Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.488
Filter
1.
Sci Rep ; 14(1): 15791, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982268

ABSTRACT

In this work, a novel series of N-phenylacetamide-1,2,3-triazole-indole-2-carboxamide derivatives 5a-n were designed by consideration of the potent α-glucosidase inhibitors containing indole and carboxamide-1,2,3-triazole-N-phenylacetamide moieties. These compounds were synthesized by click reaction and evaluated against yeast α-glucosidase. All the newly title compounds demonstrated superior potency when compared with acarbose as a standard inhibitor. Particularly, compound 5k possessed the best inhibitory activity against α-glucosidase with around a 28-fold improvement in the inhibition effect in comparison standard inhibitor. This compound showed a competitive type of inhibition in the kinetics. The molecular docking and dynamics demonstrated that compound 5k with a favorable binding energy well occupied the active site of α-glucosidase.


Subject(s)
Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Triazoles , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Drug Design , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Structure-Activity Relationship , Saccharomyces cerevisiae/enzymology , Kinetics
2.
Org Lett ; 26(27): 5764-5769, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38958211

ABSTRACT

The structure-activity relationship of the unusual indolosesquiterpenoid mycoleptodiscin A is unknown due to natural scarcity and inefficient synthesis. A modular approach leveraging Larock indole synthesis has been established to access mycoleptodiscin A and a divergent collection of drimenyl indoles. It features the utilization of an inexpensive (+)-sclareolide, modularity, purification-economy, and scalability, which facilitates the first biological evaluation of mycoleptodiscin A and related precursors.


Subject(s)
Indoles , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Molecular Structure , Structure-Activity Relationship , Sesquiterpenes/chemistry , Sesquiterpenes/chemical synthesis , Sesquiterpenes/pharmacology , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Stereoisomerism
3.
Eur J Med Chem ; 275: 116617, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38959729

ABSTRACT

Agents that cause apoptotic cell death by interfering with tubulin dynamics, such as vinblastine and paclitaxel, are an important class of chemotherapeutics. Unfortunately, these compounds are substrates for multidrug resistance (MDR) pumps, allowing cancer cells to gain resistance to these chemotherapeutics. The indolesulfonamide family of tubulin inhibitors are not excluded by MDR pumps and have a promising activity profile, although their high lipophilicity is a pharmacokinetic limitation for their clinical use. Here we present a new family of N-indolyl-3,4,5-trimethoxybenzenesulfonamide derivatives with modifications on the indole system at positions 1 and 3 and on the sulfonamide nitrogen. We synthesized and screened against HeLa cells 34 novel indolic benzenesulfonamides. The most potent derivatives (1.7-109 nM) were tested against a broad panel of cancer cell lines, which revealed that substituted benzenesulfonamides analogs had highest potency. Importantly, these compounds were only moderately toxic to non-tumorigenic cells, suggesting the presence of a therapeutic index. Consistent with known clinical anti-tubulin agents, these compounds arrested the cell cycle at G2/M phase. Mechanistically, they induced apoptosis via caspase 3/7 activation, which occurred during M arrest. The substituents on the sulfonamide nitrogen appeared to determine different mechanistic results and cell fates. These results suggest that the compounds act differently depending on the bridge substituents, thus making them very interesting as mechanistic probes as well as potential drugs for further development.


Subject(s)
Antineoplastic Agents , Apoptosis , Benzenesulfonamides , Cell Proliferation , Drug Screening Assays, Antitumor , Indoles , Sulfonamides , Humans , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Apoptosis/drug effects , Molecular Structure , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Dose-Response Relationship, Drug , Nitrogen/chemistry , Cell Line, Tumor , HeLa Cells , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Tubulin Modulators/chemical synthesis
4.
ACS Infect Dis ; 10(6): 1958-1969, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38841740

ABSTRACT

About 100,000 deaths are attributed annually to infections with methicillin-resistant Staphylococcus aureus (MRSA) despite concerted efforts toward vaccine development and clinical trials involving several preclinically efficacious drug candidates. This necessitates the development of alternative therapeutic options against this drug-resistant bacterial pathogen. Using the Masuda borylation-Suzuki coupling (MBSC) sequence, we previously synthesized and modified naturally occurring bisindole alkaloids, alocasin A, hyrtinadine A and scalaradine A, resulting in derivatives showing potent in vitro and in vivo antibacterial efficacy. Here, we report on a modified one-pot MBSC protocol for the synthesis of previously reported and several undescribed N-tosyl-protected bisindoles with anti-MRSA activities and moderate cytotoxicity against human monocytic and kidney cell lines. In continuation of the mode of action investigation of the previously synthesized membrane-permeabilizing hit compounds, mechanistic studies reveal that bisindoles impact the cytoplasmic membrane of Gram-positive bacteria by promiscuously interacting with lipid II and membrane phospholipids while rapidly dissipating membrane potential. The bactericidal and lipid II-interacting lead compounds 5c and 5f might be interesting starting points for drug development in the fight against MRSA.


Subject(s)
Anti-Bacterial Agents , Indole Alkaloids , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Humans , Indole Alkaloids/pharmacology , Indole Alkaloids/chemistry , Indole Alkaloids/chemical synthesis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Cell Line , Structure-Activity Relationship , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Molecular Structure
5.
Bioorg Med Chem ; 108: 117786, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38843656

ABSTRACT

An efficient protocol for direct coupling of maleimides and indolines at the C7-position was achieved under Rh(III) catalysis. Thirty four novel indoline-maleimide conjugates were prepared in good to excellent yields using this method. All compounds were evaluated for their anti-proliferative effect against colorectal cell lines. Among them, compound 3ab showed the most potent anti-proliferative activity against the CRC cells, and displayed low toxicity in the normal cell. Further investigation indicated that 3ab could effectively suppress the proliferation and migration of CRC cells, along with inducing cell cycle arrest and apoptosis. Mechanistic studies revealed that compound 3ab inhibited the proliferation of CRC cells via suppressing the AKT/GSK-3ß pathway. In vivo evaluation demonstrated remarkable antitumor effect of 3ab (10 mg/kg) in the HCT116 xenograft model with no obvious toxicity, which is superior to that of 5-Fluorouracil (20 mg/kg). Therefore, conjugate 3ab could be considered as a potential CRC therapy agent for further development.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Colorectal Neoplasms , Drug Design , Drug Screening Assays, Antitumor , Indoles , Maleimides , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Maleimides/chemistry , Maleimides/chemical synthesis , Maleimides/pharmacology , Cell Proliferation/drug effects , Animals , Structure-Activity Relationship , Apoptosis/drug effects , Molecular Structure , Mice , Dose-Response Relationship, Drug , Mice, Nude , Cell Line, Tumor , Mice, Inbred BALB C , Cell Movement/drug effects
6.
Bioorg Med Chem ; 109: 117778, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38870714

ABSTRACT

Indole based glycosides belong to the class of pharmacologically active molecules and found in diverse natural compounds. Herein, we report the synthesis of 1,2,3-triazole bridged chirally enriched diverse indole-chalcones based glycohybrids. Three series of glycohybrids were designed and efficiently synthesized using d-glucose, d-galactose and d-mannose derived 1-azido glycosides. The reactions sequence involved were, the synthesis of indole derived chalcones which were formed via Claisen-Schmidt condensation reaction and subsequently N-propargylation which leads to the production of N-propargylated indole-chalcones. The N-propargylated indole-chalcones get transformed into 1,2,3-triazole bridged indole-chalcone based glycohybrids by reacting with 1-azido sugar glycosides under click-chemistry reaction conditions. Further, the biological activity of synthesized glycohybrids (n = 27) was assessed in-vitro against MDA-MB231, MCF-7, MDA-MB453 cancer, and MCF-10A normal cell lines. The selected compounds showed potent anti-oncogenic properties against MCF-7 and MDA-MB231 breast cancer cell line with IC50 values of 1.05 µM and 11.40 µM respectively, with very good selectivity index (SI > 161). The active compounds show better binding affinity as compared to co-crystallized inhibitor 1-(tert-butyl)-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP1) with HCK (PTKs) proteins in molecular docking studies.


Subject(s)
Antineoplastic Agents , Chalcones , Drug Screening Assays, Antitumor , Indoles , Humans , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Cell Line, Tumor , Molecular Structure , Glycosides/chemistry , Glycosides/chemical synthesis , Glycosides/pharmacology , Molecular Docking Simulation , Dose-Response Relationship, Drug
7.
Bioorg Med Chem ; 109: 117799, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38897138

ABSTRACT

Natural products as starting templates have shown historically major contribution to development of drugs. Inspired by the structure-function of an anticancer natural alkaloid Rutaecarpine, the Scaffold-hopped Acyclic Analogues of Rutaecarpine (SAAR) with 'N'-atom switch (1°-hop) and ring-opening (2°-hop) were investigated. A new synthetic route was developed for an effective access to the analogues, i.e. 2-indolyl-pyrido[1,2-a]pyrimidinones, which involved preparation of N-Boc-N'-phthaloyltryptamine/mexamine-bromides and pyridopyrmidinon-2-yl triflate, a nickel/palladium-catalysed Ullmann cross-coupling of these bromides and triflate, deprotection of phthalimide followed by N-aroylation, and Boc-deprotection. Fourteen novel SAAR-compounds were prepared, and they showed characteristic antiproliferative activity against various cancer cells. Three most active compounds (11a, 11b, and 11c) exhibited good antiproliferative activity, IC50 7.7-15.8 µM against human breast adenocarcinoma cells (MCF-7), lung cancer cells (A549), and colon cancer cells (HCT-116). The antiproliferative property was also observed in the colony formation assay. The SAAR compound 11b was found to have superior potency than original natural product Rutaecarpine and an anticancer drug 5-FU in antiproliferative activities with relatively lower cytotoxicity towards normal breast epithelial cells (MCF10A) and significantly higher inhibitory effect on cancer cells' migration. The compound 11b was found to possess favourable in silico physicochemical characteristics (lipophilicity-MLOGP, TPSA, and water solubility-ESOL, and others), bioavailability score, and pharmacokinetic properties (GI absorption, BBB non-permeant, P-gp, and CYP2D6). Interestingly, the compound 11b did not show any medicinal chemistry structural alert of PAINS and Brenk filter. The study represents for the first time the successful discovery of new potent anticancer chemotypes using Rutaecarpine natural alkaloid as starting template and reaffirms the significance of natural product-inspired scaffold-hopping technique in drug discovery research.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Indole Alkaloids , Quinazolines , Humans , Quinazolines/chemistry , Quinazolines/pharmacology , Quinazolines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Indole Alkaloids/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Cell Line, Tumor , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Pyrimidinones/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Dose-Response Relationship, Drug , Quinazolinones
8.
Eur J Med Chem ; 274: 116538, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38823264

ABSTRACT

DNA methyltransferase 1 (DNMT1) is the primary enzyme responsible for maintaining DNA methylation patterns during cellular division, crucial for cancer development by suppressing tumor suppressor genes. In this study, we retained the phthalimide structure of N-phthaloyl-l-tryptophan (RG108) and substituted its indole ring with nitrogen-containing aromatic rings of varying sizes. We synthesized 3-(9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acids and confirmed them as DNMT1 inhibitors through protein affinity testing, radiometric method using tritium labeled SAM, and MTT assay. Preliminary structure-activity relationship analysis revealed that introducing substituents on the carbazole ring could enhance inhibitory activity, with S-configuration isomers showing greater activity than R-configuration ones. Notably, S-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acid (7r-S) and S-3-(1,3,6-trichloro-9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acid (7t-S) exhibited significant DNMT1 enzyme inhibition activity, with IC50 values of 8.147 µM and 0.777 µM, respectively (compared to RG108 with an IC50 above 250 µM). Moreover, they demonstrated potential anti-proliferative activity on various tumor cell lines including A2780, HeLa, K562, and SiHa. Transcriptome analysis and KEGG pathway enrichment of K562 cells treated with 7r-S and 7t-S identified differentially expressed genes (DEGs) related to apoptosis and cell cycle pathways. Flow cytometry assays further indicated that 7r-S and 7t-S induce apoptosis in K562 cells and arrest them in the G0/G1 phase in a concentration-dependent manner. Molecular docking revealed that 7t-S may bind to the methyl donor S-adenosyl-l-methionine (SAM) site in DNMT1 with an orientation opposite to RG108, suggesting potential for deeper penetration into the DNMT1 pocket and laying the groundwork for further modifications.


Subject(s)
Carbazoles , Cell Proliferation , DNA (Cytosine-5-)-Methyltransferase 1 , Enzyme Inhibitors , Humans , Structure-Activity Relationship , Carbazoles/pharmacology , Carbazoles/chemistry , Carbazoles/chemical synthesis , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Molecular Docking Simulation , Cell Line, Tumor , Phthalimides , Tryptophan/analogs & derivatives
9.
J Med Chem ; 67(11): 9227-9259, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38833507

ABSTRACT

The marine metabolite diazonamide A exerts low nanomolar cytotoxicity against a range of tumor cell lines; however, its highly complex molecular architecture undermines the therapeutic potential of the natural product. We demonstrate that truncation of heteroaromatic macrocycle in natural diazonamide A, combined with the replacement of the challenging-to-synthesize tetracyclic hemiaminal subunit by oxindole moiety leads to considerably less complex analogues with improved drug-like properties and nanomolar antiproliferative potency. The structurally simplified macrocycles are accessible in 12 steps from readily available indolin-2-one and tert-leucine with excellent diastereoselectivity (99:1 dr) in the key macrocyclization step. The most potent macrocycle acts as a tubulin assembly inhibitor and exerts similar effects on A2058 cell cycle progression and induction of apoptosis as does marketed microtubule-targeting agent vinorelbine.


Subject(s)
Antineoplastic Agents , Apoptosis , Microtubules , Tubulin Modulators , Humans , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Tubulin Modulators/chemical synthesis , Cell Line, Tumor , Microtubules/drug effects , Microtubules/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Structure-Activity Relationship , Cell Proliferation/drug effects , Cell Cycle/drug effects , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/chemical synthesis , Drug Screening Assays, Antitumor , Stereoisomerism , Tubulin/metabolism , Tubulin/chemistry , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Heterocyclic Compounds, 4 or More Rings , Oxazoles
10.
Dalton Trans ; 53(27): 11354-11367, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38919040

ABSTRACT

In this study, 2(3),9(10),16(17),23(24)-tetrakis-[(N-methyl-(1-benzylpiperidin-4-yl)oxy)phthalocyaninato]zinc(II) iodide (ZnPc-2) was synthesized and characterized using spectral methods (FT-IR, 1H-NMR, UV-Vis and mass spectroscopy). The interaction of ZnPc-2 with DNA was investigated by using the UV/Vis titrimetric method, thermal denaturation profile, agarose gel electrophoresis and molecular docking studies. Additionally, the antidiabetic activity of ZnPc-2 was revealed spectroscopically by studying α-amylase and α-glucosidase inhibition activities. The spectroscopic results indicated that ZnPc-2 effectively binds to calf thymus-DNA (CT-DNA) with a Kb value of 7.5 × 104 M-1 and interacts with CT-DNA via noncovalent binding mode. Gel electrophoresis results also show that ZnPc-2 binds strongly to DNA molecules and exhibits effective nuclease activity even at low concentrations. Furthermore, docking studies suggest that ZnPc-2 exhibits a stronger binding tendency with DNA than the control compounds ethidium bromide and cisplatin. Consequently, due to its strong DNA binding and nuclease activity, ZnPc-2 may be suitable for antimicrobial and anticancer applications after further toxicological tests. Additionally, antidiabetic studies showed that ZnPc-2 had both α-amylase and α-glucosidase inhibition activity. Moreover, the α-glucosidase inhibitory effect of ZnPc-2 was approximately 3500 times higher than that of the standard inhibitor, acarbose. Considering these results, it can be said that ZnPc-2 is a moderate α-amylase and a highly effective α-glucosidase inhibitor. This suggests that ZnPc-2 may have the potential to be used as a therapeutic agent for the treatment of type 2 diabetes.


Subject(s)
DNA , Glycoside Hydrolase Inhibitors , Indoles , Isoindoles , Molecular Docking Simulation , alpha-Amylases , alpha-Glucosidases , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , alpha-Glucosidases/metabolism , DNA/metabolism , DNA/chemistry , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Water/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Organometallic Compounds/chemical synthesis , Solubility , Animals , Cattle , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Zinc Compounds
11.
Acta Chim Slov ; 71(2): 334-352, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38919105

ABSTRACT

The Re(I) organometallic compounds [(Re(CO)3L1-6 )Cl], where Ligand(L) = Tryptanthrin derivatives were prepared and characterized by various spectroscopic techniques. To assess the binding capacities and binding manner, tests of Calf thymus DNA under the impact of organometallic complexes were conducted using absorption titration and viscosity measuring techniques. Data from the research mentioned above point to an intercalation type of binding, which was verified by the docking study. Swiss ADME tools carried out an ADME study. The work focuses on computing the molecular orbital energies for the synthesized compounds using the density functional theory (DFT). The compounds were tested against the MCF-7 cell line to determine their anticancer effects. It was observed that their IC50 values were equivalent to those of the standard medication, indicating that they had a similar antiproliferative impact.


Subject(s)
Antineoplastic Agents , Rhenium , Rhenium/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , MCF-7 Cells , Cell Proliferation/drug effects , Organometallic Compounds/pharmacology , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Molecular Docking Simulation , DNA/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Density Functional Theory , Cattle , Quinazolinones/chemical synthesis , Quinazolinones/pharmacology , Quinazolinones/chemistry , Molecular Structure , Animals , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis
12.
Org Biomol Chem ; 22(24): 4987-4992, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38832875

ABSTRACT

Few synthetic ion transporters have been reported incorporating indole as the core moiety. We have developed a novel bisindole-based transporter capable of efficient transmembrane anion antiport. This system induced cytotoxicity in MCF-7 breast cancer cells via chloride ion homeostasis disruption and the associated ROS generation, mitochondrial membrane depolarization, and lysosomal deacidification.


Subject(s)
Antineoplastic Agents , Indoles , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , MCF-7 Cells , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Drug Screening Assays, Antitumor , Molecular Structure , Ion Transport/drug effects , Cell Proliferation/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship
13.
Org Biomol Chem ; 22(27): 5603-5607, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38904084

ABSTRACT

The synthesis of the ethyl ester analogue of the ultrapotent antitumour antibiotic seco-duocarmycin SA has been achieved in eleven linear steps from commercially available starting materials. The DSA alkylation subunit can be made in ten linear steps from the same precursor. The route involves C-H activation at the equivalent of the C7 position on indole leading to a borylated intermediate 9 that is stable enough for peptide coupling reactions but can be easily converted to the free hydroxyl analogue.


Subject(s)
Duocarmycins , Indoles , Iridium , Catalysis , Indoles/chemistry , Indoles/chemical synthesis , Iridium/chemistry , Molecular Structure , Pyrroles/chemistry , Pyrroles/chemical synthesis , Boron Compounds/chemistry , Boron Compounds/chemical synthesis
14.
Eur J Med Chem ; 275: 116575, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38865744

ABSTRACT

Hepatitis B virus (HBV) infection, as a serious global public health issue, is closely related to the immune dysfunction. Herein, thirty-seven 1-(indolin-1-yl)-2-(thiazol-4-yl)ethan-1-one derivatives were prepared as potential immunomodulatory anti-HBV agents. Anti-HBV activity evaluation confirmed compound 11a could significantly suppress the HBV DNA replication in both wild and resistant HBV stains, with IC50 values of 0.13 µM and 0.36 µM, respectively. Preliminary action mechanism studies showed that 11a had an inhibitory effect on cellular HBsAg secretion and could effectively activate TLR7, thereby inducing the secretion of TLR7-regulated cytokines IL-12, TNF-α and IFN-α in human PBMC cells. SPR analysis confirmed that 11a could bind to TLR7 protein with an affinity of 7.06 µM. MD simulation predicted that 11a could form tight interactions with residues in the binding pocket of TLR7. Physicochemical parameters perdition and pharmacokinetic analysis indicated that 11a displayed relatively favorable drug-like properties. Considering all the results, compound 11a might be a promising lead for developing novel immunomodulatory anti-HBV agents.


Subject(s)
Antiviral Agents , Hepatitis B virus , Toll-Like Receptor 7 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Hepatitis B virus/drug effects , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/agonists , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Virus Replication/drug effects , Microbial Sensitivity Tests , Animals , Hep G2 Cells
15.
Bioorg Chem ; 148: 107481, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795583

ABSTRACT

Atopic dermatitis is a chronic inflammatory skin disease characterized by intense itching and frequent skin barrier dysfunctions. EGR-1 is a transcription factor that aggravates the pathogenesis of atopic dermatitis by promoting the production of various inflammatory cytokines. Three 2-(2-oxoindolin-3-ylidene)hydrazinecarbothioamides (IT21, IT23, and IT25) were identified as novel inhibitors of EGR-1 DNA-binding activity. In silico docking experiments were performed to elucidate the binding conditions of the EGR-1 zinc-finger (ZnF) DNA-binding domain. Electrophoretic mobility shift assays confirmed the targeted binding effect on the EGR-1 ZnF DNA-binding domain, leading to dose-dependent dissociation of the EGR-1-DNA complex. At the functional cellular level, IT21, IT23, and IT25 effectively reduced mRNA expression of TNFα-induced EGR-1-regulated inflammatory genes, particularly in HaCaT keratinocytes inflamed by TNFα. In the in vivo efficacy study, IT21, IT23, and IT25 demonstrated the potential to alleviate atopic dermatitis-like skin lesions in the ear skin of BALB/c mice. These findings suggest that targeting the EGR-1 ZnF DNA-binding domain with 2-(2-oxoindolin-3-ylidene)hydrazinecarbothioamide derivatives (IT21, IT23, and IT25) could serve as lead compounds for the development of potential therapeutic agents against inflammatory skin disorders, including atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Drug Design , Early Growth Response Protein 1 , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Humans , Animals , Mice , Structure-Activity Relationship , Early Growth Response Protein 1/antagonists & inhibitors , Early Growth Response Protein 1/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , Mice, Inbred BALB C , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Hydrazines/pharmacology , Hydrazines/chemistry , Hydrazines/chemical synthesis
16.
Org Lett ; 26(22): 4700-4704, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38804550

ABSTRACT

Cp2Fe-mediated electrochemical synthesis of phosphorylated indoles and Trp-containing oligopeptides has been developed, which eliminates the need for external oxidants and yields the desired products in moderate to excellent yields under mild conditions. Importantly, the synthetic applicability was further demonstrated through its easy scalability and the anticancer activity of the product. Remarkably, it presents the first electrochemical protocol to access the phosphorylation of indoles and Trp-containing oligopeptides.


Subject(s)
Indoles , Oligopeptides , Indoles/chemistry , Indoles/chemical synthesis , Phosphorylation , Oligopeptides/chemistry , Oligopeptides/chemical synthesis , Molecular Structure , Tryptophan/chemistry , Electrochemical Techniques , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans
17.
J Org Chem ; 89(12): 8620-8631, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38809696

ABSTRACT

The short and first total synthesis of (+)-colletotryptins B-D, ent-colletotryptin A, and diastereomer of mucronatin B, which are a group of natural 3-(indol-2-yl)-3-(indol-3-yl)-1,2-propanediol (IIPDO) analogues containing two stereogenic centers at the C8' and C9' positions, isolated from endophytic fungus Colletotrichum sp. SC1355 and Tetrapterys mucronata, respectively, has been successfully accomplished in two and three steps with overall yields ranging from 28 to 54%. Key features of this synthesis include an innovative Bi(OTf)3-catalyzed stereoselective transindolylation of (S)-3,3'-di(1H-indol-3-yl)propane-1,2-diol. The operational simplicity, environmentally friendly catalyst, and broad functional group tolerance of this modular strategy render it suitable for adoption in both academic and industrial settings.


Subject(s)
Indoles , Stereoisomerism , Molecular Structure , Indoles/chemistry , Indoles/chemical synthesis , Catalysis , Colletotrichum/chemistry
18.
Top Curr Chem (Cham) ; 382(2): 18, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758483

ABSTRACT

Indole, a ubiquitous and structurally versatile aromatic compound, has emerged as a key player in the synthesis of diverse heterocyclic frameworks via cycloaddition reactions. These reactions are completely atom-economical and, hence, are considered as green reactions. This review article provides a comprehensive overview of the pivotal role played by indole in the construction of complex and biologically relevant heterocyclic compounds. Here we explore the chemistry of indole-based cycloadditions, highlighting their synthetic utility in accessing a wide array of heterocyclic architectures, including cyclohepta[b]indoles, tetrahydrocarbazoles, tetrahydroindolo[3,2-c]quinoline, and indolines, among others. Additionally, we discuss the mechanistic insights that underpin these transformations, emphasizing the strategic importance of indole as a building block. The content of this article will certainly encourage the readers to explore more work in this area.


Subject(s)
Cycloaddition Reaction , Heterocyclic Compounds , Indoles , Indoles/chemistry , Indoles/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Molecular Structure
19.
Eur J Med Chem ; 273: 116498, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38762916

ABSTRACT

The progressive emergence of SARS-CoV-2 variants has necessitated the urgent exploration of novel therapeutic strategies to combat the COVID-19 pandemic. The SARS-CoV-2 main protease (Mpro) represents an evolutionarily conserved therapeutic target for drug discovery. This study highlights the discovery of meisoindigo (Mei), derived from the traditional Chinese medicine (TCM) Indigo naturalis, as a novel non-covalent and nonpeptidic Mpro inhibitor. Substantial optimizations and structure-activity relationship (SAR) studies, guided by a structure-based drug design approach, led to the identification of several Mei derivatives, including S5-27 and S5-28, exhibiting low micromolar inhibition against SARS-CoV-2 Mpro with high binding affinity. Notably, S5-28 provided significant protection against wild-type SARS-CoV-2 in HeLa-hACE2 cells, with EC50 up to 2.66 µM. Furthermore, it displayed favorable physiochemical properties and remarkable gastrointestinal and metabolic stability, demonstrating its potential as an orally bioavailable drug for anti-COVID-19 therapy. This research presents a promising avenue for the development of new antiviral agents, offering hope in the ongoing battle against COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , SARS-CoV-2 , Humans , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Structure-Activity Relationship , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Drug Discovery , Administration, Oral , Animals , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , HeLa Cells , COVID-19/virology , Molecular Structure , Rats , Microbial Sensitivity Tests , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/therapeutic use , Molecular Docking Simulation , Drug Design
20.
J Agric Food Chem ; 72(22): 12434-12444, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775141

ABSTRACT

A series of novel isoindoline-1-one derivatives containing piperidine moiety were designed and synthesized using natural compounds as raw materials, and their biological activities were tested for three bacterial and three fungal pathogens. These derivatives exhibited good against phytopathogenic bacteria activities against Pseudomonas syringae pv actinidiae (Psa) and Xanthomonas axonopodis pv.citri (Xac). Some compounds exhibited excellent antibacterial activities against Xanthomonas oryzae pv oryzae (Xoo). The dose of Y8 against Xoo (the maximum half lethal effective concentration (EC50) = 21.3 µg/mL) was better than that of the thiediazole copper dose (EC50 = 53.3 µg/mL). Excitingly, further studies have shown that the molecular docking of Y8 with 2FBW indicates that it can fully locate the interior of the binding pocket through hydrogen bonding and hydrophobic interactions, thereby enhancing its anti-Xoo activity. Scanning electron microscopy (SEM) studies revealed that Y8 induced the Xoo cell membrane collapse. Moreover, the proteomic results also indicate that Y8 may be a multifunctional candidate as it affects the formation of bacterial Xoo biofilms, thereby exerting antibacterial effects.


Subject(s)
Anti-Bacterial Agents , Drug Design , Molecular Docking Simulation , Piperidines , Xanthomonas , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Xanthomonas/drug effects , Xanthomonas/growth & development , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/chemical synthesis , Structure-Activity Relationship , Microbial Sensitivity Tests , Pseudomonas syringae/drug effects , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL