Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 355
Filter
1.
Bioorg Chem ; 151: 107703, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39137601

ABSTRACT

Sporadically and periodically, influenza outbreaks threaten global health and the economy. Antigen drift-induced influenza virus mutations hamper antiviral drug development. Thus, a novel antiviral agent is urgently needed to address medication inefficacy issues. Herein, sixteen new quinoline-triazole hybrids 6a-h and 9a-h were prepared and evaluated in vitro against the H1N1 virus. In particular, 6d, 6e, and 9b showed promising H1N1 antiviral activity with selective index (SI) CC50/IC50 values of 15.8, 37, and 29.15. After that, the inhibition rates for various mechanisms of action (virus replication, adsorption, and virucidal activity) were investigated for the most efficient candidates 6d, 6e, and 9b. Additionally, their ability to inhibit neuraminidase was evaluated. With an IC50 value of 0.30 µM, hybrid 6d demonstrated effective and comparable inhibitory activity to Oseltamivir. Ultimately, molecular modeling investigations, encompassing molecular docking and molecular dynamic simulations, were conducted to provide a scientific basis for the observed antiviral results.


Subject(s)
Antiviral Agents , Dose-Response Relationship, Drug , Enzyme Inhibitors , Influenza A Virus, H1N1 Subtype , Neuraminidase , Quinolines , Triazoles , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/enzymology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Molecular Structure , Humans , Microbial Sensitivity Tests , Drug Discovery , Molecular Docking Simulation
2.
Viruses ; 16(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39066271

ABSTRACT

The unexpected emergence of oseltamivir-resistant A(H1N1) viruses in 2008 was facilitated in part by the establishment of permissive secondary neuraminidase (NA) substitutions that compensated for the fitness loss due to the NA-H275Y resistance substitution. These viruses were replaced in 2009 by oseltamivir-susceptible A(H1N1)pdm09 influenza viruses. Genetic analysis and screening of A(H1N1)pdm09 viruses circulating in Germany between 2009 and 2024 were conducted to identify any potentially synergistic or resistance-associated NA substitutions. Selected viruses were then subjected to further characterization in vitro. In the NA gene of circulating A(H1N1)pdm09 viruses, two secondary substitutions, NA-V241I and NA-N369K, were identified. These substitutions demonstrated a stable lineage in phylogenetic analysis since the 2010-2011 influenza season. The data indicate a slight increase in viral NA bearing two additional potentially synergistic substitutions, NA-I223V and NA-S247N, in the 2023-2024 season, which both result in a slight reduction in susceptibility to NA inhibitors. The accumulation of secondary synergistic substitutions in the NA of A(H1N1)pdm09 viruses increases the probability of the emergence of antiviral-resistant viruses. Therefore, it is crucial to closely monitor the evolution of circulating influenza viruses and to develop additional antiviral drugs against different target proteins.


Subject(s)
Antiviral Agents , Drug Resistance, Viral , Evolution, Molecular , Influenza A Virus, H1N1 Subtype , Influenza, Human , Mutation , Neuraminidase , Oseltamivir , Phylogeny , Viral Proteins , Neuraminidase/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/enzymology , Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Humans , Influenza, Human/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Oseltamivir/pharmacology , Germany , Amino Acid Substitution , Animals , Dogs
3.
J Virol ; 96(15): e0091822, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35867563

ABSTRACT

Oseltamivir-resistant influenza viruses arise due to amino acid mutations in key residues of the viral neuraminidase (NA). These changes often come at a fitness cost; however, it is known that permissive mutations in the viral NA can overcome this cost. This result was observed in former seasonal A(H1N1) viruses in 2007 which expressed the H275Y substitution (N1 numbering) with no apparent fitness cost and lead to widespread oseltamivir resistance. Therefore, this study aims to predict permissive mutations that may similarly enable fit H275Y variants to arise in currently circulating A(H1N1)pdm09 viruses. The first approach in this study utilized in silico analyses to predict potentially permissive mutations. The second approach involved the generation of a virus library which encompassed all possible NA mutations while keeping H275Y fixed. Fit variants were then selected by serially passaging the virus library either through ferrets by transmission or passaging once in vitro. The fitness impact of selected substitutions was further evaluated experimentally. The computational approach predicted three candidate permissive NA mutations which, in combination with each other, restored the replicative fitness of an H275Y variant. The second approach identified a stringent bottleneck during transmission between ferrets; however, three further substitutions were identified which may improve transmissibility. A comparison of fit H275Y variants in vitro and in experimentally infected animals showed a statistically significant correlation in the variants that were positively selected. Overall, this study provides valuable tools and insights into potential permissive mutations that may facilitate the emergence of a fit H275Y A(H1N1)pdm09 variant. IMPORTANCE Oseltamivir (Tamiflu) is the most widely used antiviral for the treatment of influenza infections. Therefore, resistance to oseltamivir is a public health concern. This study is important as it explores the different evolutionary pathways available to current circulating influenza viruses that may lead to widespread oseltamivir resistance. Specifically, this study develops valuable experimental and computational tools to evaluate the fitness landscape of circulating A(H1N1)pmd09 influenza viruses bearing the H275Y mutation. The H275Y substitution is most commonly reported to confer oseltamivir resistance but also leads to loss of virus replication and transmission fitness, which limits its spread. However, it is known from previous influenza seasons that influenza viruses can evolve to overcome this loss of fitness. Therefore, this study aims to prospectively predict how contemporary A(H1N1)pmd09 influenza viruses may evolve to overcome the fitness cost of bearing the H275Y NA substitution, which could result in widespread oseltamivir resistance.


Subject(s)
Amino Acid Substitution , Drug Resistance, Viral , Genetic Fitness , Influenza A Virus, H1N1 Subtype , Mutation , Neuraminidase , Viral Proteins , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Computer Simulation , Disease Models, Animal , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Ferrets/virology , Genetic Fitness/genetics , Humans , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/drug therapy , Influenza, Human/transmission , Influenza, Human/virology , Neuraminidase/genetics , Neuraminidase/metabolism , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Viral Proteins/genetics , Viral Proteins/metabolism
4.
J Virol ; 96(9): e0033222, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35446141

ABSTRACT

Influenza virus neuraminidase (NA)-targeting antibodies are an independent correlate of protection against influenza. Antibodies against the NA act by blocking enzymatic activity, preventing virus release and transmission. As we advance the development of improved influenza virus vaccines that incorporate standard amounts of NA antigen, it is important to identify the antigenic targets of human monoclonal antibodies (mAbs). Here, we describe escape mutants generated by serial passage of A/Netherlands/602/2009 (H1N1)pdm09 in the presence of human anti-N1 mAbs. We observed escape mutations on the head domain of the N1 protein around the enzymatic site (S364N, N369T, and R430Q) and also detected escape mutations located on the sides and bottom of the NA (N88D, N270D, and Q313K/R). This work increases our understanding of how human antibody responses target the N1 protein. IMPORTANCE As improved influenza virus vaccines are being developed, the influenza virus neuraminidase (NA) is becoming an important new target for immune responses. By identifying novel epitopes of anti-NA antibodies, we can improve vaccine design. Additionally, characterizing escape mutations in these epitopes aids in identifying NA antigenic drift in circulating viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Antibodies, Monoclonal , Antibodies, Viral/metabolism , Epitopes/immunology , Humans , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/virology , Mutation , Neuraminidase/chemistry , Neuraminidase/genetics , Neuraminidase/immunology
5.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162999

ABSTRACT

Influenza (IAV) neuraminidase (NA) is a glycoprotein required for the viral exit from the cell. NA requires disulfide bonds for proper function. We have recently demonstrated that protein disulfide isomerase (PDI)A3 is required for oxidative folding of IAV hemagglutinin (HA), and viral propagation. However, it not known whether PDIs are required for NA maturation or if these interactions represent a putative target for the treatment of influenza infection. We sought to determine whether PDIA3 is required for disulfide bonds of NA, its activity, and propagation of the virus. Requirement of disulfides for NA oligomerization and activity were determined using biotin switch and redox assays in WT and PDIA3-/- in A549 cells. A PDI specific inhibitor (LOC14) was utilized to determine the requirement of PDIs in NA activity, IAV burden, and inflammatory response in A549 and primary mouse tracheal epithelial cells. Mice were treated with the inhibitor LOC14 and subsequently examined for IAV burden, NA activity, cytokine, and immune response. IAV-NA interacts with PDIA3 and this interaction is required for NA activity. PDIA3 ablation or inhibition decreased NA activity, viral burden, and inflammatory response in lung epithelial cells. LOC14 treatment significantly attenuated the influenza-induced inflammatory response in mice including the overall viral burden. These results provide evidence for PDIA3 inhibition suppressing NA activity, potentially providing a novel platform for host-targeted antiviral therapies.


Subject(s)
Enzyme Inhibitors/administration & dosage , Influenza A Virus, H1N1 Subtype/enzymology , Neuraminidase/metabolism , Orthomyxoviridae Infections/drug therapy , Protein Disulfide-Isomerases/metabolism , Viral Proteins/metabolism , A549 Cells , Animals , Cells, Cultured , Disease Models, Animal , Dogs , Enzyme Inhibitors/pharmacology , Female , Humans , Madin Darby Canine Kidney Cells , Mice , Neuraminidase/chemistry , Orthomyxoviridae Infections/metabolism , Primary Cell Culture , Protein Folding , Trachea/cytology , Trachea/drug effects , Trachea/metabolism , Trachea/virology , Viral Proteins/chemistry
6.
J Virol ; 96(6): e0198221, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35045267

ABSTRACT

Many oseltamivir resistance mutations exhibit fitness defects in the absence of drug pressure that hinders their propagation in hosts. Secondary permissive mutations can rescue fitness defects and facilitate the segregation of resistance mutations in viral populations. Previous studies have identified a panel of permissive or compensatory mutations in neuraminidase (NA) that restore the growth defect of the predominant oseltamivir resistance mutation (H275Y) in H1N1 influenza A virus. In prior work, we identified a hyperactive mutation (Y276F) that increased NA activity by approximately 70%. While Y276F had not been previously identified as a permissive mutation, we hypothesized that Y276F may counteract the defects caused by H275Y by buffering its reduced NA expression and enzyme activity. In this study, we measured the relative fitness, NA activity, and surface expression, as well as sensitivity to oseltamivir, for several oseltamivir resistance mutations, including H275Y in the wild-type and Y276F genetic background. Our results demonstrate that Y276F selectively rescues the fitness defect of H275Y by restoring its NA surface expression and enzymatic activity, elucidating the local compensatory structural impacts of Y276F on the adjacent H275Y. IMPORTANCE The potential for influenza A virus (IAV) to cause pandemics makes understanding evolutionary mechanisms that impact drug resistance critical for developing surveillance and treatment strategies. Oseltamivir is the most widely used therapeutic strategy to treat IAV infections, but mutations in IAV can lead to drug resistance. The main oseltamivir resistance mutation, H275Y, occurs in the neuraminidase (NA) protein of IAV and reduces drug binding as well as NA function. Here, we identified a new helper mutation, Y276F, that can rescue the functional defects of H275Y and contribute to the evolution of drug resistance in IAV.


Subject(s)
Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype , Oseltamivir , Viral Proteins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A virus/drug effects , Influenza A virus/enzymology , Influenza A virus/genetics , Influenza, Human/drug therapy , Mutation , Neuraminidase/genetics , Neuraminidase/metabolism , Oseltamivir/pharmacology , Viral Proteins/genetics , Viral Proteins/metabolism
7.
Molecules ; 26(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34885905

ABSTRACT

Drug repurposing can quickly and effectively identify novel drug repurposing opportunities. The PA endonuclease catalytic site has recently become regarded as an attractive target for the screening of anti-influenza drugs. PA N-terminal (PAN) inhibitor can inhibit the entire PA endonuclease activity. In this study, we screened the effectivity of PAN inhibitors from the FDA database through in silico methods and in vitro experiments. PAN and mutant PAN-I38T were chosen as virtual screening targets for overcoming drug resistance. Gel-based PA endonuclease analysis determined that the drug lifitegrast can effectively inhibit PAN and PAN-I38T, when the IC50 is 32.82 ± 1.34 µM and 26.81 ± 1.2 µM, respectively. Molecular docking calculation showed that lifitegrast interacted with the residues around PA or PA-I38 T's active site, occupying the catalytic site pocket. Both PAN/PAN-I38T and lifitegrast can acquire good equilibrium in 100 ns molecular dynamic simulation. Because of these properties, lifitegrast, which can effectively inhibit PA endonuclease activity, was screened through in silico and in vitro research. This new research will be of significance in developing more effective and selective drugs for anti-influenza therapy.


Subject(s)
Antiviral Agents/pharmacology , Drug Repositioning , Endonucleases/antagonists & inhibitors , Influenza A Virus, H1N1 Subtype/enzymology , Antiviral Agents/chemistry , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/drug therapy , Molecular Docking Simulation , Viral Proteins/antagonists & inhibitors
8.
Front Immunol ; 12: 748264, 2021.
Article in English | MEDLINE | ID: mdl-34721417

ABSTRACT

Antibodies to influenza surface protein neuraminidase (NA) have been found to reduce disease severity and may be an independent correlate of protection. Despite this, current influenza vaccines have no regulatory requirements for the quality or quantity of the NA antigen and are not optimized for induction of NA-specific antibodies. Here we investigate the induction and durability of NA-specific antibody titers after pandemic AS03-adjuvanted monovalent H1N1 vaccination and subsequent annual vaccination in health care workers in a five-year longitudinal study. NA-specific antibodies were measured by endpoint ELISA and functional antibodies measured by enzyme-linked lectin assay (ELLA) and plaque reduction naturalisation assay. We found robust induction of NA inhibition (NAI) titers with a 53% seroconversion rate (>4-fold) after pandemic vaccination in 2009. Furthermore, the endpoint and NAI geometric mean titers persisted above pre-vaccination levels up to five years after vaccination in HCWs that only received the pandemic vaccine, which demonstrates considerable durability. Vaccination with non-adjuvanted trivalent influenza vaccines (TIV) in subsequent influenza seasons 2010/2011 - 2013/2014 further boosted NA-specific antibody responses. We found that each subsequent vaccination increased durable endpoint titers and contributed to maintaining the durability of functional antibody titers. Although the trivalent influenza vaccines boosted NA-specific antibodies, the magnitude of fold-increase at day 21 declined with repeated vaccination, particularly for functional antibody titers. High levels of pre-existing antibodies were associated with lower fold-induction in repeatedly vaccinated HCWs. In summary, our results show that durable NA-specific antibody responses can be induced by an adjuvanted influenza vaccine, which can be maintained and further boosted by TIVs. Although NA-specific antibody responses are boosted by annual influenza vaccines, high pre-existing titers may negatively affect the magnitude of fold-increase in repeatedly vaccinated individuals. Our results support continued development and standardization of the NA antigen to supplement current influenza vaccines and reduce the burden of morbidity and mortality.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Immunization, Secondary , Immunogenicity, Vaccine , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Neuraminidase/immunology , Adult , Female , Humans , Influenza A Virus, H1N1 Subtype/enzymology , Influenza Vaccines/administration & dosage , Male , Middle Aged , Neutralization Tests , Viral Load , Viral Plaque Assay , Young Adult
9.
Molecules ; 26(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34834044

ABSTRACT

Influenza A virus is the main cause of worldwide epidemics and annual influenza outbreaks in humans. In this study, a virtual screen was performed to identify compounds that interact with the PB2 cap-binding domain (CBD) of influenza A polymerase. A virtual screening workflow based on Glide docking was used to screen an internal database containing 8417 molecules, and then the output compounds were selected based on solubility, absorbance, and structural fingerprints. Of the 16 compounds selected for biological evaluation, six compounds were identified that rescued cells from H1N1 virus-mediated death at non-cytotoxic concentrations, with EC50 values ranging from 2.5-55.43 µM, and that could bind to the PB2 CBD of H1N1, with Kd values ranging from 0.081-1.53 µM. Molecular dynamics (MD) simulations of the docking complexes of our active compounds revealed that each compound had its own binding characteristics that differed from those of VX-787. Our active compounds have novel structures and unique binding modes with PB2 proteins, and are suitable to serve as lead compounds for the development of PB2 inhibitors. An analysis of the MD simulation also helped us to identify the dominant amino acid residues that play a key role in binding the ligand to PB2, suggesting that we should focus on increasing and enhancing the interaction between inhibitors and these major amino acids during lead compound optimization to obtain more active PB2 inhibitors.


Subject(s)
Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Influenza A Virus, H1N1 Subtype/enzymology , Molecular Docking Simulation , Molecular Dynamics Simulation , RNA-Dependent RNA Polymerase , Viral Proteins , Animals , Drug Evaluation, Preclinical , Humans , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry
10.
J Virol ; 95(24): e0116021, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34613807

ABSTRACT

Supplementing influenza vaccines with recombinant neuraminidase (rNA) antigens remains a promising approach for improving suboptimal vaccine efficacy. However, correlations among rNA designs, properties, and protection have not been systematically investigated. Here, we performed a comparative analysis of several rNAs produced by the baculovirus/insect cell system. The rNAs were designed with different tetramerization motifs and NA domains from a recent H1N1 vaccine strain (A/Brisbane/02/2018) and compared for enzymatic properties, antigenicity, stability, and protection in mice. We found that the enzymatic properties differ between rNAs containing the NA head domain versus the full ectodomain, the formation of higher-order rNA oligomers is tetramerization domain dependent, whereas the protective efficacy is more contingent on the combination of the tetramerization and NA domains. Following single-dose immunizations, an rNA possessing the full ectodomain and the tetramerization motif from the human vasodilator-stimulated phosphoprotein provided much better protection than an rNA with ∼10-fold more enzymatically active molecules that is comprised of the head domain and the same tetramerization motif. In contrast, these two rNA designs provided comparable protection when the tetramerization motif from the tetrabrachion protein was used instead. These findings demonstrate that individual rNAs should be thoroughly evaluated for vaccine development, as the heterologous domain combination can result in rNAs with similar key attributes that vastly differ in protection. IMPORTANCE For several decades, it has been proposed that influenza vaccines could be supplemented with recombinant neuraminidase (rNA) to improve efficacy. However, some key questions for manufacturing stable and immunogenic rNAs remain to be answered. We show here that the tetramerization motifs and NA domains included in the rNA construct design can have a profound impact on the biochemical, immunogenic, and protective properties. We also show that the single-dose immunization regimen is more informative for assessing the rNA immune response and protective efficacy, which is surprisingly more dependent on the specific combination of NA and tetramerization domains than common attributes for evaluating NA. Our findings may help to optimize the design of rNAs that can be used to improve or develop influenza vaccines.


Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/genetics , Influenza Vaccines/immunology , Neuraminidase/genetics , Orthomyxoviridae Infections/prevention & control , Animals , Antibodies, Viral/immunology , Baculoviridae/genetics , Baculoviridae/metabolism , Cross Protection , Female , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza, Human/immunology , Mice , Mice, Inbred DBA , Neuraminidase/immunology , Vaccination , Vaccine Development , Vaccine Efficacy
11.
Viruses ; 13(10)2021 09 22.
Article in English | MEDLINE | ID: mdl-34696326

ABSTRACT

Influenza virus is a highly contagious virus that causes significant human mortality and morbidity annually. The most effective drugs for treating influenza are the neuraminidase inhibitors, but resistance to these inhibitors has emerged, and additional drug discovery research on neuraminidase and other targets is needed. Traditional methods of neuraminidase production from embryonated eggs are cumbersome, while insect cell derived protein is less reflective of neuraminidase produced during human infection. Herein we describe a method for producing neuraminidase from a human cell line, HEK293-6E, and demonstrate the method by producing the neuraminidase from the 1918 H1N1 pandemic influenza strain. This method produced high levels of soluble neuraminidase expression (>3000 EU/mL), was enhanced by including a secretion signal from a viral chemokine binding protein, and does not require co-expression of additional proteins. The neuraminidase produced was of sufficient quantity and purity to support high resolution crystal structure determination. The structure solved using this protein conformed to the previously reported structure. Notably the glycosylation at three asparagine residues was superior in quality to that from insect cell derived neuraminidase. This method of production of neuraminidase should prove useful in further studies, such as the characterisation of inhibitor binding.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Neuraminidase/genetics , Drug Resistance, Viral , HEK293 Cells , Humans , Influenza A Virus, H1N1 Subtype/enzymology , Influenza, Human/drug therapy , Molecular Conformation , Protein Binding , Viral Proteins/metabolism
12.
Angew Chem Int Ed Engl ; 60(46): 24686-24693, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34520098

ABSTRACT

The chemical synthesis of a fully sialylated tetraantennary N-glycan has been achieved for the first time by using the diacetyl strategy, in which NHAc is protected as NAc2 to improve reactivity by preventing intermolecular hydrogen bonds. Another key was the glycosylation to the branched mannose in an ether solvent, which promoted the desired glycosylation by stabilizing the oxocarbenium ion intermediate. Furthermore, high α-selectivity of these glycosylation reactions was realized by utilizing remote participation. Two asymmetrically deuterium labeled sialyl N-glycans were also synthesized by the same strategy. The synthesized N-glycans were used to probe the molecular basis of H1N1 neuraminidase recognition. The asymmetrically deuterated N-glycans revealed a difference in the recognition of sialic acid on each branch. Meanwhile, the tetraantennary N-glycan was used to evaluate the effects of multivalency and steric hinderance by forming branching structures.


Subject(s)
Neuraminidase/metabolism , Polysaccharides/chemical synthesis , Deuterium/chemistry , Glycosylation , Influenza A Virus, H1N1 Subtype/enzymology , Mass Spectrometry/methods , Polysaccharides/analysis , Polysaccharides/metabolism , Sialic Acids/analysis , Sialic Acids/metabolism , Spectrophotometry, Ultraviolet
13.
PLoS Pathog ; 17(7): e1009381, 2021 07.
Article in English | MEDLINE | ID: mdl-34197564

ABSTRACT

Clearance of viral infections, such as SARS-CoV-2 and influenza A virus (IAV), must be fine-tuned to eliminate the pathogen without causing immunopathology. As such, an aggressive initial innate immune response favors the host in contrast to a detrimental prolonged inflammation. The complement pathway bridges innate and adaptive immune system and contributes to the response by directly clearing pathogens or infected cells, as well as recruiting proinflammatory immune cells and regulating inflammation. However, the impact of modulating complement activation in viral infections is still unclear. In this work, we targeted the complement decay-accelerating factor (DAF/CD55), a surface protein that protects cells from non-specific complement attack, and analyzed its role in IAV infections. We found that DAF modulates IAV infection in vivo, via an interplay with the antigenic viral proteins hemagglutinin (HA) and neuraminidase (NA), in a strain specific manner. Our results reveal that, contrary to what could be expected, DAF potentiates complement activation, increasing the recruitment of neutrophils, monocytes and T cells. We also show that viral NA acts on the heavily sialylated DAF and propose that the NA-dependent DAF removal of sialic acids exacerbates complement activation, leading to lung immunopathology. Remarkably, this mechanism has no impact on viral loads, but rather on the host resilience to infection, and may have direct implications in zoonotic influenza transmissions.


Subject(s)
CD55 Antigens/physiology , Influenza A Virus, H1N1 Subtype/isolation & purification , Lung/immunology , Viremia/immunology , Animals , Bronchoalveolar Lavage Fluid/immunology , CD55 Antigens/chemistry , CD55 Antigens/deficiency , Chemotaxis, Leukocyte , Complement Activation , Hemagglutinin Glycoproteins, Influenza Virus/physiology , Host Adaptation , Host Specificity , Host-Pathogen Interactions , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H1N1 Subtype/physiology , Interferon-gamma/analysis , Lung/pathology , Lung/virology , Mice , Mice, Inbred C57BL , N-Acetylneuraminic Acid , Neuraminidase/physiology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Viral Load , Viral Proteins/physiology , Virulence , Virus Replication , Weight Loss
14.
J Virol ; 95(17): e0075921, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34160258

ABSTRACT

The hemagglutinin (HA) surface protein is the primary immune target for most influenza vaccines. The neuraminidase (NA) surface protein is often a secondary target for vaccine designs. In this study, computationally optimized broadly reactive antigen (COBRA) methodology was used to generate the N1-I NA vaccine antigen that was designed to cross-react with avian, swine, and human influenza viruses of the N1 NA subtype. The elicited antibodies bound to NA proteins derived from A/California/07/2009 (H1N1)pdm09, A/Brisbane/59/2007 (H1N1), A/Swine/North Carolina/154074/2015 (H1N1), and A/Viet Nam/1203/2004 (H5N1) influenza viruses, with NA-neutralizing activity against a broad panel of HXN1 influenza strains. Mice vaccinated with the N1-I COBRA NA vaccine were protected from mortality and viral lung titers were lower when challenged with four different viral challenges (A/California/07/2009, A/Brisbane/59/2007, A/Swine/North Carolina/154074/2015, and A/Viet Nam/1203/2004). Vaccinated mice had little to no weight loss against both homologous, but also cross-NA, genetic clade challenges. Lung viral titers were lower than the mock-vaccinated mice and, at times, equivalent to the homologous control. Thus, the N1-I COBRA NA antigen has the potential to be a complementary component in a multiantigen universal influenza virus vaccine formulation that also contains HA antigens. IMPORTANCE The development and distribution of a universal influenza vaccine would alleviate global economic and public health stress from annual influenza virus outbreaks. The influenza virus NA vaccine antigen allows for protection from multiple HA subtypes and virus host origins, but it has not been the focus of vaccine development. The N1-I NA antigen described here protected mice from direct challenge of four distinct influenza viruses and inhibited the enzymatic activity of an N1 influenza virus panel. The use of the NA antigen in combination with the HA antigen widens the breadth of protection against various virus strains. Therefore, this research opens the door to the development of a longer-lasting vaccine with increased protective breadth.


Subject(s)
Immunity/immunology , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H5N1 Subtype/enzymology , Influenza Vaccines/administration & dosage , Neuraminidase/immunology , Orthomyxoviridae Infections/prevention & control , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cross Protection , Female , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Swine , Vaccination
15.
mBio ; 12(3)2021 05 11.
Article in English | MEDLINE | ID: mdl-33975931

ABSTRACT

The influenza A virus (IAV) neuraminidase (NA) is essential for virion release from cells and decoy receptors and an important target of antiviral drugs and antibodies. Adaptation to a new host sialome and escape from the host immune system are forces driving the selection of mutations in the NA gene. Phylogenetic analysis shows that until 2015, 16 amino acid substitutions in NA became fixed in the virus population after introduction in the human population of the pandemic IAV H1N1 (H1N1pdm09) in 2009. The accumulative effect of these substitutions, in the order in which they appeared, was analyzed using recombinant proteins and viruses in combination with different functional assays. The results indicate that NA activity did not evolve to a single optimum but rather fluctuated within a certain bandwidth. Furthermore, antigenic and enzymatic properties of NA were intertwined, with several residues affecting multiple properties. For example, the substitution K432E in the second sialic acid binding site, next to the catalytic site, was shown to affect catalytic activity, substrate specificity, and the pH optimum for maximum activity. This substitution also altered antigenicity of NA, which may explain its selection. We propose that the entanglement of NA phenotypes may be an important determining factor in the evolution of NA.IMPORTANCE Since its emergence in 2009, the pandemic H1N1 influenza A virus (IAV) has caused significant disease and mortality in humans. IAVs contain two envelope glycoproteins, the receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA). NA is essential for virion release from cells and decoy receptors, is an important target of antiviral drugs, and is increasingly being recognized as an important vaccine antigen. Not much is known, however, about the evolution of this protein upon the emergence of the novel pandemic H1N1 virus, with respect to its enzymatic activity and antigenicity. By reconstructing the evolutionary path of NA, we show that antigenic and enzymatic properties of NA are intertwined, with several residues affecting multiple properties. Understanding the entanglement of NA phenotypes will lead to better comprehension of IAV evolution and may help the development of NA-based vaccines.


Subject(s)
Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/genetics , Neuraminidase/genetics , Phenotype , Animals , Binding Sites , Cells, Cultured , Dogs , Epithelial Cells/virology , Female , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Influenza A Virus, H1N1 Subtype/classification , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Neuraminidase/chemistry , Pandemics , Phylogeny , Virion
16.
Mol Biol Evol ; 38(7): 2767-2777, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33749787

ABSTRACT

Seasonal influenza viruses repeatedly infect humans in part because they rapidly change their antigenic properties and evade host immune responses, necessitating frequent updates of the vaccine composition. Accurate predictions of strains circulating in the future could therefore improve the vaccine match. Here, we studied the predictability of frequency dynamics and fixation of amino acid substitutions. Current frequency was the strongest predictor of eventual fixation, as expected in neutral evolution. Other properties, such as occurrence in previously characterized epitopes or high Local Branching Index (LBI) had little predictive power. Parallel evolution was found to be moderately predictive of fixation. Although the LBI had little power to predict frequency dynamics, it was still successful at picking strains representative of future populations. The latter is due to a tendency of the LBI to be high for consensus-like sequences that are closer to the future than the average sequence. Simulations of models of adapting populations, in contrast, show clear signals of predictability. This indicates that the evolution of influenza HA and NA, while driven by strong selection pressure to change, is poorly described by common models of directional selection such as traveling fitness waves.


Subject(s)
Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Neuraminidase/genetics , Adaptation, Biological/genetics , Amino Acid Substitution , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H3N2 Subtype/enzymology , Models, Genetic
17.
J Med Virol ; 93(8): 4763-4772, 2021 08.
Article in English | MEDLINE | ID: mdl-33605468

ABSTRACT

Oseltamivir and antiviral agents are frequently used for the prevention and treatment of influenza infection. However, resistance to oseltamivir has been reported globally due to a mutation in the Influenza virus neuraminidase gene. Such resistance will be detected by genotyping and phenotyping studies of viral isolates. The recent study aimed to determine the genetic mutation of neuraminidase gene in influenza A (H1N1) viruses isolated from children referred to Shiraz tertiary hospitals during 1 year (2015-2016) with influenza-like symptoms. A total of 300 patients were registered and throat samples were taken. The throat swabs were used for viral RNA extraction. Detection of influenza A (H1N1) was performed using the one-step real-time polymerase chain reaction (qRT-PCR) method. From positive isolates for H1N1, 51 random samples were evaluated for neuraminidase gene mutation with the nested PCR-sequencing method. Of 300 cases, 102 (34%) isolates were detected as influenza A (H1N1) pdm09. Based on sequencing results, 2 of the 44 sequenced isolates exhibited H275Y substitution, which presented oseltamivir resistance. In comparison with reference strain, the phylogenetic analysis of sequenced isolates was classified in genogroup 6B. While this result is the first report of emerging oseltamivir-resistant in the southwest of Iran, it is highly recommended to perform these evaluations on the different geographical regions in any prevalence area to plan treatment strategies for influenza.


Subject(s)
Genetic Variation , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/epidemiology , Mutation , Neuraminidase/genetics , Phylogeny , Viral Proteins/genetics , Adolescent , Amino Acid Substitution , Child , Child, Preschool , Female , Genotype , Humans , Infant , Influenza A Virus, H1N1 Subtype/enzymology , Iran/epidemiology , Male , Neuraminidase/classification , RNA, Viral/genetics , Sequence Analysis, DNA , Viral Proteins/classification , Young Adult
18.
Biochem J ; 478(2): 423-441, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33410905

ABSTRACT

The neuraminidases (NAs) of avian influenza viruses (IAVs) contain a second sialic acid-binding site (2SBS), historically known as the hemadsorption site, which is separated from the sialyl-hydrolase catalytic site and serves to facilitate NA catalytic activity towards multivalent sialyl-capped glycoconjugates. Transmission and adaptation of avian IAVs to humans decreases hemadsorption and catalytic activities of the NA. Here, we report the molecular recognition features of the NA 2SBS of two pandemic H1N1 IAVs, A/Brevig Mission /1/1918 (BM18) and A/California/04/2009 (CA09), differing by their 2SBS activity. Using explicit solvent MD simulation, molecular mechanics, and glycosidic conformation analysis we initially analyzed the interactions of BM18 2SBS with two sialyllacto-N-tetraose pentasaccharides, 3'SLN-LC and 6'SLN-LC, which are models for the glycan receptors of IAVs in birds and humans, respectively. These studies characterize the binding specificity of BM18 2SBS towards human-type and avian-type receptors and identifies the key amino acids that affects binding. We next compared the interactions of the 2SBSs of BM18 and CA09 with 6'SLN-LC, revealing the critical effect of amino acid 372 on binding. Our results expand the current knowledge of the molecular features of NA 2SBSs and its alteration during the adaptation of avian IAVs to humans.


Subject(s)
Influenza A Virus, H1N1 Subtype/enzymology , Neuraminidase/chemistry , Neuraminidase/metabolism , Polysaccharides/metabolism , Binding Sites , Molecular Dynamics Simulation , Polysaccharides/chemistry , Protein Conformation , Sialic Acids/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism
19.
Nucleic Acids Res ; 49(3): 1609-1618, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33469660

ABSTRACT

The endonuclease activity within the influenza virus cap-snatching process is a proven therapeutic target. The anti-influenza drug baloxavir is highly effective, but is associated with resistance mutations that threaten its clinical efficacy. The endonuclease resides within the N-terminal domain of the PA subunit (PAN) of the influenza RNA dependent RNA polymerase, and we report here complexes of PAN with RNA and DNA oligonucleotides to understand its specificity and the structural basis of baloxavir resistance mutations. The RNA and DNA oligonucleotides bind within the substrate binding groove of PAN in a similar fashion, explaining the ability of the enzyme to cleave both substrates. The individual nucleotides occupy adjacent conserved pockets that flank the two-metal active site. However, the 2' OH of the RNA ribose moieties engage in additional interactions that appear to optimize the binding and cleavage efficiency for the natural substrate. The major baloxavir resistance mutation at position 38 is at the core of the substrate binding site, but structural studies and modeling suggest that it maintains the necessary virus fitness via compensating interactions with RNA. These studies will facilitate the development of new influenza therapeutics that spatially match the substrate and are less likely to elicit resistance mutations.


Subject(s)
Endoribonucleases/chemistry , Influenza A Virus, H1N1 Subtype/enzymology , Viral Proteins/chemistry , Antiviral Agents/chemistry , DNA/chemistry , Dibenzothiepins/chemistry , Endoribonucleases/metabolism , Models, Molecular , Morpholines/chemistry , Pyridones/chemistry , RNA/chemistry , Substrate Specificity , Triazines/chemistry , Viral Proteins/metabolism
20.
Antiviral Res ; 185: 104971, 2021 01.
Article in English | MEDLINE | ID: mdl-33166574

ABSTRACT

Influenza viruses can cause severe respiratory infections in humans, leading to nearly half a million deaths worldwide each year. Improved antiviral drugs are needed to address the threat of development of novel pandemic strains. Current therapeutic interventions target three key proteins in the viral life cycle: neuraminidase, the M2 channel and RNA-dependent-RNA polymerase. Protein-protein interactions between influenza polymerase subunits are potential new targets for drug development. Using a newly developed assay based on AlphaScreen technology, we screened a peptide panel for protein-protein interaction inhibitors to identify a minimal PB1 subunit-derived peptide that retains high inhibition potential and can be further modified. Here, we present an X-ray structure of the resulting decapeptide bound to the C-terminal domain of PA polymerase subunit from pandemic isolate A/California/07/2009 H1N1 at 1.6 Å resolution and discuss its implications for the design of specific, potent influenza polymerase inhibitors.


Subject(s)
Influenza A Virus, H1N1 Subtype/enzymology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Antiviral Agents/pharmacology , Crystallization , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/metabolism , Protein Binding , Protein Interaction Domains and Motifs/drug effects , Protein Interaction Domains and Motifs/physiology , Viral Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL