Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48.843
Filter
1.
PLoS One ; 19(7): e0305710, 2024.
Article in English | MEDLINE | ID: mdl-38990850

ABSTRACT

There is an urgent unmet need for more targeted and effective treatments for advanced epithelial ovarian cancer (EOC). The emergence of drug resistance is a particular challenge, but small molecule covalent inhibitors have promise for difficult targets and appear less prone to resistance. Michael acceptors are covalent inhibitors that form bonds with cysteines or other nucleophilic residues in the target protein. However, many are categorized as pan-assay interference compounds (PAINS) and considered unsuitable as drugs due to their tendency to react non-specifically. Targeting RPN13/ADRM1-mediated substrate recognition and deubiquitination by the proteasome 19S Regulatory Particle (RP) is a promising treatment strategy. Early candidate RPN13 inhibitors (iRPN13) produced a toxic accumulation of very high molecular weight polyubiquitinated substrates, resulting in therapeutic activity in mice bearing liquid or solid tumor models, including ovarian cancer; however, they were not drug-like (PAINS) because of their central piperidone core. Up284 instead has a central spiro-carbon ring. We hypothesized that adding a guanidine moiety to the central ring nitrogen of Up284 would produce a compound, RA475, with improved drug-like properties and therapeutic activity in murine models of ovarian cancer. RA475 produced a rapid accumulation of high molecular polyubiquitinated proteins in cancer cell lines associated with apoptosis, similar to Up284 although it was 3-fold less cytotoxic. RA475 competed binding of biotinylated Up284 to RPN13. RA475 shows improved solubility and distinct pharmacodynamic properties compared to Up284. Specifically, tetraubiquitin firefly luciferase expressed in leg muscle was stabilized in mice more effectively upon IP treatment with RA475 than with Up284. However, pharmacologic analysis showed that RA475 was more rapidly cleared from the circulation, and less orally available than Up284. RA475 shows reduced ability to cross the blood-brain barrier and in vitro inhibition of HERG. Treatment of mice with RA475 profoundly inhibited the intraperitoneal growth of the ID8-luciferase ovarian tumor model. Likewise, RA475 treatment of immunocompetent mice inhibited the growth of spontaneous genetically-engineered peritoneal tumor, as did weekly cisplatin dosing. The combination of RA475 and cisplatin significantly extended survival compared to individual treatments, consistent with synergistic cytotoxicity in vitro. In sum, RA475 is a promising candidate covalent RPN13i with potential utility for treatment of patients with advanced EOC in combination with cisplatin.


Subject(s)
Ovarian Neoplasms , Female , Animals , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Mice , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/therapeutic use , Spiro Compounds/chemistry , Xenograft Model Antitumor Assays , Carcinoma, Ovarian Epithelial/drug therapy , Guanidines/pharmacology , Guanidines/therapeutic use , Guanidines/chemistry , Intracellular Signaling Peptides and Proteins
2.
Sci Rep ; 14(1): 16081, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992114

ABSTRACT

Tumor-associated macrophages play a crucial role in the tumor microenvironment. Tripartite motif 59 (TRIM59), a member of the tripartite motif (TRIM) family, is known to be associated with immunological diseases and macrophage activation. The functional and molecular mechanisms by which TRIM59 affects the occurrence and development of colorectal cancer (CRC) through macrophages are still not well understood. To address this, we generated macrophage-specific TRIM59 conditional knockout mice and utilized these mice to establish colitis-associated cancer and MC38 transplanted CRC models for further investigation. We found that the deficiency of TRIM59 in macrophages inhibited colorectal tumorigenesis in mice. This tumor-suppressive effect was achieved by promoting the activation of M1 macrophages via STAT1 signaling pathway. Further mechanistic studies revealed that TRIM59 could regulate macrophage polarization by ubiquitinating and degrading STAT1. These findings provide evidence that TRIM59 deficiency promotes M1 macrophage activation and inhibits CRC through the STAT1 signaling pathway, suggesting that the TRIM59/STAT1 signaling pathway may be a promising target for CRC.


Subject(s)
Colorectal Neoplasms , Intracellular Signaling Peptides and Proteins , Macrophage Activation , Macrophages , Mice, Knockout , STAT1 Transcription Factor , Signal Transduction , Tripartite Motif Proteins , Animals , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Macrophage Activation/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Mice , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/deficiency , Macrophages/metabolism , Humans , Mice, Inbred C57BL
3.
J Cancer Res Clin Oncol ; 150(7): 342, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980538

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA), characterized by high heterogeneity and extreme malignancy, has a poor prognosis. Doublecortin-like kinase 1 (DCLK1) promotes a variety of malignant cancers in their progression. Targeting DCLK1 or its associated regulatory pathways can prevent the generation and deterioration of several malignancies. However, the role of DCLK1 in CCA progression and its molecular mechanisms remain unknown. Therefore, we aimed to investigate whether and how DCLK1 contributes to CCA progression. METHODS: The expression of DCLK1 in CCA patients was detected using Immunohistochemistry (IHC). We established DCLK1 knockout and DCLK1 overexpression cell lines for Colony Formation Assay and Transwell experiments to explore the tumor-promoting role of DCLK1. RT-PCR, Western blot and multiple fluorescent staining were used to assess the association between DCLK1 and epithelial-mesenchymal transition (EMT) markers. RNA sequencing and bioinformatics analysis were performed to identify the underlying mechanisms by which DCLK1 regulates CCA progression and the EMT program. RESULTS: DCLK1 was overexpressed in CCA tissues and was associated with poor prognosis. DCLK1 overexpression facilitated CCA cell invasion, migration, and proliferation, whereas DCLK1 knockdown reversed the malignant tendencies of CCA cells, which had been confirmed both in vivo and in vitro. Furthermore, we demonstrated that DCLK1 was substantially linked to the advancement of the EMT program, which included the overexpression of mesenchymal markers and the downregulation of epithelial markers. For the underlying mechanism, we proposed that the PI3K/AKT/mTOR pathway is the key process for the role of DCLK1 in tumor progression and the occurrence of the EMT program. When administered with LY294002, an inhibitor of the PI3K/AKT/mTOR pathway, the tumor's ability to proliferate, migrate, and invade was greatly suppressed, and the EMT process was generally reversed. CONCLUSIONS: DCLK1 facilitates the malignant biological behavior of CCA cells through the PI3K/AKT/mTOR pathway. In individuals with cholangiocarcinoma who express DCLK1 at high levels, inhibitors of the PI3K/AKT/mTOR signaling pathway may be an effective therapeutic approach.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Doublecortin-Like Kinases , Intracellular Signaling Peptides and Proteins , Phosphatidylinositol 3-Kinases , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/drug therapy , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/drug therapy , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Phosphatidylinositol 3-Kinases/metabolism , Male , Animals , Female , Mice , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Prognosis , Middle Aged , Cell Proliferation , Mice, Nude , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic
4.
PLoS Biol ; 22(7): e3002696, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38959200

ABSTRACT

Sterile alpha motif domain-containing proteins 9 and 9-like (SAMD9/9L) are associated with life-threatening genetic diseases in humans and are restriction factors of poxviruses. Yet, their cellular function and the extent of their antiviral role are poorly known. Here, we found that interferon-stimulated human SAMD9L restricts HIV-1 in the late phases of replication, at the posttranscriptional and prematuration steps, impacting viral translation and, possibly, endosomal trafficking. Surprisingly, the paralog SAMD9 exerted an opposite effect, enhancing HIV-1. More broadly, we showed that SAMD9L restricts primate lentiviruses, but not a gammaretrovirus (MLV), nor 2 RNA viruses (arenavirus MOPV and rhabdovirus VSV). Using structural modeling and mutagenesis of SAMD9L, we identified a conserved Schlafen-like active site necessary for HIV-1 restriction by human and a rodent SAMD9L. By testing a gain-of-function constitutively active variant from patients with SAMD9L-associated autoinflammatory disease, we determined that SAMD9L pathogenic functions also depend on the Schlafen-like active site. Finally, we found that the constitutively active SAMD9L strongly inhibited HIV, MLV, and, to a lesser extent, MOPV. This suggests that the virus-specific effect of SAMD9L may involve its differential activation/sensing and the virus ability to evade from SAMD9L restriction. Overall, our study identifies SAMD9L as an HIV-1 antiviral factor from the cell autonomous immunity and deciphers host determinants underlying the translational repression. This provides novel links and therapeutic avenues against viral infections and genetic diseases.


Subject(s)
HIV-1 , Lentiviruses, Primate , Virus Replication , Humans , HIV-1/genetics , HIV-1/physiology , Animals , Lentiviruses, Primate/genetics , Lentiviruses, Primate/metabolism , HEK293 Cells , Protein Biosynthesis , Antiviral Restriction Factors , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , HIV Infections/virology , HIV Infections/drug therapy , Tumor Suppressor Proteins
5.
Mol Cancer ; 23(1): 139, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970106

ABSTRACT

BACKGROUND: Radioresistance is the leading cause of death in advanced cervical cancer (CC). Dysregulation of RNA modification has recently emerged as a regulatory mechanism in radiation and drug resistance. We aimed to explore the biological function and clinical significance of 5-methylcytosine (m5C) in cervical cancer radiosensitivity. METHODS: The abundance of RNA modification in radiotherapy-resistant and sensitive CC specimens was quantified by liquid chromatography-tandem mass spectrometry. The essential RNA modification-related genes involved in CC radiosensitivity were screened via RNA sequencing. The effect of NSUN6 on radiosensitivity was verified in CC cell lines, cell-derived xenograft (CDX), and 3D bioprinted patient-derived organoid (PDO). The mechanisms of NSUN6 in regulating CC radiosensitivity were investigated by integrative m5C sequencing, mRNA sequencing, and RNA immunoprecipitation. RESULTS: We found a higher abundance of m5C modification in resistant CC samples, and NSUN6 was the essential m5C-regulating gene concerning radiosensitivity. NSUN6 overexpression was clinically correlated with radioresistance and poor prognosis in cervical cancer. Functionally, higher NSUN6 expression was associated with radioresistance in the 3D PDO model of cervical cancer. Moreover, silencing NSUN6 increased CC radiosensitivity in vivo and in vitro. Mechanistically, NDRG1 was one of the downstream target genes of NSUN6 identified by integrated m5C-seq, mRNA-seq, and functional validation. NSUN6 promoted the m5C modification of NDRG1 mRNA, and the m5C reader ALYREF bound explicitly to the m5C-labeled NDRG1 mRNA and enhanced NDRG1 mRNA stability. NDRG1 overexpression promoted homologous recombination-mediated DNA repair, which in turn led to radioresistance in cervical cancer. CONCLUSIONS: Aberrant m5C hypermethylation and NSUN6 overexpression drive resistance to radiotherapy in cervical cancer. Elevated NSUN6 expression promotes radioresistance in cervical cancer by activating the NSUN6/ALYREF-m5C-NDRG1 pathway. The low expression of NSUN6 in cervical cancer indicates sensitivity to radiotherapy and a better prognosis.


Subject(s)
5-Methylcytosine , Cell Cycle Proteins , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins , RNA, Messenger , Radiation Tolerance , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/pathology , Humans , Female , Radiation Tolerance/genetics , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Line, Tumor , Prognosis , Xenograft Model Antitumor Assays , Methyltransferases/genetics , Methyltransferases/metabolism
6.
Article in Chinese | MEDLINE | ID: mdl-38973045

ABSTRACT

Objective:To investigate the clinical phenotype of a family with branchio-oto syndrome (BOS) and to explore the genetic etiology of the syndrome in this family. Methods:Clinical data were collected from a child diagnosed with BOS and his family members. Genomic DNA was extracted from peripheral blood of the proband and his family members. Whole-exome sequencing was performed, and the mutation sites were verified and analyzed by Sanger sequencing. Results:The family consists of two generations with four members, three of whom exhibit the phenotype. Two members have hearing loss and bilateral preauricular fistulas and bilateral branchial cleft fistulas. One member has bilateral preauricular fistulas and bilateral branchial cleft fistulas. All of which were in line with the clinical diagnosis of gill ear syndrome, the inheritance mode of the family was autosomal dominant inheritance, genetic testing showed that all members of the family had c. 1744delC(p. L592Cfs*47) mutation in the EYA1 gene, while unaffected members have the wild-type allele at this locus. This mutation is a frameshift mutation, which results in the early appearance of the stop codon, and has not been reported so far. According to ACMG guidelines, the variant was preliminarily determined to be suspected pathogenic. Conclusion:The newly discovered EYA1c. 1744delC(p. L592Cfs*47) mutation in this family is the pathogenic mutant gene of the patients in this family, which further expands the mutation spectrum of EYA1 gene, gives us a new understanding of the disease, and provides an important reference for clinical diagnosis and genetic counseling.


Subject(s)
Intracellular Signaling Peptides and Proteins , Nuclear Proteins , Pedigree , Phenotype , Protein Tyrosine Phosphatases , Humans , Male , Protein Tyrosine Phosphatases/genetics , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Female , Exome Sequencing , Branchio-Oto-Renal Syndrome/genetics , Frameshift Mutation , Mutation , Genetic Testing , Child , Adult
7.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963029

ABSTRACT

Viral infections in the respiratory tract are common, and, in recent years, severe acute respiratory syndrome coronavirus 2 outbreaks have highlighted the effect of viral infections on antiviral innate immune and inflammatory reactions. Specific treatments for numerous viral respiratory infections have not yet been established and they are mainly treated symptomatically. Therefore, understanding the details of the innate immune system underlying the airway epithelium is crucial for the development of new therapies. The present study aimed to investigate the function and expression of interferon (IFN)­stimulated gene (ISG)60 in non­cancerous bronchial epithelial BEAS­2B cells exposed to a Toll­like receptor 3 agonist. BEAS­2B cells were treated with a synthetic TLR3 ligand, polyinosinic­polycytidylic acid (poly IC). The mRNA and protein expression levels of ISG60 were analyzed using reverse transcription­quantitative PCR and western blotting, respectively. The levels of C­X­C motif chemokine ligand 10 (CXCL10) were examined using an enzyme­linked immunosorbent assay, and the effects of knockdown of IFN­ß, ISG60 and ISG56 were examined using specific small interfering RNAs. Notably, ISG60 expression was increased in proportion to poly IC concentration, and recombinant human IFN­ß also induced ISG60 expression. By contrast, knockdown of IFN­ß and ISG56 decreased ISG60 expression, and ISG60 knockdown reduced CXCL10 and ISG56 expression. These findings suggested that ISG60 is partly implicated in CXCL10 expression and that ISG60 may serve a role in the innate immune response of bronchial epithelial cells. The present study highlights ISG60 as a potential target for new therapeutic strategies against viral infections in the airway.


Subject(s)
Bronchi , Chemokine CXCL10 , Epithelial Cells , Poly I-C , Signal Transduction , Toll-Like Receptor 3 , Humans , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/genetics , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Bronchi/cytology , Bronchi/metabolism , Poly I-C/pharmacology , Signal Transduction/drug effects , Cell Line , Immunity, Innate , Interferon-beta/metabolism , Interferon-beta/genetics , Gene Expression Regulation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , RNA-Binding Proteins , Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins
8.
Immun Inflamm Dis ; 12(7): e1303, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967379

ABSTRACT

BACKGROUND: Psoriasis refers to a highly prevalent and immunologically mediated dermatosis with considerable deterioration in life quality. Wogonin, a sort of flavonoid, has been mentioned to elicit protective activities in skin diseases. However, whether Wogonin is implicated in the treatment of psoriasis and its specific mechanisms are not fully understood. AIM: The present work attempted to elaborate the role of Wogonin during the process of psoriasis and to concentrate on the associated action mechanism. METHODS: Cell counting kit-8 (CCK-8) method was initially applied to assay the viability of human keratinocyte HaCaT cells treated by varying concentrations of Wogonin. To mimic psoriasis in vitro, HaCaT cells were exposed to M5 cytokines. CCK-8 and 5-Ethynyl-2'-deoxyuridine  assays were adopted for the measurement of cell proliferation. Inflammatory levels were examined with enzyme-linked immunosorbent assay. Immunofluorescence staining tested nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) and Caspase-1 expressions. Western blot examined the protein expressions of proliferation-, inflammation-, pyroptosis-associated factors, and NLRP3. RESULTS: Wogonin treatment antagonized the proliferation, inflammatory response, and NLRP3/caspase-1/Gasdermin-D (GSDMD)-mediated pyroptosis in M5-challenged HaCaT cells. Besides, NLRP3 elevation partially abrogated the effects of Wogonin on M5-induced proliferation, inflammatory response, and NLRP3/caspase-1/GSDMD-mediated pyroptosis in HaCaT cells. CONCLUSION: In a word, Wogonin might exert anti-proliferation, anti-inflammatory and anti-pyroptosis activities in M5-induced cell model of psoriasis and the blockade of NLRP3/Caspase-1/GSDMD pathway might be recognized as a potential mechanism underlying the protective mechanism of Wogonin in psoriasis, suggesting Wogonin as a prospective anti-psoriasis drug.


Subject(s)
Caspase 1 , Cell Proliferation , Flavanones , Keratinocytes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Signal Transduction , Humans , Flavanones/pharmacology , Pyroptosis/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Proliferation/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Caspase 1/metabolism , Signal Transduction/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Psoriasis/drug therapy , Psoriasis/metabolism , Psoriasis/pathology , Inflammation/metabolism , Inflammation/drug therapy , HaCaT Cells , Cell Line , Gasdermins , Phosphate-Binding Proteins
9.
Sci Rep ; 14(1): 15353, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38961101

ABSTRACT

Cervical cancer (CC) is the fourth most common cancer among women worldwide. NLR Family CARD Domain Containing 5 (NLRC5) plays an important role in tumorigenesis. However, its effect and mechanism in CC remains unclear. In this study, we aimed to investigate the function of NLRC5 in CC. NLRC5 was found to be down-regulated in CC tissues compared with normal cervical tissues. However, patients with higher NLRC5 expression had better prognosis, patients with higher age, HPV infection, lymph node metastasis, recurrence and histological grade had worse prognosis. Univariate and multivariate analyses showed NLRC5 to be a potential prognostic indicator for CC. Pearson correlation analysis showed that NLRC5 might exert its function in CC through autophagy related proteins, especially LC3. In vitro experiments demonstrated that NLRC5 inhibited LC3 levels and promoted the proliferation, migration, and invasion of CC cells by activating the PI3K/AKT signaling pathway. Treatment with LY294002 reversed the above phenotype. Taken together, our finding suggested that NLRC5 would participate in cervical tumorigenesis and progression by regulating PI3K/AKT signaling pathway. In addition, NLRC5 and LC3 combined as possible predictors in CC.


Subject(s)
Cell Proliferation , Intracellular Signaling Peptides and Proteins , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Middle Aged , Cell Proliferation/genetics , Cell Line, Tumor , Prognosis , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Adult
10.
Proc Natl Acad Sci U S A ; 121(29): e2400883121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38980908

ABSTRACT

Gasdermin D (GSDMD)-mediated pyroptotic cell death drives inflammatory cytokine release and downstream immune responses upon inflammasome activation, which play important roles in host defense and inflammatory disorders. Upon activation by proteases, the GSDMD N-terminal domain (NTD) undergoes oligomerization and membrane translocation in the presence of lipids to assemble pores. Despite intensive studies, the molecular events underlying the transition of GSDMD from an autoinhibited soluble form to an oligomeric pore form inserted into the membrane remain incompletely understood. Previous work characterized S-palmitoylation for gasdermins from bacteria, fungi, invertebrates, as well as mammalian gasdermin E (GSDME). Here, we report that a conserved residue Cys191 in human GSDMD was S-palmitoylated, which promoted GSDMD-mediated pyroptosis and cytokine release. Mutation of Cys191 or treatment with palmitoyltransferase inhibitors cyano-myracrylamide (CMA) or 2-bromopalmitate (2BP) suppressed GSDMD palmitoylation, its localization to the membrane and dampened pyroptosis or IL-1ß secretion. Furthermore, Gsdmd-dependent inflammatory responses were alleviated by inhibition of palmitoylation in vivo. By contrast, coexpression of GSDMD with palmitoyltransferases enhanced pyroptotic cell death, while introduction of exogenous palmitoylation sequences fully restored pyroptotic activities to the C191A mutant, suggesting that palmitoylation-mediated membrane localization may be distinct from other molecular events such as GSDMD conformational change during pore assembly. Collectively, our study suggests that S-palmitoylation may be a shared regulatory mechanism for GSDMD and other gasdermins, which points to potential avenues for therapeutically targeting S-palmitoylation of gasdermins in inflammatory disorders.


Subject(s)
Cysteine , Intracellular Signaling Peptides and Proteins , Lipoylation , Phosphate-Binding Proteins , Pyroptosis , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Cysteine/metabolism , Animals , Mice , Cytokines/metabolism , HEK293 Cells , Inflammasomes/metabolism , Gasdermins
11.
Front Immunol ; 15: 1363156, 2024.
Article in English | MEDLINE | ID: mdl-38953028

ABSTRACT

Introduction: Human Herpesvirus 6B (HHV-6B) impedes host immune responses by downregulating class I MHC molecules (MHC-I), hindering antigen presentation to CD8+ T cells. Downregulation of MHC-I disengages inhibitory receptors on natural killer (NK) cells, resulting in activation and killing of the target cell if NK cell activating receptors such as NKG2D have engaged stress ligands upregulated on the target cells. Previous work has shown that HHV-6B downregulates three MHC-like stress ligands MICB, ULBP1, and ULBP3, which are recognized by NKG2D. The U20 glycoprotein of the related virus HHV-6A has been implicated in the downregulation of ULBP1, but the precise mechanism remains undetermined. Methods: We set out to investigate the role of HHV-6B U20 in modulating NK cell activity. We used HHV-6B U20 expressed as a recombinant protein or transduced into target cells, as well as HHV-6B infection, to investigate binding interactions with NK cell ligands and receptors and to assess effects on NK cell activation. Small-angle X-ray scattering was used to align molecular models derived from machine-learning approaches. Results: We demonstrate that U20 binds directly to ULBP1 with sub-micromolar affinity. Transduction of U20 decreases NKG2D binding to ULBP1 at the cell surface but does not decrease ULBP1 protein levels, either at the cell surface or in toto. HHV-6B infection and soluble U20 have the same effect. Transduction of U20 blocks NK cell activation in response to cell-surface ULBP1. Structural modeling of the U20 - ULBP1 complex indicates some similarities to the m152-RAE1γ complex.


Subject(s)
GPI-Linked Proteins , Herpesvirus 6, Human , Killer Cells, Natural , Lymphocyte Activation , NK Cell Lectin-Like Receptor Subfamily K , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Herpesvirus 6, Human/immunology , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , NK Cell Lectin-Like Receptor Subfamily K/immunology , Lymphocyte Activation/immunology , Protein Binding , Viral Proteins/immunology , Viral Proteins/metabolism , Glycoproteins/immunology , Glycoproteins/metabolism , Intracellular Signaling Peptides and Proteins
12.
Cell Mol Life Sci ; 81(1): 295, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977508

ABSTRACT

Nod-like receptor family pyrin-containing protein 3 (NLRP3) inflammasome plays a pathologic role in metabolic dysfunction-associated steatohepatitis (MASH), but the molecular mechanism regulating the NLRP3 inflammasome activation in hepatocellular lipotoxicity remains largely unknown. Bromodomain-containing protein 4 (BRD4) has emerged as a key epigenetic reader of acetylated lysine residues in enhancer regions that control the transcription of key genes. The aim of this study is to investigate if and how BRD4 regulated the NLRP3 inflammasome activation and pyroptosis in MASH. Using the AML12 and primary mouse hepatocytes stimulated by palmitic acid (PA) as an in vitro model of hepatocellular lipotoxicity, we found that targeting BRD4 by genetic knockdown or a selective BRD4 inhibitor MS417 protected against hepatosteatosis; and this protective effect was attributed to inhibiting the activation of NLRP3 inflammasome and reducing the expression of Caspase-1, gasdermin D (GSDMD), interleukin (IL)-1ß and IL-6. Moreover, BRD4 inhibition limited the voltage-dependent anion channel-1 (VDAC1) expression and oligomerization in PA-treated AML12 hepatocytes, thereby suppressing the NLRP3 inflammasome activation. Additionally, the expression of BRD4 enhanced in MASH livers of humans. Mechanistically, BRD4 was upregulated during hepatocellular lipotoxicity that in turn modulated the active epigenetic mark H3K27ac at the promoter regions of the Vdac and Gsdmd genes, thereby enhancing the expression of VDAC and GSDMD. Altogether, our data provide novel insights into epigenetic mechanisms underlying BRD4 activating the NLRP3 inflammasome and promoting GSDMD-mediated pyroptosis in hepatocellular lipotoxicity. Thus, BRD4 might serve as a novel therapeutic target for the treatment of MASH.


Subject(s)
Hepatocytes , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pyroptosis , Transcription Factors , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Pyroptosis/drug effects , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Inflammasomes/metabolism , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Palmitic Acid/pharmacology , Male , Indenes/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Sulfonamides/pharmacology , Fatty Liver/metabolism , Fatty Liver/pathology , Cell Cycle Proteins , Furans , Gasdermins , Bromodomain Containing Proteins , Nuclear Proteins
13.
Biol Psychiatry ; 95(8): 785-799, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38952926

ABSTRACT

Background: Responding to social signals by expressing the correct behavior is not only challenged in autism, but also in diseases with high prevalence of autism, like Prader-Willi Syndrome (PWS). Clinical evidence suggests aberrant pro-social behavior in patients can be regulated by intranasal oxytocin (OXT) or vasopressin (AVP). However, what neuronal mechanisms underlie impaired behavioral responses in a socially-aversive context, and how can they be corrected, remains largely unknown. Methods: Using the Magel2 knocked-out (KO) mouse model of PWS (crossed with CRE-dependent transgenic lines), we devised optogenetic, physiological and pharmacological strategies in a social-fear-conditioning paradigm. Pathway specific roles of OXT and AVP signaling were investigated converging on the lateral septum (LS), a region which receives dense hypothalamic inputs. Results: OXT and AVP signaling promoted inhibitory synaptic transmission in the LS, which failure in Magel2KO mice disinhibited somatostatin (SST) neurons and disrupted social-fear extinction. The source of OXT and AVP deficits mapped specifically in the supraoptic nucleus→LS pathway of Magel2KO mice disrupting social-fear extinction, which could be corrected by optogenetic or pharmacological inhibition of SST-neurons in the LS. Interestingly, LS SST-neurons also gated the expression of aggressive behavior, possibly as part of functional units operating beyond local septal circuits. Conclusions: SST cells in the LS play a crucial role in integration and expression of disrupted neuropeptide signals in autism, thereby altering the balance in expression of safety versus fear. Our results uncover novel mechanisms underlying dysfunction in a socially-aversive context, and provides a new framework for future treatments in autism-spectrum disorders.


Subject(s)
Disease Models, Animal , Extinction, Psychological , Fear , Mice, Knockout , Neurons , Oxytocin , Prader-Willi Syndrome , Somatostatin , Vasopressins , Animals , Oxytocin/pharmacology , Somatostatin/pharmacology , Somatostatin/metabolism , Fear/drug effects , Fear/physiology , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Neurons/drug effects , Neurons/metabolism , Mice , Prader-Willi Syndrome/physiopathology , Prader-Willi Syndrome/drug therapy , Vasopressins/metabolism , Aggression/drug effects , Aggression/physiology , Male , Social Behavior , Septal Nuclei/drug effects , Septal Nuclei/metabolism , Optogenetics , Mice, Inbred C57BL , Intracellular Signaling Peptides and Proteins , Intrinsically Disordered Proteins
14.
Proc Natl Acad Sci U S A ; 121(29): e2400569121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985771

ABSTRACT

Defects in planar cell polarity (PCP) have been implicated in diverse human pathologies. Vangl2 is one of the core PCP components crucial for PCP signaling. Dysregulation of Vangl2 has been associated with severe neural tube defects and cancers. However, how Vangl2 protein is regulated at the posttranslational level has not been well understood. Using chemical reporters of fatty acylation and biochemical validation, here we present that Vangl2 subcellular localization is regulated by a reversible S-stearoylation cycle. The dynamic process is mainly regulated by acyltransferase ZDHHC9 and deacylase acyl-protein thioesterase 1 (APT1). The stearoylation-deficient mutant of Vangl2 shows decreased plasma membrane localization, resulting in disruption of PCP establishment during cell migration. Genetically or pharmacologically inhibiting ZDHHC9 phenocopies the effects of the stearoylation loss of Vangl2. In addition, loss of Vangl2 stearoylation enhances the activation of oncogenic Yes-associated protein 1 (YAP), serine-threonine kinase AKT, and extracellular signal-regulated protein kinase (ERK) signaling and promotes breast cancer cell growth and HRas G12V mutant (HRasV12)-induced oncogenic transformation. Our results reveal a regulation mechanism of Vangl2, and provide mechanistic insight into how fatty acid metabolism and protein fatty acylation regulate PCP signaling and tumorigenesis by core PCP protein lipidation.


Subject(s)
Cell Membrane , Cell Polarity , Membrane Proteins , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Polarity/physiology , Cell Membrane/metabolism , Cell Movement , Thiolester Hydrolases/metabolism , Thiolester Hydrolases/genetics , Acyltransferases/metabolism , Acyltransferases/genetics , Animals , Signal Transduction , Protein Processing, Post-Translational , Intracellular Signaling Peptides and Proteins
15.
Immunity ; 57(6): 1192-1194, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38865965

ABSTRACT

Bacterial lipopolysaccharide (LPS) is implicated in disrupting the blood-brain barrier (BBB). In a recent issue of Nature, Wei et al. now show that LPS activates the inflammatory caspases (4, 5, and 11) and gasdermin D (GSDMD) in brain endothelial cells, which triggers their pyroptotic cell death and disrupts the BBB.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Lipopolysaccharides , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/immunology , Animals , Humans , Endothelial Cells/metabolism , Endothelial Cells/immunology , Lipopolysaccharides/immunology , Caspases/metabolism , Pyroptosis , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Mice
16.
Breast Cancer Res ; 26(1): 94, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844963

ABSTRACT

BACKGROUND: RNA m5C methylation has been extensively implicated in the occurrence and development of tumors. As the main methyltransferase, NSUN2 plays a crucial regulatory role across diverse tumor types. However, the precise impact of NSUN2-mediated m5C modification on breast cancer (BC) remains unclear. Our study aims to elucidate the molecular mechanism underlying how NSUN2 regulates the target gene HGH1 (also known as FAM203) through m5C modification, thereby promoting BC progression. Additionally, this study targets at preliminarily clarifying the biological roles of NSUN2 and HGH1 in BC. METHODS: Tumor and adjacent tissues from 5 BC patients were collected, and the m5C modification target HGH1 in BC was screened through RNA sequencing (RNA-seq) and single-base resolution m5C methylation sequencing (RNA-BisSeq). Methylation RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA-binding protein immunoprecipitation-qPCR (RIP-qPCR) confirmed that the methylation molecules NSUN2 and YBX1 specifically recognized and bound to HGH1 through m5C modification. In addition, proteomics, co-immunoprecipitation (co-IP), and Ribosome sequencing (Ribo-Seq) were used to explore the biological role of HGH1 in BC. RESULTS: As the main m5C methylation molecule, NSUN2 is abnormally overexpressed in BC and increases the overall level of RNA m5C. Knocking down NSUN2 can inhibit BC progression in vitro or in vivo. Combined RNA-seq and RNA-BisSeq analysis identified HGH1 as a potential target of abnormal m5C modifications. We clarified the mechanism by which NSUN2 regulates HGH1 expression through m5C modification, a process that involves interactions with the YBX1 protein, which collectively impacts mRNA stability and protein synthesis. Furthermore, this study is the first to reveal the binding interaction between HGH1 and the translation elongation factor EEF2, providing a comprehensive understanding of its ability to regulate transcript translation efficiency and protein synthesis in BC cells. CONCLUSIONS: This study preliminarily clarifies the regulatory role of the NSUN2-YBX1-m5C-HGH1 axis from post-transcriptional modification to protein translation, revealing the key role of abnormal RNA m5C modification in BC and suggesting that HGH1 may be a new epigenetic biomarker and potential therapeutic target for BC.


Subject(s)
Breast Neoplasms , Disease Progression , Gene Expression Regulation, Neoplastic , Methyltransferases , RNA Stability , Y-Box-Binding Protein 1 , Animals , Female , Humans , Mice , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Methylation , Methyltransferases/metabolism , Methyltransferases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
17.
Physiol Rep ; 12(11): e16108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872461

ABSTRACT

ERK3/MAPK6 activates MAP kinase-activated protein kinase (MK)-5 in selected cell types. Male MK5 haplodeficient mice show reduced hypertrophy and attenuated increase in Col1a1 mRNA in response to increased cardiac afterload. In addition, MK5 deficiency impairs cardiac fibroblast function. This study determined the effect of reduced ERK3 on cardiac hypertrophy following transverse aortic constriction (TAC) and fibroblast biology in male mice. Three weeks post-surgery, ERK3, but not ERK4 or p38α, co-immunoprecipitated with MK5 from both sham and TAC heart lysates. The increase in left ventricular mass and myocyte diameter was lower in TAC-ERK3+/- than TAC-ERK3+/+ hearts, whereas ERK3 haploinsufficiency did not alter systolic or diastolic function. Furthermore, the TAC-induced increase in Col1a1 mRNA abundance was diminished in ERK3+/- hearts. ERK3 immunoreactivity was detected in atrial and ventricular fibroblasts but not myocytes. In both quiescent fibroblasts and "activated" myofibroblasts isolated from adult mouse heart, siRNA-mediated knockdown of ERK3 reduced the TGF-ß-induced increase in Col1a1 mRNA. In addition, intracellular type 1 collagen immunoreactivity was reduced following ERK3 depletion in quiescent fibroblasts but not myofibroblasts. Finally, knocking down ERK3 impaired motility in both atrial and ventricular myofibroblasts. These results suggest that ERK3 plays an important role in multiple aspects of cardiac fibroblast biology.


Subject(s)
Fibroblasts , Animals , Male , Mice , Fibroblasts/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain/metabolism , Myocardium/metabolism , Myocardium/cytology , Mitogen-Activated Protein Kinase 6/metabolism , Mitogen-Activated Protein Kinase 6/genetics , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Cells, Cultured , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/genetics , Myocytes, Cardiac/metabolism
18.
Front Biosci (Landmark Ed) ; 29(6): 214, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38940025

ABSTRACT

BACKGROUND: The senescence marker protein 30 (SMP30) is a calcium-binding protein whose expression decreases with age, and is closely associated with hepatocellular carcinoma (HCC) development. The primary goal of this study was to examine the mechanistic effect of SMP30 on HCC migration and invasion. METHODS: Bioinformatic and immunohistochemical approaches were used to examine the expression of SMP30 in HCC tissues and its relationship to patient survival. We investigated the effects of SMP30 expression on HCC cell proliferation, migration, invasion, and cell cycle dynamics. cDNA microarray technology was used to determine the gene expression profile of SK-Hep-1 cells following recombinant SMP30 overexpression to identify genes downstream of SMP30 that regulate HCC cell migration and invasion. We identified SMP30 interacting proteins by affinity purification-mass spectrometry (AP-MS) and co-immunoprecipitation/western blotting (COIP-WB). RESULTS: SMP30 expression was lower in HCC tissues compared with normal liver tissues, and its expression positively correlated with overall survival in HCC patients. Additionally, SMP30 overexpression effectively blocked the migratory and invasive properties of SK-Hep-1 cells, but did not affect either proliferation rates or cell cycle. cDNA microarray results confirmed that many of the differentially expressed genes identified are involved in the process of epithelial-mesenchymal transition (EMT). AP-MS and COIP-WB experiments confirmed that Rho-associated protein kinase 1 (ROCK1) interacts with SMP30 in SK-Hep-1 cells, and ROCK1 is known to intimately regulate the EMT process. CONCLUSION: SMP30 inhibits HCC metastasis by influencing the expression of EMT-related proteins after interacting with ROCK1.


Subject(s)
Calcium-Binding Proteins , Carcinoma, Hepatocellular , Cell Movement , Epithelial-Mesenchymal Transition , Liver Neoplasms , Neoplasm Invasiveness , rho-Associated Kinases , Humans , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Epithelial-Mesenchymal Transition/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Female , Gene Expression Regulation, Neoplastic
19.
Viruses ; 16(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38932190

ABSTRACT

Human coronavirus 229E (HCoV-229E) is associated with upper respiratory tract infections and generally causes mild respiratory symptoms. HCoV-229E infection can cause cell death, but the molecular pathways that lead to virus-induced cell death as well as the interplay between viral proteins and cellular cell death effectors remain poorly characterized for HCoV-229E. Studying how HCoV-229E and other common cold coronaviruses interact with and affect cell death pathways may help to understand its pathogenesis and compare it to that of highly pathogenic coronaviruses. Here, we report that the main protease (Mpro) of HCoV-229E can cleave gasdermin D (GSDMD) at two different sites (Q29 and Q193) within its active N-terminal domain to generate fragments that are now unable to cause pyroptosis, a form of lytic cell death normally executed by this protein. Despite GSDMD cleavage by HCoV-229E Mpro, we show that HCoV-229E infection still leads to lytic cell death. We demonstrate that during virus infection caspase-3 cleaves and activates gasdermin E (GSDME), another key executioner of pyroptosis. Accordingly, GSDME knockout cells show a significant decrease in lytic cell death upon virus infection. Finally, we show that HCoV-229E infection leads to increased lytic cell death levels in cells expressing a GSDMD mutant uncleavable by Mpro (GSDMD Q29A+Q193A). We conclude that GSDMD is inactivated by Mpro during HCoV-229E infection, preventing GSDMD-mediated cell death, and point to the caspase-3/GSDME axis as an important player in the execution of virus-induced cell death. In the context of similar reported findings for highly pathogenic coronaviruses, our results suggest that these mechanisms do not contribute to differences in pathogenicity among coronaviruses. Nonetheless, understanding the interactions of common cold-associated coronaviruses and their proteins with the programmed cell death machineries may lead to new clues for coronavirus control strategies.


Subject(s)
Cell Death , Coronavirus 229E, Human , Intracellular Signaling Peptides and Proteins , Phosphate-Binding Proteins , Pyroptosis , Humans , Phosphate-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Coronavirus 229E, Human/physiology , Coronavirus 229E, Human/genetics , Coronavirus Infections/virology , Coronavirus Infections/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Cell Line , Host-Pathogen Interactions , HEK293 Cells , Gasdermins
20.
Mar Drugs ; 22(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38921571

ABSTRACT

TRAF6 is an E3 ubiquitin ligase that plays a crucial role in cell signaling. It is known that MMP is involved in tumor metastasis, and TRAF6 induces MMP-9 expression by binding to BSG. However, inhibiting TRAF6's ubiquitinase activity without disrupting the RING domain is a challenge that requires further research. To address this, we conducted computer-based drug screening to identify potential TRAF6 inhibitors. Using a ligand-receptor complex pharmacophore based on the inhibitor EGCG, known for its anti-tumor properties, we screened 52,765 marine compounds. After the molecular docking of 405 molecules with TRAF6, six compounds were selected for further analysis. By replacing fragments of non-binding compounds and conducting second docking, we identified two promising molecules, CMNPD9212-16 and CMNPD12791-8, with strong binding activity and favorable pharmacological properties. ADME and toxicity predictions confirmed their potential as TRAF6 inhibitors. Molecular dynamics simulations showed that CMNPD12791-8 maintained a stable structure with the target protein, comparable to EGCG. Therefore, CMNPD12791-8 holds promise as a potential inhibitor of TRAF6 for inhibiting tumor growth and metastasis.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , TNF Receptor-Associated Factor 6 , Humans , TNF Receptor-Associated Factor 6/antagonists & inhibitors , TNF Receptor-Associated Factor 6/metabolism , Aquatic Organisms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Evaluation, Preclinical/methods , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Pharmacophore , Intracellular Signaling Peptides and Proteins
SELECTION OF CITATIONS
SEARCH DETAIL