, invasive species management, and conservation biology, as it has the potential to increase our understanding of the reproductive biology of a wide variety of species, ultimately leading to improved management strategies.


Subject(s)
Cactaceae , Hemiptera , Hymenoptera , Wasps , Female , Animals , Hymenoptera/physiology , Oviposition , Hemiptera/physiology , Pest Control, Biological , Ovum , Wasps/physiology , Host-Parasite Interactions
9.
J Insect Sci ; 24(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38417130

ABSTRACT

The parasitoid wasp, Ooencyrtus kuvanae (Howard) (Hymenoptera: Encyrtidae), is a natural enemy of the spongy moth, a significant forest pest in North America. We investigated the oviposition behavior of O. kuvanae females on spongy moth egg masses by (i) presenting female parasitoids with a single spongy moth egg mass that was replaced every day, 2nd day, 4th day, 8th day, or 16th day (which is the total length of the oviposition period) and (ii) presenting female parasitoids with 1, 2, 4, or 8 egg masses at a time. Offspring developmental length ranged from 18 to 24 days. On average, male offspring exhibited faster developmental times, emerging approximately 1 day ahead of females. The amount of time that adult females spent on an egg mass affected the number of parasitized eggs. Specifically, more offspring emerged in the 4-, 8-, and 16-day treatments than in scenarios involving daily or every second-day egg mass replacement. The percentage of male offspring decreased as the number of egg masses presented to females increased. Interestingly, the total number of female offspring remained constant, but the number of male offspring decreased with an increase in the number of egg masses and time spent by the parent within a patch. The observed sexual dimorphism in development time, the influence of resource availability on offspring sex ratios, and flexible oviposition patterns illustrate the adaptability of O. kuvanae in response to varying conditions. These insights have implications for our understanding of parasitoid-host interactions and their potential role in biological control strategies.


Subject(s)
Hymenoptera , Moths , Wasps , Male , Female , Animals , Hymenoptera/physiology , Oviposition/physiology , Ovum , Wasps/physiology
10.
Pest Manag Sci ; 80(6): 2976-2990, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38318926

ABSTRACT

BACKGROUND: The wheat stem sawfly (WSS, Cephus cinctus) is a major pest of wheat (Triticum aestivum) and can cause significant yield losses. WSS damage results from stem boring and/or cutting, leading to the lodging of wheat plants. Although solid-stem wheat genotypes can effectively reduce larval survival, they may have lower yields than hollow-stem genotypes and show inconsistent solidness expression. Because of limited resistance sources to WSS, evaluating diverse wheat germplasm for novel resistance genes is crucial. We evaluated 91 accessions across five wild wheat species (Triticum monococcum, T. urartu, T. turgidum, T. timopheevii, and Aegilops tauschii) and common wheat cultivars (T. aestivum) for antixenosis (host selection) and antibiosis (host suitability) to WSS. Host selection was measured as the number of eggs after adult oviposition, and host suitability was determined by examining the presence or absence of larval infestation within the stem. The plants were grown in the greenhouse and brought to the field for WSS infestation. In addition, a phylogenetic analysis was performed to determine the relationship between the WSS traits and phylogenetic clustering. RESULTS: Overall, Ae. tauschii, T. turgidum and T. urartu had lower egg counts and larval infestation than T. monococcum, and T. timopheevii. T. monococcum, T. timopheevii, T. turgidum, and T. urartu had lower larval weights compared with T. aestivum. CONCLUSION: This study shows that wild relatives of wheat could be a valuable source of alleles for enhancing resistance to WSS and identifies specific germplasm resources that may be useful for breeding. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Hymenoptera , Larva , Triticum , Triticum/genetics , Animals , Larva/growth & development , Larva/physiology , Larva/genetics , Hymenoptera/physiology , Hymenoptera/genetics , Phylogeny , Herbivory
11.
Plant Biol (Stuttg) ; 26(2): 157-165, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38192089

ABSTRACT

Crop-pollinator interactions are essential for world food security. Studying crop pollination from a network approach allows identification of target pollinators for conservation and management, and gaps in our knowledge. Solanaceae represents the third highest ranked family based on economic value, and its production is highly improved by animal pollination. This study aimed to integrate global data on solanaceous crop pollination and analyse the interaction patterns using a meta-network approach. Our questions were: (i) how are interactions structured and what are the structuring roles of species; and (ii) what are the main gaps in our knowledge? Data were obtained through a systematic review of the main scientific databases. The network structure was described using connectivity and modularity calculations, and the role of species using centrality metrics. The 251 pollinator species reported were in seven orders, mainly Hymenoptera (84.9%). The generalists Bombus and Apis species were the most common pollinators. The meta-network was modular, and all modules mostly included bees. Most species were peripherals, around 12% were connectors, and there were no module hubs. Apis mellifera was the only network hub (supergeneralist). The most important pollinators are the most managed pollinators worldwide; however, many native species play a role in structuring the meta-network. Main gaps include species of importance to pepper pollination, lack of species-specific identification, and the need for more robust experimental studies evaluating the pollination efficiency of native, manageable bees.


Subject(s)
Crops, Agricultural , Pollination , Solanaceae , Pollination/physiology , Animals , Crops, Agricultural/physiology , Solanaceae/physiology , Bees/physiology , Hymenoptera/physiology
12.
Bull Entomol Res ; 114(1): 22-29, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38235530

ABSTRACT

Functional response and mutual interference are important attributes of natural enemies that should be analysed in species with the potential to be used as biological control agents in order to increase the predictive power of the possible benefits and/or consequences of their release in the field. Our main objective was to determine the functional response and mutual interference of Coptera haywardi (Oglobin), a pupal parasitoid of economically important fruit flies (Diptera: Tephritidae). The functional response of C. haywardi on A. ludens pupae corresponded to a type II model, with an attack rate of 0.0134 host pupa/h and a handling time of 1.843 h, which reveals a meticulous selection process of pupal hosts. The effect of mutual interference among foraging females was negatively correlated with increased parasitoid density in the experimental arena, showing a gradual decline in attack rate per individual female. The increase in the number of foraging females also had an impact on the number of oviposition scars per pupa and the number of immature parasitoids per dissected pupa, but not on the percentage of adult emergence or the sex ratio. Our results suggest that C. haywardi could act as a complementary parasitoid in the control of fruit fly pupae, since the random distribution of these pupae in the soil would decrease the possibility of aggregation and mutual interference between foraging females.


Subject(s)
Hymenoptera , Parasites , Tephritidae , Female , Animals , Hymenoptera/physiology , Pupa , Drosophila
13.
Neotrop Entomol ; 53(2): 200-215, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38228819

ABSTRACT

The Southeast Asian-native Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), also known as "spotted-wing Drosophila," is one of the most globally invasive agricultural species. Although D. suzukii is a pest spread throughout all the Argentinian fruit-growing regions, few information has been published on its impact on local fruit production. Parasitoid species associated with D. suzukii in Argentina belong to Pteromalidae (Chalcidoidea), Diapriidae (Diaprioidea), both attacking host pupae, and Figitidae (Cynipoidea), which attack host larvae. Nine Eucoilinae (Figitidae) species, belonging to Dicerataspis, Dieucoila, Euxestophaga, Ganaspis, Hexacola, and Leptopilina genera, have been associated with D. suzukii in Argentina. Ceratitis capitata (Wiedemann), commonly known as "medfly," is native to Africa and has a worldwide distribution, covering many tropical, subtropical, and temperate regions. In Argentina, C. capitata has been associated with several native hymenopterous parasitoids belonging to Braconidae (Ichneumonioidea), Eulophidae (Chalcidoidea), Pteromalidae, Diapriidae, and Figitidae families. Only two eucoline species, Ganaspis pelleranoi (Brèthes) and Leptopilina haywardi (Blanchard) have been related to medfly in Argentina. We report new trophic associations between the parasitoids Dicerataspis grenadensis Ashmead and Leptopilina boulardi (Barbotin, Carton and Kelner-Pillault) and D. suzukii, and between the parasitoid Odontosema albinerve Kieffer and C. capitata, after surveys conducted in Tucumán, northwestern Argentina. An annotated checklist and a taxonomic key of Eucoilinae associated with both invasive pests, in Argentina, are also provided.


Subject(s)
Ceratitis capitata , Hymenoptera , Tephritidae , Humans , Animals , Drosophila , Hymenoptera/physiology , Argentina , Introduced Species
14.
Sci Rep ; 14(1): 1076, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212511

ABSTRACT

Egg deposition by herbivorous insects is well known to elicit defensive plant responses. Our study aimed to elucidate the insect and plant species specificity of these responses. To study the insect species specificity, we treated Arabidopsis thaliana with egg extracts and egg-associated secretions of a sawfly (Diprion pini), a beetle (Xanthogaleruca luteola) and a butterfly (Pieris brassicae). All egg extracts elicited salicylic acid (SA) accumulation in the plant, and all secretions induced expression of plant genes known to be responsive to the butterfly eggs, among them Pathogenesis-Related (PR) genes. All secretions contained phosphatidylcholine derivatives, known elicitors of SA accumulation and PR gene expression in Arabidopsis. The sawfly egg extract did not induce plant camalexin levels, while the other extracts did. Our studies on the plant species specificity revealed that Solanum dulcamara and Ulmus minor responded with SA accumulation and cell death to P. brassicae eggs, i.e. responses also known for A. thaliana. However, the butterfly eggs induced neoplasms only in S. dulcamara. Our results provide evidence for general, phosphatidylcholine-based, egg-associated elicitors of plant responses and for conserved plant core responses to eggs, but also point to plant and insect species-specific traits in plant-insect egg interactions.


Subject(s)
Arabidopsis , Butterflies , Coleoptera , Hymenoptera , Animals , Oviposition , Butterflies/physiology , Hymenoptera/physiology , Arabidopsis/genetics , Salicylic Acid , Phosphatidylcholines
15.
Pest Manag Sci ; 80(4): 1681-1691, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38010617

ABSTRACT

BACKGROUND: The endoparasitoid Cotesia marginiventris (Cresson) is a promising biological control agent of the fall armyworm (FAW) Spodoptera frugiperda (Smith). Because the application of insecticides is one of the prime choices in pest management, we evaluated the sublethal and transgenerational effects of the five key insecticides-chlorantraniliprole, emamectin benzoate, spinetoram, Bacillus thuringiensis (Bt), and Mamestra brassicae nucleopolyhedrovirus (MbNPV)-on the parasitoid. RESULTS: Exposure to five insecticides at a concentration causing 10% mortality (LC10 ) caused hormetic effects in the parent generation (F0 ) by increasing the parasitism and reducing the immature duration. Interestingly, the hormetic response was also observed in the offspring generation indirectly exposed to the insecticides. Furthermore, insecticides increased the parasitism rate by 6.32-14.73% in the F1 generation, which was similar to that of the F0 generation (3.96-11.81%) compared with the control. No significant adverse effect was observed on the number of emerged parasitoids of the F1 and F2 generations. However, insecticides had a detrimental impact on body size and fecundity in the F1 and F2 generations, which showed a small body size with shorter hind tibiae and a significant reduction in the female ratio compared with the control; the exception was that chlorantraniliprole significantly improved the female ratio in the F2 generation. CONCLUSIONS: Five insecticides at LC10 induced transgenerational hormetic and sublethal effects on C. marginiventris. Our results provide a scientific basis for a better understanding of the long-term impacts of insecticides at sublethal doses on parasitoids, facilitating the development of improved integrated pest management programs for FAW control. © 2023 Society of Chemical Industry.


Subject(s)
Hymenoptera , Insecticides , Female , Animals , Insecticides/toxicity , Spodoptera , Hormesis , ortho-Aminobenzoates/pharmacology , Hymenoptera/physiology , Larva
16.
J Vis Exp ; (201)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38078604

ABSTRACT

The egg parasitoids, Trichogramma spp, are recognized as efficient biological control agents against various lepidopteran pests in agriculture and forests. The immature stages of Trichogramma offspring develop within the host egg, exhibiting remarkable diminutiveness (approximately 0.5 mm in adult length). RNA-interference (RNAi) methodology has emerged as a crucial tool for elucidating gene functions in numerous organisms. However, manipulating RNAi in certain small parasitoid species, such as Trichogramma, has generally posed significant challenges. In this study, we present an efficient RNAi method in Trichogramma denrolimi. The outlined procedure encompasses the acquisition and isolation of individual T. dendrolimi specimens from host eggs, the design and synthesis of double-stranded RNA (dsRNA), the in vitro transplantation and cultivation of T. dendrolimi pupae, the micro-injection of dsRNA, and the subsequent assessment of target gene knockdown through RT-qPCR analysis. This study furnishes a comprehensive, visually detailed procedure for conducting RNAi experiments in T. dendrolimi, thereby enabling researchers to investigate the gene regulation in this species. Furthermore, this methodology is adaptable for RNAi studies or micro-injections in other Trichogramma species with minor adjustments, rendering it a valuable reference for conducting RNAi experiments in other endoparasitic species.


Subject(s)
Hymenoptera , Moths , Parasites , Wasps , Animals , RNA Interference , Hymenoptera/physiology , Agriculture , Wasps/genetics
17.
PLoS One ; 18(12): e0296157, 2023.
Article in English | MEDLINE | ID: mdl-38128052

ABSTRACT

In insects, the innate immune system is subdivided into cellular and humoral defenses. When parasitoids attack insects, both reactions can be activated and notably, the phenoloxidase (PO) cascade and lytic activity are part of both cellular and humoral defenses. However, to our knowledge, no study has characterized any immune response of the whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) to the attack of Eretmocerus eremicus (Hymenoptera: Aphelinidae). Therefore, the first objective of the present study was to determine whether whitefly nymphs recently parasitized by E. eremicus exhibit any immune response. For this, we estimate the level of prophenoloxidase (proPO), phenoloxidase (PO), and lytic activity by colorimetric assays. A second objective was to assess whether the observed whitefly immune response could be related to a previously reported preference of the predator Geocoris punctipes (Hemiptera: Lygaeidae) for non-parasitized nymphs. We therefore offered non-parasitized and recently parasitized nymphs to the predator. Our results show that parasitism of whitefly nymphs by E. eremicus induced a highly estimated level of proPO and PO, and a lower level of lytic activity. In addition, we found that G. punctipes did not show a preference for non-parasitized over recently parasitized nymphs. The nymphs of T. vaporariorum activated the PO pathway against E. eremicus; however, the increase in proPO and PO levels was traded-off with decreased lytic activity. In addition, the previously reported preference for non-parasitized nymphs was not seen in our experiments, indicating that the induced immune response did not affect predator behavior by G. punctipes.


Subject(s)
Hemiptera , Heteroptera , Hymenoptera , Animals , Hymenoptera/physiology , Hemiptera/physiology , Monophenol Monooxygenase , Nymph , Biological Assay
18.
Plant Sci ; 336: 111858, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37673219

ABSTRACT

The Sirex noctilio's climatic adaption and rapid proliferation have caused Pinus mortality worldwide. The infestation combines the early effect of female S. noctilio gland secretion and the spreading symbiotic fungus Amylostereum areolatum. 'Lipidomics' is the study of all non-water-soluble components of the metabolome. Most of these non-water-soluble compounds correspond to lipids which can provide information about a biological activity, an organelle, an organism, or a disease. Using HPLC-MS/MS based lipidomics, 122 lipids were identified in P. radiata needles during S. noctilio infestation. Phosphatidic acids, N-acylethanolamines, and phosphatidylinositol-ceramides accumulated in infested trees could suggest a high level of phospholipases activities. The phosphatidylcholines were the most down-regulated species during infection, which could also suggest that they may be used as a substrate for up-regulated lipids. The accumulation of very long-chain fatty acids and long-chain fatty acids during the infestation could imply the tree defense response to create a barrier in the drilled zone to avoid larvae development and fungus proliferation. Also, the growth arrest phase of the trees during the prolonged infestation suggests a resistance response, regulated by the accumulation of NAE, which potentially shifts the tree energy to respond to the infestation.


Subject(s)
Hymenoptera , Pinus , Animals , Lipid Metabolism , Lipidomics , Tandem Mass Spectrometry , Hymenoptera/physiology , Fungi , Trees , Fatty Acids , Lipids
19.
Environ Res ; 238(Pt 2): 117165, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37739156

ABSTRACT

The neonicotinoid of imidaclothiz insecticide with low resistance and high efficiency, has great potential for application in pest control in specifically cotton field. In this systematically evaluate the effects of sublethal doses of imidaclothiz (LC10: 11.48 mg/L; LC30: 28.03 mg/L) on the biology, transcriptome, and microbiome of Binodoxys communis, the predominant primary parasitic natural enemy of aphids. The findings indicated that imidaclothiz has significant deleterious effects on the survival rate, parasitic rate, and survival time of B. communis. Additionally, there was a marked reduction in the survival rate and survival time of the F1 generation, that is, the negative effect of imidaclothiz on B. communis was continuous and trans-generational. Transcriptome analysis revealed that imidaclothiz treatment elicited alterations in the expression of genes associated with energy and detoxification metabolism. In addition, 16S rRNA analysis revealed a significant increase in the relative abundance of Rhodococcus and Pantoea, which are associated with detoxification metabolism, due to imidaclothiz exposure. These findings provide evidence that B. communis may regulate gene expression in conjunction with symbiotic bacteria to enhance adaptation to imidaclothiz. Finally, this study precise evaluation of imidaclothiz's potential risk to B. communis and provides crucial theoretical support for increasing the assessment of imidaclothiz in integrated pest management.


Subject(s)
Aphids , Hymenoptera , Animals , Hymenoptera/physiology , Aphids/parasitology , Aphids/physiology , RNA, Ribosomal, 16S , Thiazoles
20.
Neotrop Entomol ; 52(5): 921-931, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37584879

ABSTRACT

Tetrastichus howardi (Olliff) (Hymenoptera: Eulophidae) parasitizes the diamond back moth Plutella xylostella (L.) (Lepidoptera: Plutellidae), but not much is known about its potential as a biocontrol agent. A rearing protocol has been established for this parasitoid on pupae of the factitious host Tenebrio molitor (L.) (Coleoptera: Tenebrionidae), with the aim of releasing it in the field to manage several lepidopteran species. The potential population growth of a parasitoid can be measured through fertility life tables and provide supporting information for using T. howardi in the management of P. xylostella. Also, the fitness and behavior of T. howardi reared on a factitious host can be indicators of its potential to control P. xylostella. Thus, in this study, the fertility life table parameters of T. howardi parasitizing P. xylostella were determined, as well as the effects of the natal host on the behavior of T. howardi towards host volatiles and parasitism rate. The results showed that net reproduction rate (Ro) and the intrinsic rate of population growth (rm) of T. howardi parasitizing P. xylostella were 13.6 (♀/♀) and 0.124 (♀/♀*day), respectively, whereas the mean generation time was 20.9 days. Moreover, the natal host (T. molitor or P. xylostella) did not affect the fitness, parasitism rate, or olfactory response of T. howardi. In general, regardless of the natal host, parasitoid females responded to volatiles of both host species and exhibited the same rate of parasitism on P. xylostella. Therefore, T. howardi reared on the factitious host maintains its attraction and potential to parasitize P. xylostella, and can contribute to the biological control of this pest.


Subject(s)
Coleoptera , Hymenoptera , Moths , Tenebrio , Female , Animals , Hymenoptera/physiology , Life Tables , Smell , Fertility , Larva
SELECTION OF CITATIONS
SEARCH DETAIL