Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.483
Filter
1.
Front Cell Infect Microbiol ; 14: 1371916, 2024.
Article in English | MEDLINE | ID: mdl-38716199

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has become a challenging problem in pig industry worldwide, causing significant profit losses. Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain and has been shown to exert protective effects on the intestinal dysfunction caused by PEDV. This study evaluated the effect of LGG on the gut health of lactating piglets challenged with PEDV. Fifteen piglets at 7 days of age were equally assigned into 3 groups (5 piglets per group): 1) control group (basal diet); 2) PEDV group: (basal diet + PEDV challenged); 3) LGG + PEDV group (basal diet + 3×109 CFU/pig/day LGG + PEDV). The trial lasted 11 days including 3 days of adaptation. The treatment with LGG was from D4 to D10. PEDV challenge was carried out on D8. PEDV infection disrupted the cell structure, undermined the integrity of the intestinal tract, and induced oxidative stress, and intestinal damage of piglets. Supplementation of LGG improved intestinal morphology, enhanced intestinal antioxidant capacity, and alleviated jejunal mucosal inflammation and lipid metabolism disorders in PEDV-infected piglets, which may be regulated by LGG by altering the expression of TNF signaling pathway, PPAR signaling pathway, and fat digestion and absorption pathway.


Subject(s)
Coronavirus Infections , Dietary Supplements , Lacticaseibacillus rhamnosus , Porcine epidemic diarrhea virus , Probiotics , Swine Diseases , Animals , Swine , Probiotics/administration & dosage , Swine Diseases/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/therapy , Oxidative Stress , Intestines/pathology , Powders , Intestinal Mucosa/pathology
2.
Front Immunol ; 15: 1353614, 2024.
Article in English | MEDLINE | ID: mdl-38698858

ABSTRACT

Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Panax , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Panax/chemistry , Humans , Animals , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Immune System/drug effects , Immune System/metabolism , Immune System/immunology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
3.
Georgian Med News ; (348): 151-153, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38807409

ABSTRACT

Rebamipide contributes to the improvement of blood supply of the GI mucosa, activates its barrier function, activates alkaline secretion of the stomach, increases proliferation and metabolism of epithelial cells of the GI tract, cleanses the mucosa from hydroxyl radicals and suppresses superoxides, produced by polymorphonuclear leukocytes and neutrophils in the presence of Helicobacter pylori, protects the GI mucosa from bacterial invasion and the damaging effects of non-steroidal anti-inflammatory drugs (NSAIDs) on the mucosa. Rebamipide, originally developed as a treatment for gastric ulcers, has attracted the attention of researchers as a potential drug for the treatment of UC due to its ability to stimulate mucus production, reduce oxidative stress, and decrease inflammation. Due to the presence of these properties, it is hypothesized that rebamipide may have a protective effect on the intestinal mucosa during prolonged inflammation, making it a promising candidate for inclusion in therapeutic strategies for ulcerative colitis. The results of this study suggest that rebamipide holds potential therapeutic benefits for the treatment of ulcerative colitis.


Subject(s)
Alanine , Colitis, Ulcerative , Quinolones , Quinolones/therapeutic use , Quinolones/pharmacology , Alanine/analogs & derivatives , Alanine/therapeutic use , Alanine/pharmacology , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Rats , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Male , Disease Progression , Disease Models, Animal , Rats, Wistar
4.
World J Gastroenterol ; 30(16): 2220-2232, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38690017

ABSTRACT

Several features of drug-induced mucosal alterations have been observed in the upper gastrointestinal tract, i.e., the esophagus, stomach, and duodenum. These include pill-induced esophagitis, desquamative esophagitis, worsening of gastroesophageal reflux, chemotherapy-induced esophagitis, proton pump inhibitor-induced gastric mucosal changes, medication-induced gastric erosions and ulcers, pseudomelanosis of the stomach, olmesartan-related gastric mucosal inflammation, lanthanum deposition in the stomach, zinc acetate hydrate tablet-induced gastric ulcer, immune-related adverse event gastritis, olmesartan-asso-ciated sprue-like enteropathy, pseudomelanosis of the duodenum, and lanthanum deposition in the duodenum. For endoscopists, acquiring accurate knowledge regarding these diverse drug-induced mucosal alterations is crucial not only for the correct diagnosis of these lesions but also for differential diag-nosis of other conditions. This minireview aims to provide essential information on drug-induced mucosal alterations observed on esophagogastroduodenoscopy, along with representative endoscopic images.


Subject(s)
Endoscopy, Digestive System , Humans , Endoscopy, Digestive System/methods , Gastric Mucosa/pathology , Gastric Mucosa/drug effects , Gastric Mucosa/diagnostic imaging , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/diagnostic imaging , Proton Pump Inhibitors/adverse effects , Esophageal Mucosa/pathology , Esophageal Mucosa/drug effects , Esophageal Mucosa/diagnostic imaging
5.
World J Gastroenterol ; 30(16): 2184-2190, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38690020

ABSTRACT

MicroRNAs (miRNAs), small non-coding RNAs composed of 18-24 nucleotides, are potent regulators of gene expression, contributing to the regulation of more than 30% of protein-coding genes. Considering that miRNAs are regulators of inflammatory pathways and the differentiation of intestinal epithelial cells, there is an interest in exploring their importance in inflammatory bowel disease (IBD). IBD is a chronic and multifactorial disease of the gastrointestinal tract; the main forms are Crohn's disease and ulcerative colitis. Several studies have investigated the dysregulated expression of miRNAs in IBD, demonstrating their important roles as regulators and potential biomarkers of this disease. This editorial presents what is known and what is expected regarding miRNAs in IBD. Although the important regulatory roles of miRNAs in IBD are clearly established, biomarkers for IBD that can be applied in clinical practice are lacking, emphasizing the importance of further studies. Discoveries regarding the influence of miRNAs on the inflammatory process and the exploration of their role in gene regulation are expected to provide a basis for the use of miRNAs not only as potent biomarkers in IBD but also as therapeutic targets for the control of inflammatory processes in personalized medicine.


Subject(s)
Biomarkers , Gene Expression Regulation , MicroRNAs , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Biomarkers/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Crohn Disease/genetics , Crohn Disease/immunology , Crohn Disease/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/immunology , Precision Medicine/methods
6.
World J Gastroenterol ; 30(16): 2258-2271, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38690023

ABSTRACT

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG (n = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, n = 11) and positive control (phloroglucinol at 1.5 g/d HED, n = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration (P < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction (P < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception (P < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.


Subject(s)
Chitin , Colon , Disease Models, Animal , Glucans , Irritable Bowel Syndrome , Rats, Sprague-Dawley , Visceral Pain , Animals , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/physiopathology , Male , Humans , Colon/drug effects , Colon/pathology , Rats , Visceral Pain/drug therapy , Visceral Pain/physiopathology , Visceral Pain/metabolism , Visceral Pain/etiology , Chitin/pharmacology , Glucans/pharmacology , Glucans/administration & dosage , Mice , Prebiotics/administration & dosage , Trinitrobenzenesulfonic Acid/toxicity , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/physiopathology , Colitis/pathology , HT29 Cells
7.
J Interferon Cytokine Res ; 44(5): 208-220, 2024 May.
Article in English | MEDLINE | ID: mdl-38691831

ABSTRACT

Intestinal damage and secondary bacterial translocation are caused by the inflammatory response induced by sepsis. Tongfu Lifei (TLF) decoction has a protective effect on sepsis-related gastrointestinal function injury. However, the relation between gut microbiota, immune barrier, and sepsis under the treatment of TLF have not been well clarified yet. Here, rats were subjected to cecal ligation and puncture (CLP) to create a sepsis model. Subsequently, the TLF decoction was given to CLP rats by gavage, fecal microbiota transplantation (FMT), and antibiotic were used as positive control. TLF suppressed the inflammatory response and improved the pathological changes in the intestines of CLP rats. Besides, TLF promoted the balance of the percentage of the Th17 and Treg cells. Intestinal barrier function was also improved by TLF through enhancing ZO-1, and Occludin and Claudin 1 expression, preventing the secondary translocation of other gut microbiota. TLF dramatically boosted the gut microbiota's alpha- and beta-diversity in CLP rats. Moreover, it increased the relative abundance of anti-inflammatory gut microbiota and changed the progress of the glucose metabolism. In short, TLF regulated the gut microbiota to balance the ratio of Th17/Treg cells, reducing the inflammation in serum and intestinal mucosal injury in rats.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Intestinal Mucosa , Sepsis , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Gastrointestinal Microbiome/drug effects , Sepsis/immunology , Sepsis/drug therapy , Sepsis/complications , Th17 Cells/immunology , Th17 Cells/drug effects , Rats , Drugs, Chinese Herbal/pharmacology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/microbiology , Male , Rats, Sprague-Dawley
8.
Clin Transl Sci ; 17(5): e13821, 2024 May.
Article in English | MEDLINE | ID: mdl-38742709

ABSTRACT

Inflammatory bowel disease (IBD) is characterized by a chronically dysregulated immune response in the gastrointestinal tract. Bone marrow multipotent mesenchymal stromal cells have an important immunomodulatory function and support regeneration of inflamed tissue by secretion of soluble factors as well as through direct local differentiation. CXCR4 is the receptor for CXCL12 (SDF-1, stromal-derived factor-1) and has been shown to be the main chemokine receptor, required for homing of MSCs. Increased expression of CXCL12 by inflamed intestinal tissue causes constitutive inflammation by attracting lymphocytes but can also be used to direct MSCs to sites of injury/inflammation. Trypsin is typically used to dissociate MSCs into single-cell suspensions but has also been shown to digest surface CXCR4. Here, we assessed the regenerative effects of CXCR4high and CXCR4low MSCs in an immune-deficient mouse model of DSS-induced colitis. We found that transplantation of MSCs resulted in clinical improvement and histological recovery of intestinal epithelium. In contrary to our expectations, the levels of CXCR4 on transplanted MSCs did not affect their regenerative supporting potential, indicating that paracrine effects of MSCs may be largely responsible for their regenerative/protective effects.


Subject(s)
Colitis , Disease Models, Animal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred C57BL , Receptors, CXCR4 , Regeneration , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Mesenchymal Stem Cells/metabolism , Colitis/chemically induced , Colitis/pathology , Colitis/immunology , Colitis/therapy , Colitis/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mice , Dextran Sulfate , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/immunology , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Bone Marrow Cells/metabolism
9.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731952

ABSTRACT

Porphyromonas gingivalis (Pg), a Gram-negative oral pathogen, promotes and accelerates periodontitis-associated gut disorders. Intestinal epithelial barrier dysfunction is crucial in the pathogenesis of intestinal and systemic diseases. In this study, we sought to elucidate the protective role of cinnamaldehyde (CNM, an activator of Nrf2) against P. gingivalis (W83) and Pg-derived lipopolysaccharide (Pg-LPS) induced intestinal epithelial barrier dysfunction via antioxidative mechanisms in IEC-6 cells. IEC-6 (ATCC, CRL-1592) cells were pretreated with or without CNM (100 µM), in the presence or absence of P. gingivalis (strain W83, 109 MOI) or Pg-LPS (1, 10, and 100 µg/mL), respectively, between 0-72 h time points by adopting a co-culture method. Intestinal barrier function, cytokine secretion, and intestinal oxidative stress protein markers were analyzed. P. gingivalis or Pg-LPS significantly (p < 0.05) increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels expressing oxidative stress damage. Pg-LPS, as well as Pg alone, induces inflammatory cytokines via TLR-4 signaling. Furthermore, infection reduced Nrf2 and NAD(P)H quinone dehydrogenase 1 (NQO1). Interestingly, inducible nitric oxide synthase (iNOS) protein expression significantly (p < 0.05) increased with Pg-LPS or Pg infection, with elevated levels of nitric oxide (NO). CNM treatment suppressed both Pg- and Pg-LPS-induced intestinal oxidative stress damage by reducing ROS, MDA, and NO production. Furthermore, CNM treatment significantly upregulated the expression of tight junction proteins via increasing the phosphorylation levels of PI3K/Akt/Nrf2 suppressing inflammatory cytokines. CNM protected against Pg infection-induced intestinal epithelial barrier dysfunction by activating the PI3K/Akt-mediated Nrf2 signaling pathway in IEC-6 cells.


Subject(s)
Acrolein , Intestinal Mucosa , NF-E2-Related Factor 2 , Nitric Oxide , Phosphatidylinositol 3-Kinases , Porphyromonas gingivalis , Proto-Oncogene Proteins c-akt , Signal Transduction , NF-E2-Related Factor 2/metabolism , Acrolein/analogs & derivatives , Acrolein/pharmacology , Animals , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Porphyromonas gingivalis/pathogenicity , Phosphatidylinositol 3-Kinases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Nitric Oxide/metabolism , Cell Line , Lipopolysaccharides , Oxidative Stress/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Toll-Like Receptor 4/metabolism , Reactive Oxygen Species/metabolism , Cytokines/metabolism
10.
Nutrients ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732595

ABSTRACT

While ketogenic diets (KDs) may have potential as adjunct treatments for gastrointestinal diseases, there is little knowledge on how the fat source of these diets impacts intestinal health. The objective of this study was to investigate how the source of dietary fat of KD influences experimental colitis. We fed nine-week-old male C57BL/6J mice (n = 36) with a low-fat control diet or KD high either in saturated fatty acids (SFA-KD) or polyunsaturated linoleic acid (LA-KD) for four weeks and then induced colitis with dextran sodium sulfate (DSS). To compare the diets, we analyzed macroscopic and histological changes in the colon, intestinal permeability to fluorescein isothiocyanate-dextran (FITC-dextran), and the colonic expression of tight junction proteins and inflammatory markers. While the effects were more pronounced with LA-KD, both KDs markedly alleviated DSS-induced histological lesions. LA-KD prevented inflammation-related weight loss and the shortening of the colon, as well as preserved Il1b and Tnf expression at a healthy level. Despite no significant between-group differences in permeability to FITC-dextran, LA-KD mitigated changes in tight junction protein expression. Thus, KDs may have preventive potential against intestinal inflammation, with the level of the effect being dependent on the dietary fat source.


Subject(s)
Colitis , Colon , Dextran Sulfate , Diet, Ketogenic , Dietary Fats , Disease Models, Animal , Fluorescein-5-isothiocyanate/analogs & derivatives , Mice, Inbred C57BL , Animals , Colitis/chemically induced , Colitis/diet therapy , Male , Mice , Dietary Fats/adverse effects , Colon/pathology , Colon/metabolism , Permeability , Tight Junction Proteins/metabolism , Interleukin-1beta/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Tumor Necrosis Factor-alpha/metabolism , Fatty Acids , Dextrans
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718845

ABSTRACT

BACKGROUND: Short bowel syndrome (SBS) features nutrients malabsorption and impaired intestinal barrier. Patients with SBS are prone to sepsis, intestinal flora dysbiosis and intestinal failure associated liver disease. Protecting intestinal barrier and preventing complications are potential strategies for SBS treatment. This study aims to investigate the effects of farnesoid X receptor (FXR) agonist, obeticholic acid (OCA), have on intestinal barrier and ecological environment in SBS. METHODS AND RESULTS: Through testing the small intestine and serum samples of patients with SBS, impaired intestinal barrier was verified, as evidenced by reduced expressions of intestinal tight junction proteins (TJPs), increased levels of apoptosis and epithelial cell damage. The intestinal expressions of FXR and related downstream molecules were decreased in SBS patients. Then, global FXR activator OCA was used to further dissect the potential role of the FXR in a rat model of SBS. Low expressions of FXR-related molecules were observed on the small intestine of SBS rats, along with increased proinflammatory factors and damaged barrier function. Furthermore, SBS rats possessed significantly decreased body weight and elevated death rate. Supplementation with OCA mitigated the damaged intestinal barrier and increased proinflammatory factors in SBS rats, accompanied by activated FXR-related molecules. Using 16S rDNA sequencing, the regulatory role of OCA on gut microbiota in SBS rats was witnessed. LPS stimulation to Caco-2 cells induced apoptosis and overexpression of proinflammatory factors in vitro. OCA incubation of LPS-pretreated Caco-2 cells activated FXR-related molecules, increased the expressions of TJPs, ameliorated apoptosis and inhibited overexpression of proinflammatory factors. CONCLUSIONS: OCA supplementation could effectively ameliorate the intestinal barrier disruption and inhibit overexpression of proinflammatory factors in a rat model of SBS and LPS-pretreated Caco-2 cells. As a selective activator of FXR, OCA might realize its protective function through FXR activation.


Subject(s)
Chenodeoxycholic Acid , Disease Models, Animal , Intestinal Mucosa , Receptors, Cytoplasmic and Nuclear , Short Bowel Syndrome , Animals , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/pharmacology , Short Bowel Syndrome/metabolism , Short Bowel Syndrome/drug therapy , Short Bowel Syndrome/pathology , Rats , Humans , Male , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Gastrointestinal Microbiome/drug effects , Female , Rats, Sprague-Dawley , Apoptosis/drug effects , Middle Aged , Intestine, Small/metabolism , Intestine, Small/drug effects , Intestine, Small/pathology , Adult , Tight Junction Proteins/metabolism
12.
Nat Med ; 30(5): 1349-1362, 2024 May.
Article in English | MEDLINE | ID: mdl-38724705

ABSTRACT

Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology, but treatments are limited by immune-related adverse events, including checkpoint inhibitor colitis (irColitis). Little is understood about the pathogenic mechanisms driving irColitis, which does not readily occur in model organisms, such as mice. To define molecular drivers of irColitis, we used single-cell multi-omics to profile approximately 300,000 cells from the colon mucosa and blood of 13 patients with cancer who developed irColitis (nine on anti-PD-1 or anti-CTLA-4 monotherapy and four on dual ICI therapy; most patients had skin or lung cancer), eight controls on ICI therapy and eight healthy controls. Patients with irColitis showed expanded mucosal Tregs, ITGAEHi CD8 tissue-resident memory T cells expressing CXCL13 and Th17 gene programs and recirculating ITGB2Hi CD8 T cells. Cytotoxic GNLYHi CD4 T cells, recirculating ITGB2Hi CD8 T cells and endothelial cells expressing hypoxia gene programs were further expanded in colitis associated with anti-PD-1/CTLA-4 therapy compared to anti-PD-1 therapy. Luminal epithelial cells in patients with irColitis expressed PCSK9, PD-L1 and interferon-induced signatures associated with apoptosis, increased cell turnover and malabsorption. Together, these data suggest roles for circulating T cells and epithelial-immune crosstalk critical to PD-1/CTLA-4-dependent tolerance and barrier function and identify potential therapeutic targets for irColitis.


Subject(s)
Colitis , Immune Checkpoint Inhibitors , Intestinal Mucosa , Single-Cell Analysis , Humans , Immune Checkpoint Inhibitors/adverse effects , Colitis/chemically induced , Colitis/immunology , Colitis/genetics , Colitis/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Female , Male , Gene Expression Profiling , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Transcriptome , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Colon/pathology , Colon/immunology , Colon/drug effects , Epithelial Cells/immunology , Epithelial Cells/drug effects , Epithelial Cells/pathology
13.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791570

ABSTRACT

INTRODUCTION: Optimizing treatment with biological agents is an ideal goal for patients with ulcerative colitis (UC). Recent data suggest that mucosal inflammation patterns and serum cytokine profiles differ between patients who respond and those who do not. Ustekinumab, a monoclonal antibody targeting the p40 subunit of interleukin (IL)-12 and IL-23, has shown promise, but predicting treatment response remains a challenge. We aimed to identify prognostic markers of response to ustekinumab in patients with active UC, utilizing information from their mucosal transcriptome. METHODS: We performed a prospective observational study of 36 UC patients initiating treatment with ustekinumab. Colonic mucosal biopsies were obtained before treatment initiation for a gene expression analysis using a microarray panel of 84 inflammatory genes. A differential gene expression analysis (DGEA), correlation analysis, and network centrality analysis on co-expression networks were performed to identify potential biomarkers. Additionally, machine learning (ML) models were employed to predict treatment response based on gene expression data. RESULTS: Seven genes, including BCL6, CXCL5, and FASLG, were significantly upregulated, while IL23A and IL23R were downregulated in non-responders compared to responders. The co-expression analysis revealed distinct patterns between responders and non-responders, with key genes like BCL6 and CRP highlighted in responders and CCL11 and CCL22 in non-responders. The ML algorithms demonstrated a high predictive power, emphasizing the significance of the IL23R, IL23A, and BCL6 genes. CONCLUSIONS: Our study identifies potential biomarkers associated with ustekinumab response in UC patients, shedding light on its underlying mechanisms and variability in treatment outcomes. Integrating transcriptomic approaches, including gene expression analyses and ML, offers valuable insights for personalized treatment strategies and highlights avenues for further research to enhance therapeutic outcomes for patients with UC.


Subject(s)
Colitis, Ulcerative , Computational Biology , Ustekinumab , Humans , Ustekinumab/therapeutic use , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Male , Female , Computational Biology/methods , Adult , Middle Aged , Treatment Outcome , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Prospective Studies , Transcriptome , Gene Expression Profiling/methods , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Machine Learning , Prognosis
14.
Toxins (Basel) ; 16(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38787075

ABSTRACT

Alternariol monomethyl-ether (AME), together with altenuene and alternariol, belongs to the Alternaria mycotoxins group, which can contaminate different substrates, including cereals. The aim of the present study was to obtain a deeper understanding concerning the effects of AME on pig intestinal health using epithelial intestinal cell lines as the data concerning the possible effects of Alternaria toxins on swine are scarce and insufficient for assessing the risk represented by Alternaria toxins for animal health. Our results have shown a dose-related effect on IPEC-1 cell viability, with an IC50 value of 10.5 µM. Exposure to the toxin induced an increase in total apoptotic cells, suggesting that AME induces programmed cell death through apoptosis based on caspase-3/7 activation in IPEC-1 cells. DNA and protein oxidative damage triggered by AME were associated with an alteration of the antioxidant response, as shown by a decrease in the enzymatic activity of catalase and superoxide dismutase. These effects on the oxidative response can be related to an inhibition of the Akt/Nrf2/HO-1 signaling pathway; however, further studies are needed in order to validate these in vitro data using in vivo trials in swine.


Subject(s)
Apoptosis , Cell Survival , Epithelial Cells , Lactones , Oxidative Stress , Animals , Oxidative Stress/drug effects , Swine , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Cell Survival/drug effects , Apoptosis/drug effects , Lactones/toxicity , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism
15.
Sci Rep ; 14(1): 11839, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782973

ABSTRACT

The intestinal extracellular matrix (ECM) helps maintain appropriate tissue barrier function and regulate host-microbial interactions. Chondroitin sulfate- and dermatan sulfate-glycosaminoglycans (CS/DS-GAGs) are integral components of the intestinal ECM, and alterations in CS/DS-GAGs have been shown to significantly influence biological functions. Although pathologic ECM remodeling is implicated in inflammatory bowel disease (IBD), it is unknown whether changes in the intestinal CS/DS-GAG composition are also linked to IBD in humans. Our aim was to characterize changes in the intestinal ECM CS/DS-GAG composition in intestinal biopsy samples from patients with IBD using mass spectrometry. We characterized intestinal CS/DS-GAGs in 69 pediatric and young adult patients (n = 13 control, n = 32 active IBD, n = 24 IBD in remission) and 6 adult patients. Here, we report that patients with active IBD exhibit a significant decrease in the relative abundance of CS/DS isomers associated with matrix stability (CS-A and DS) compared to controls, while isomers implicated in matrix instability and inflammation (CS-C and CS-E) were significantly increased. This imbalance of intestinal CS/DS isomers was restored among patients in clinical remission. Moreover, the abundance of pro-stabilizing CS/DS isomers negatively correlated with clinical disease activity scores, whereas both pro-inflammatory CS-C and CS-E content positively correlated with disease activity scores. Thus, pediatric patients with active IBD exhibited increased pro-inflammatory and decreased pro-stabilizing CS/DS isomer composition, and future studies are needed to determine whether changes in the CS/DS-GAG composition play a pathogenic role in IBD.


Subject(s)
Chondroitin Sulfates , Glycosaminoglycans , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Chondroitin Sulfates/metabolism , Male , Female , Adult , Adolescent , Child , Glycosaminoglycans/metabolism , Young Adult , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Extracellular Matrix/metabolism , Intestines/pathology
16.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791146

ABSTRACT

Crohn's disease (CD) is a subtype of inflammatory bowel disease (IBD) characterized by transmural disease. The concept of transmural healing (TH) has been proposed as an indicator of deep clinical remission of CD and as a predictor of favorable treatment endpoints. Understanding the pathophysiology involved in transmural disease is critical to achieving these endpoints. However, most studies have focused on the intestinal mucosa, overlooking the contribution of the intestinal wall in Crohn's disease. Multi-omics approaches have provided new avenues for exploring the pathogenesis of Crohn's disease and identifying potential biomarkers. We aimed to use transcriptomic and proteomic technologies to compare immune and mesenchymal cell profiles and pathways in the mucosal and submucosa/wall compartments to better understand chronic refractory disease elements to achieve transmural healing. The results revealed similarities and differences in gene and protein expression profiles, metabolic mechanisms, and immune and non-immune pathways between these two compartments. Additionally, the identification of protein isoforms highlights the complex molecular mechanisms underlying this disease, such as decreased RTN4 isoforms (RTN4B2 and RTN4C) in the submucosa/wall, which may be related to the dysregulation of enteric neural processes. These findings have the potential to inform the development of novel therapeutic strategies to achieve TH.


Subject(s)
Colon , Crohn Disease , Intestinal Mucosa , Proteomics , Humans , Crohn Disease/metabolism , Crohn Disease/pathology , Crohn Disease/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Proteomics/methods , Colon/metabolism , Colon/pathology , Transcriptome , Male , Female , Adult , Gene Expression Profiling , Biomarkers , Middle Aged , Multiomics
17.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791376

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory condition involving dysregulated immune responses and imbalances in the gut microbiota in genetically susceptible individuals. Current therapies for IBD often have significant side-effects and limited success, prompting the search for novel therapeutic strategies. Microbiome-based approaches aim to restore the gut microbiota balance towards anti-inflammatory and mucosa-healing profiles. Extracellular vesicles (EVs) from beneficial gut microbes are emerging as potential postbiotics. Serotonin plays a crucial role in intestinal homeostasis, and its dysregulation is associated with IBD severity. Our study investigated the impact of EVs from the probiotic Nissle 1917 (EcN) and commensal E. coli on intestinal serotonin metabolism under inflammatory conditions using an IL-1ß-induced inflammation model in Caco-2 cells. We found strain-specific effects. Specifically, EcN EVs reduced free serotonin levels by upregulating SERT expression through the downregulation of miR-24, miR-200a, TLR4, and NOD1. Additionally, EcN EVs mitigated IL-1ß-induced changes in tight junction proteins and oxidative stress markers. These findings underscore the potential of postbiotic interventions as a therapeutic approach for IBD and related pathologies, with EcN EVs exhibiting promise in modulating serotonin metabolism and preserving intestinal barrier integrity. This study is the first to demonstrate the regulation of miR-24 and miR-200a by probiotic-derived EVs.


Subject(s)
Escherichia coli , Extracellular Vesicles , Inflammation , Interleukin-1beta , Intestinal Mucosa , MicroRNAs , Probiotics , Serotonin , Humans , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Extracellular Vesicles/metabolism , Probiotics/pharmacology , Serotonin/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Caco-2 Cells , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Inflammation/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/therapy , Nod1 Signaling Adaptor Protein/metabolism , Nod1 Signaling Adaptor Protein/genetics , Epithelial Cells/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Oxidative Stress , Gene Expression Regulation
18.
J Ethnopharmacol ; 331: 118335, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38754644

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis in the world, it is one of the most common causes of kidney disease and can lead to end-stage kidney disease, however, its pathogenesis is still complicated. The Shen-yan-yi-hao oral solution (SOLI) is an effective prescription for the clinical treatment of IgAN while its specific mechanism remains to be further elucidated. AIM OF THE STUDY: This study investigates SOLI's effects on IgAN in rats, particularly on the intestinal mucosal barrier, and identifies potential therapeutic targets through network pharmacology and molecular docking, validated experimentally. MATERIALS AND METHODS: Target genes for SOLI in IgAN were identified and analysed through molecular docking and KEGG pathway enrichment. An IgAN rat model examined SOLI's effect on renal biomarkers and cytokines involved in specific pathways, ileum mucosal lesions, and the intestinal immune system. The IL-17 pathway's role was studied in IEC-6 cells with SOLI in vitro. RESULT: Rats developed increased proteinuria and kidney damage marked by IgA deposition and inflammation. SOLI treatment significantly ameliorated these symptoms, reduced galactose-deficient Ig A1 (Gd-IgA1), and decreased cytokines like IL-17, TNF-α, IL-6 and IL-1ß etc. SOLI also normalized intestinal tight junction protein expression, ameliorated intestinal damage, and regulated intestinal immune response (focused on IL-17/NF-κB signal pathway). SOLI moderated the abnormally activated IL-17 pathway, which damages intestinal epithelial cells, suggesting IgAN treatment potential. CONCLUSION: SOLI reduces proteinuria and enhances intestinal mucosal function in IgAN rats, kidney protection in the IgAN rat model may initiate from modulating the intestinal IL-17/NF-κB pathway and subsequent Gd-IgA1 accumulation.


Subject(s)
Drugs, Chinese Herbal , Glomerulonephritis, IGA , Interleukin-17 , Intestinal Mucosa , Molecular Docking Simulation , NF-kappa B , Signal Transduction , Animals , Glomerulonephritis, IGA/drug therapy , NF-kappa B/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Interleukin-17/metabolism , Rats , Male , Signal Transduction/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Rats, Sprague-Dawley , Administration, Oral , Cell Line , Disease Models, Animal , Network Pharmacology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Cytokines/metabolism
19.
Mol Med Rep ; 30(1)2024 07.
Article in English | MEDLINE | ID: mdl-38785154

ABSTRACT

Although there are several types of radiation exposure, it is debated whether low­dose­rate (LDR) irradiation (IR) affects the body. Since the small intestine is a radiation­sensitive organ, the present study aimed to evaluate how it changes when exposed to LDR IR and identify the genes sensitive to these doses. After undergoing LDR (6.0 mGy/h) γ radiation exposure, intestinal RNA from BALB/c mice was extracted 1 and 24 h later. Mouse whole genome microarrays were used to explore radiation­induced transcriptional alterations. Reverse transcription­quantitative (RT­q) PCR was used to examine time­ and dose­dependent radiation responses. The histopathological status of the jejunum in the radiated mouse was not changed by 10 mGy of LDR IR; however, 23 genes were upregulated in response to LDR IR of the jejunum in mice after 1 and 24 h of exposure. Upregulated genes were selected to validate the results of the RNA sequencing analysis for RT­qPCR detection and results showed that only Na+/K+ transporting subunit α4, glucose­6­phosphatase catalytic subunit 2 (G6PC2), mucin 6 (MUC6) and transient receptor potential cation channel subfamily V member 6 levels significantly increased after 24 h of LDR IR. Furthermore, G6PC2 and MUC6 were notable genes induced by LDR IR exposure according to protein expression via western blot analysis. The mRNA levels of G6PC2 and MUC6 were significantly elevated within 24 h under three conditions: i) Exposure to LDR IR, ii) repeated exposure to LDR IR and iii) exposure to LDR IR in the presence of inflammatory bowel disease. These results could contribute to an improved understanding of immediate radiation reactions and biomarker development to identify radiation­susceptible individuals before histopathological changes become noticeable. However, further investigation into the specific mechanisms involving G6PC2 and MUC6 is required to accomplish this.


Subject(s)
Inflammatory Bowel Diseases , Mucin-6 , Animals , Mice , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/genetics , Mucin-6/metabolism , Mucin-6/genetics , Mice, Inbred BALB C , Glucose-6-Phosphatase/metabolism , Glucose-6-Phosphatase/genetics , Male , Jejunum/radiation effects , Jejunum/metabolism , Jejunum/pathology , Gamma Rays/adverse effects , Intestines/radiation effects , Intestines/pathology , Dose-Response Relationship, Radiation , Intestinal Mucosa/metabolism , Intestinal Mucosa/radiation effects , Intestinal Mucosa/pathology
20.
Sci Rep ; 14(1): 11911, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789719

ABSTRACT

Lack of understanding of the pathophysiology of gastrointestinal (GI) complications in type 1 diabetes (T1D), including altered intestinal transcriptomes and protein expression represents a major gap in the management of these patients. Human enteroids have emerged as a physiologically relevant model of the intestinal epithelium but establishing enteroids from individuals with long-standing T1D has proven difficult. We successfully established duodenal enteroids using endoscopic biopsies from pediatric T1D patients and compared them with aged-matched enteroids from healthy subjects (HS) using bulk RNA sequencing (RNA-seq), and functional analyses of ion transport processes. RNA-seq analysis showed significant differences in genes and pathways associated with cell differentiation and proliferation, cell fate commitment, and brush border membrane. Further validation of these results showed higher expression of enteroendocrine cells, and the proliferating cell marker Ki-67, significantly lower expression of NHE3, lower epithelial barrier integrity, and higher fluid secretion in response to cAMP and elevated calcium in T1D enteroids. Enteroids established from pediatric T1D duodenum identify characteristics of an abnormal intestinal epithelium and are distinct from HS. Our data supports the use of pediatric enteroids as an ex-vivo model to advance studies of GI complications and drug discovery in T1D patients.


Subject(s)
Diabetes Mellitus, Type 1 , Duodenum , Intestinal Mucosa , Humans , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Child , Duodenum/metabolism , Duodenum/pathology , Female , Male , Cell Proliferation , Adolescent , Enteroendocrine Cells/metabolism , Enteroendocrine Cells/pathology , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Cell Differentiation , Organoids/metabolism , Organoids/pathology , Ki-67 Antigen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL