Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.564
Filter
1.
Cell Physiol Biochem ; 58(4): 361-381, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39092504

ABSTRACT

BACKGROUND/AIMS: Traumatic brain injury is a significant public problem with an incidence of 10 million people per year, causing the largest deaths and disabilities worldwide. Head injuries can be classified into primary and secondary head injuries. Secondary head injuries can be caused by several factors such as ischemia, cerebral edema, and neuroinflammation. AIF and MMP-9 are two parameters that can be indicators in measuring the effect of Oleuropein on traumatic brain injury in rats. Oleuropein itself has many activities such as antioxidant, anti-apoptotic, antimicrobial, anti-inflammatory, and neuroprotective. METHODS: Adult male Sprague-Dawley rats (250-350 grams) were exposed to head injury, with or without intraperitoneal administration of Oleuropein. Within 24-72 hours brain tissue was isolated for immunohistochemical analysis, ELISA, and TUNEL. AIF, GFAP, MMP-9, and HMGB-1 levels were determined using immunohistochemistry in both the control and treatment groups. Statistical analysis was made using the One-Way Analysis of Variance (ANOVA) and paired t-test. RESULTS: The results showed that Oleuropein was able to reduce AIF and MMP-9 levels in rats with traumatic brain injury. This indicates that Oleuropein has a neuroprotective effect by reducing inflammation and apoptosis. CONCLUSION: Oleuropein has a potential neuroprotective effect in traumatic brain injury by reducing inflammation and apoptosis. Therefore, Oleuropein can be considered as a potential therapeutic agent for traumatic brain injury in the future.


Subject(s)
Apoptosis Inducing Factor , Brain Injuries, Traumatic , Disease Models, Animal , Iridoid Glucosides , Iridoids , Matrix Metalloproteinase 9 , Rats, Sprague-Dawley , Animals , Iridoid Glucosides/pharmacology , Iridoid Glucosides/therapeutic use , Matrix Metalloproteinase 9/metabolism , Male , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Iridoids/pharmacology , Iridoids/therapeutic use , Rats , Apoptosis Inducing Factor/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , HMGB1 Protein/metabolism , Apoptosis/drug effects , Glial Fibrillary Acidic Protein/metabolism , Brain/metabolism , Brain/pathology , Brain/drug effects
2.
BMC Complement Med Ther ; 24(1): 297, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123180

ABSTRACT

BACKGROUND: Although synthetic preservatives and antioxidants may have high antimicrobial and antioxidant activity, they are usually associated with adverse effects on human health. Currently, there is a growing interest in natural antimicrobial and antioxidant agents. This study aimed to evaluate the antimicrobial activity of two medicinal plant extracts and one active compound. Olive leaf extracts (0.2, 0.3, and 0.4% w/v), oleuropein (0.2, 0.4, and 0.6% w/v), thyme oil (0.1%), and oleuropein in combination with thyme oil (0.4% w/v and 0.1% v/v) were used against three bacterial strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) and two fungal strains (Candida albicans and Aspergillus niger). RESULTS: The use of oleuropein resulted in complete antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In this context, a reduction of 7 logs was achieved during the storage period (4 weeks). Oleuropein showed no fungal activity at low concentrations (0.2%), but Aspergillus niger was reduced by 2.35 logs at higher concentrations (0.6% w/v). Similar antibacterial and antifungal properties were observed for the olive leaf extracts. Oleuropein at a concentration of 0.4 w/v and a mixture of oleuropein and thyme at concentrations of 0.4 and 0.1 (v/v) showed strong antimicrobial activity against the studied microorganisms. CONCLUSION: Olive leaf extract, thyme oil, and oleuropein have strong antibacterial and weak antifungal properties. There was a good synergistic effect between oleuropein and thymol.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Iridoid Glucosides , Iridoids , Olea , Plant Extracts , Plant Leaves , Thymus Plant , Thymus Plant/chemistry , Iridoid Glucosides/pharmacology , Olea/chemistry , Plant Extracts/pharmacology , Antifungal Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Iridoids/pharmacology , Microbial Sensitivity Tests , Aspergillus niger/drug effects , Candida albicans/drug effects , Plant Oils/pharmacology , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Escherichia coli/drug effects
3.
Molecules ; 29(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39125062

ABSTRACT

This study aims to extract phenolic-enriched compounds, specifically oleuropein, luteoloside, and hydroxytyrosol, from olive leaves using ball milling-assisted extraction (BMAE). Response surface methodology (RSM) and the Box-Behnken design (BBD) were used to evaluate the effects of the temperature, solvent-to-solid ratio, and milling speed on extraction recovery. The contents of the extract were determined by ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS) and converted to recoveries to evaluate the extraction efficiency. The optimal extraction conditions for oleuropein, luteoloside, and hydroxytyrosol were identified. Oleuropein had a recovery of 79.0% ± 0.9% at a temperature of 56.4 °C, a solvent-to-solid ratio of 39.1 mL/g, and a milling speed of 429 rpm. Luteoloside's recovery was 74.6% ± 1.2% at 58.4 °C, 31.3 mL/g, and 328 rpm. Hydroxytyrosol achieved 43.1% ± 1.3% recovery at 51.5 °C, 32.7 mL/g, and 317 rpm. The reason for the high recoveries might be that high energy ball milling could reduce the sample size further, breaking down the cell walls of olive leaves, to enhance the mass transfer of these components from the cell to solvent. BMAE is displayed to be an efficient approach to extracting oleuropein, luteoloside, and hydroxytyrosol from olive leaves, which is easy to extend to industrial production.


Subject(s)
Iridoid Glucosides , Olea , Phenols , Plant Extracts , Plant Leaves , Olea/chemistry , Plant Leaves/chemistry , Phenols/chemistry , Phenols/isolation & purification , Phenols/analysis , Plant Extracts/chemistry , Iridoid Glucosides/chemistry , Chromatography, High Pressure Liquid/methods , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/isolation & purification , Iridoids/chemistry , Iridoids/isolation & purification , Mass Spectrometry , Solvents/chemistry
4.
Medicine (Baltimore) ; 103(31): e39065, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093733

ABSTRACT

In patients with severe acute respiratory syndrome coronavirus 2 (which causes coronavirus disease 2019 [COVID-19]), oxidative stress (OS) is associated with disease severity and death. OS is also involved in the pathogenesis of atherosclerosis (AS). Previous studies have shown that geniposide has anti-inflammatory and anti-viral properties, and can protect cells against OS. However, the potential target(s) of geniposide in patients with COVID-19 and AS, as well as the mechanism it uses, are unclear. We combined pharmacology and bioinformatics analysis to obtain geniposide against COVID-19/AS targets, and build protein-protein interaction network to filter hub genes. The hub genes were performed an enrichment analysis by ClueGO, including Gene Ontology and KEGG. The Enrichr database and the target microRNAs (miRNAs) of hub genes were predicted through the MiRTarBase via Enrichr. The common miRNAs were used to construct the miRNAs-mRNAs regulated network, and the miRNAs' function was evaluated by mirPath v3.0 software. Two hundred forty-seven targets of geniposide were identified in patients with COVID-19/AS comorbidity by observing the overlap between the genes modulated by geniposide, COVID-19, and AS. A protein-protein interaction network of geniposide in patients with COVID-19/AS was constructed, and 27 hub genes were identified. The results of enrichment analysis suggested that geniposide may be involved in regulating the OS via the FoxO signaling pathway. MiRNA-mRNA network revealed that hsa-miR-34a-5p may play an important role in the therapeutic mechanism of geniposide in COVID-19/AS patients. Our study found that geniposide represents a promising therapy for patients with COVID-19 and AS comorbidity. Furthermore, the target genes and miRNAs that we identified may aid the development of new treatment strategies against COVID-19/AS.


Subject(s)
Atherosclerosis , COVID-19 Drug Treatment , COVID-19 , Computational Biology , Iridoids , MicroRNAs , Protein Interaction Maps , SARS-CoV-2 , Iridoids/pharmacology , Iridoids/therapeutic use , Humans , Computational Biology/methods , MicroRNAs/metabolism , MicroRNAs/genetics , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Protein Interaction Maps/drug effects , SARS-CoV-2/genetics , Oxidative Stress/drug effects
5.
J Oleo Sci ; 73(8): 1105-1112, 2024.
Article in English | MEDLINE | ID: mdl-39085084

ABSTRACT

Recently, biomolecules from natural products have paved the way for novel drug in the treatment of some diseases in vitro and in vivo models as diabetes, cancer and infertility. As such, we aimed to evaluate the capacity of Oleuropein (OLE), the major bio-phenol in olive leaf, to protect human sperm against bacterial lipopolysaccharide (LPS) inducing sperm oxidative stress and defective sperm functions. The toxic effect of OLE on human sperm was firstly investigated by evaluating sperm parameters after incubation during 60 minutes with different concentrations. Determined non-toxic concentration was then used to evaluate the capacity of OLE to protect sperm against LPS oxidative damages and sperm parameters alterations. Thus, sperms were consecutively incubated with LPS (10 µg/mL) and OLE (40 µg/mL) during 60 minutes, then submitted to sperm parameters analysis and oxidative stress assessment by measuring malondialdehyde (MDA), carbonyl groups (CG) levels and the activity of some antioxidant enzymes: superoxide dismutase (SOD) and catalase (CAT). A significant decrease of sperm parameters as well as a significant increase in MDA levels, CG levels, SOD and CAT activities was found after stimulation by LPS. However, a non-significant difference was shown comparing sperms treated by LPS and OLE with LPS-treated control sperms. Consequently, despite the high antioxidant and anti-inflammatory capacity of OLE reported in diverse cells, this phenolic compound seems to be not appropriate to protect human sperm in vitro against induced LPS oxidative stress and seems to have a "double-edged sword" behavior.


Subject(s)
Antioxidants , Catalase , Iridoid Glucosides , Lipopolysaccharides , Malondialdehyde , Olea , Oxidative Stress , Plant Extracts , Plant Leaves , Spermatozoa , Superoxide Dismutase , Humans , Male , Oxidative Stress/drug effects , Olea/chemistry , Spermatozoa/drug effects , Superoxide Dismutase/metabolism , Plant Leaves/chemistry , Catalase/metabolism , Antioxidants/pharmacology , Plant Extracts/pharmacology , Iridoid Glucosides/pharmacology , Malondialdehyde/metabolism , Iridoids/pharmacology , Iridoids/isolation & purification , In Vitro Techniques , Dose-Response Relationship, Drug
6.
Int J Biol Macromol ; 274(Pt 1): 133519, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960235

ABSTRACT

This study investigated the development of a genipin-crosslinked chitosan (CS)-based polyvinylpyrrolidone (PVP) hydrogel containing curcumin nanosuspensions (Cur-NSs) to promote wound healing in an excisional wound model. Cur-NSs were prepared, and a simplex centroid mixture design was employed to optimize hydrogel properties for high water absorption, degree of crosslinking, and sufficient toughness. The in vivo wound healing effect was tested in Wistar rats. The optimized hydrogel consisted of a 70:30 ratio of CS:PVP, crosslinked with a 2 % w/w genipin solution. It exhibited high swelling capability (486 %) while maintaining solidity, robustness, and durability. Incorporating 5 % w/w Cur-NSs resulted in a more compact structure, although with a reduction in swelling properties. The release kinetics of Cur from the hydrogel followed the Korsmeyer-Peppas Fickian diffusion model. In vitro biocompatibility studies demonstrated that the hydrogel was non-toxic to skin fibroblast cells. The in vivo experiment revealed a desirable wound healing rate with over 80 % recovery by day 7. Cur-NSs likely aided wound healing by reducing the inflammatory response and stimulating fibroblast proliferation. Additionally, the CS-based hydrogel provided a moist wound environment with hydration and gas transfer, further accelerating wound closure. These findings suggest that the Cur-NS-embedded hydrogel shows promise as a wound dressing material.


Subject(s)
Chitosan , Curcumin , Hydrogels , Iridoids , Povidone , Rats, Wistar , Wound Healing , Curcumin/pharmacology , Curcumin/chemistry , Wound Healing/drug effects , Chitosan/chemistry , Animals , Iridoids/chemistry , Iridoids/pharmacology , Povidone/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Fibroblasts/drug effects , Male , Nanoparticles/chemistry , Cross-Linking Reagents/chemistry
7.
Nutrients ; 16(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999733

ABSTRACT

Natural and synthetic colorants present in food can modulate hemostasis, which includes the coagulation process and blood platelet activation. Some colorants have cardioprotective activity as well. However, the effect of genipin (a natural blue colorant) and synthetic blue colorants (including patent blue V and brilliant blue FCF) on hemostasis is not clear. In this study, we aimed to investigate the effects of three blue colorants-genipin, patent blue V, and brilliant blue FCF-on selected parameters of hemostasis in vitro. The anti- or pro-coagulant potential was assessed in human plasma by measuring the following coagulation times: thrombin time (TT), prothrombin time (PT), and activated partial thromboplastin time (APTT). Moreover, we used the Total Thrombus formation Analysis System (T-TAS, PL-chip) to evaluate the anti-platelet potential of the colorants in whole blood. We also measured their effect on the adhesion of washed blood platelets to fibrinogen and collagen. Lastly, the cytotoxicity of the colorants against blood platelets was assessed based on the activity of extracellular lactate dehydrogenase (LDH). We observed that genipin (at all concentrations (1-200 µM)) did not have a significant effect on the coagulation times (PT, APTT, and TT). However, genipin at the highest concentration (200 µM) and patent blue V at the concentrations of 1 and 10 µM significantly prolonged the time of occlusion measured using the T-TAS, which demonstrated their anti-platelet activity. We also observed that genipin decreased the adhesion of platelets to fibrinogen and collagen. Only patent blue V and brilliant blue FCF significantly shortened the APTT (at the concentration of 10 µM) and TT (at concentrations of 1 and 10 µM), demonstrating pro-coagulant activity. These synthetic blue colorants also modulated the process of human blood platelet adhesion, stimulating the adhesion to fibrinogen and inhibiting the adhesion to collagen. The results demonstrate that genipin is not toxic. In addition, because of its ability to reduce blood platelet activation, genipin holds promise as a novel and valuable agent that improves the health of the cardiovascular system and reduces the risk of cardiovascular diseases. However, the mechanism of its anti-platelet activity remains unclear and requires further studies. Its in vivo activity and interaction with various anti-coagulant and anti-thrombotic drugs, including aspirin and its derivatives, should be examined as well.


Subject(s)
Blood Coagulation , Blood Platelets , Food Coloring Agents , Iridoids , Humans , Iridoids/pharmacology , Blood Coagulation/drug effects , Food Coloring Agents/pharmacology , Blood Platelets/drug effects , Blood Platelets/metabolism , Hemostasis/drug effects , Partial Thromboplastin Time , Platelet Adhesiveness/drug effects , Fibrinogen/metabolism , Benzenesulfonates/pharmacology , Prothrombin Time , Rosaniline Dyes/pharmacology , Hemostatics/pharmacology , Platelet Activation/drug effects , Thrombin Time
8.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063062

ABSTRACT

Olive leaves (OLLs) are an exceptional bioresource of natural polyphenols with proven antioxidant activity, yet the applicability of OLL extracts is constrained by the relatively high polarity of the major polyphenols, which occur as glycosides. To overcome this limitation, OLLs were subjected to both hydrothermal and ethanol organosolv treatments, fostered by acid catalysis to solicit in parallel increased polyphenol recovery and polyphenol modification into simpler, lower-polarity substances. After an initial screening of natural organic acids, oxalic acid (OxAc) was found to be the highest-performing catalyst. The extraction behavior using OxAc-catalyzed hydrothermal and ethanol organosolv treatments was appraised using kinetics, while treatment optimization was accomplished by deploying response-surface methodology. The comparative assessment of the composition extracts produced under optimal conditions of residence time and temperature was performed with liquid chromatography-tandem mass spectrometry and revealed that OLLs treated with 50% ethanol/1.5% HCl suffered extensive oleuropein and flavone glycoside hydrolysis, affording almost 23.4 mg hydroxytyrosol and 2 mg luteolin per g dry weight. On the other hand, hydrothermal treatment with 5% OxAc provided 20.2 and 0.12 mg of hydroxytyrosol and luteolin, respectively. Apigenin was in all cases a minor extract constituent. The study presented herein demonstrated for the first time the usefulness of using a natural, food-grade organic acid to perform such a task, yet further investigation is needed to maximize the desired effect.


Subject(s)
Ethanol , Glycosides , Iridoid Glucosides , Olea , Plant Leaves , Olea/chemistry , Plant Leaves/chemistry , Hydrolysis , Ethanol/chemistry , Glycosides/chemistry , Catalysis , Flavonoids/chemistry , Iridoids/chemistry , Plant Extracts/chemistry , Tandem Mass Spectrometry , Polyphenols/chemistry
9.
Biomed Mater ; 19(5)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39059433

ABSTRACT

To explore the feasibility and safety of biomaterials for posterior scleral reinforcement (PSR) in rabbits. Decellularization and genipin crosslink were applied to the fresh bovine pericardium and porcine endocranium, and then mechanical properties, suture retention strength, and stability were tested. PSR operation was performed on 24 rabbit eyes using treated biological materials. Ophthalmic examination was performed regularly before and after PSR operation (1 week, 1 month, 3 months, 6 months). To evaluate the effectiveness, A ultrasound, diopter, and optical coherence tomography were conducted. General condition, fundus photograph, and pathological examination were recorded to evaluate the safety. Compared with genipin crosslinked bovine pericardium (Gen-BP) (21.29 ± 13.29 Mpa), genipin crosslinked porcine endocranium (Gen-PE) (34.85 ± 3.67 Mpa,P< 0.01) showed a closer elastic modulus to that of genipin crosslinked human sclera. There were no complications or toxic reactions directly related to the materials. Capillary hyperplasia, inflammatory cell infiltration, and collagen fiber deposition were observed, and the content of type I collagen fibers increased after PSR. Overall, the choroidal thickness of treated eyes was significantly thickened at different time points after PSR, which were 96.84 ± 21.08 µm, 96.72 ± 22.00 µm, 90.90 ± 16.57 µm, 97.28 ± 14.74 µm, respectively. The Gen-PE group showed changes that were almost consistent with the overall data. Gen-BP and Gen-PE are safe biological materials for PSR. The Gen-PE group demonstrated more significant advantages over the Gen-BP group in terms of material properties.


Subject(s)
Biocompatible Materials , Feasibility Studies , Iridoids , Materials Testing , Sclera , Animals , Rabbits , Biocompatible Materials/chemistry , Cattle , Swine , Iridoids/chemistry , Sutures , Pericardium , Tomography, Optical Coherence , Humans , Cross-Linking Reagents/chemistry , Elastic Modulus
10.
Nutrients ; 16(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999871

ABSTRACT

IL-17A drives inflammation and oxidative stress, affecting the progression of chronic lung diseases (asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and cystic fibrosis). Oleuropein (OLP) is a polyphenolic compound present in olive oil and widely included in the Mediterranean diet. It exerts antioxidant and anti-inflammatory activities, oxidative stress resistance, and anticarcinogenic effects with a conceivable positive impact on human health. We hypothesized that OLP positively affects the mechanisms of oxidative stress, apoptosis, DNA damage, cell viability during proliferation, and cell growth in alveolar epithelial cells and tested its effect in a human alveolar epithelial cell line (A549) in the presence of IL-17A. Our results show that OLP decreases the levels of oxidative stress (Reactive Oxygen Species, Mitochondrial membrane potential) and DNA damage (H2AX phosphorylation-ser139, Olive Tail Moment data) and increases cell apoptosis in A549 cells exposed to IL-17A. Furthermore, OLP decreases the number of viable cells during proliferation, the migratory potential (Scratch test), and the single cell capacity to grow within colonies as a cancer phenotype in A549 cells exposed to IL-17A. In conclusion, we suggest that OLP might be useful to protect lung epithelial cells from oxidative stress, DNA damage, cell growth, and cell apoptosis. This effect might be exerted in lung diseases by the downregulation of IL-17A activities. Our results suggest a positive effect of the components of olive oil on human lung health.


Subject(s)
Apoptosis , Cell Proliferation , DNA Damage , Interleukin-17 , Iridoid Glucosides , Iridoids , Oxidative Stress , Humans , Oxidative Stress/drug effects , Interleukin-17/metabolism , Iridoid Glucosides/pharmacology , Cell Proliferation/drug effects , A549 Cells , DNA Damage/drug effects , Apoptosis/drug effects , Iridoids/pharmacology , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Cell Survival/drug effects , Lung/drug effects , Lung/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Membrane Potential, Mitochondrial/drug effects , Olive Oil/pharmacology , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism
11.
Fitoterapia ; 177: 106098, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38950636

ABSTRACT

Brain edema after ischemic stroke could worsen cerebral injury in patients who received intravenous thrombolysis. Cornus officinalis Sieb. et Zucc., a long-established traditional Chinese medicine, is beneficial to the treatment of neurodegenerative diseases including ischemic stroke. In particular, its major component, cornel iridoid glycoside (CIG), was evidenced to exhibit neuroprotective effects against cerebral ischemic/reperfusion injury (CIR/I). Aimed to explore the effects of the CIG on brain edema of the CIR/I rats, the CIG was analyzed with the main constituents by using HPLC. The molecular docking analysis was performed between the CIG constituents and AQP4-M23. TGN-020, an AQP4 inhibitor, was used as a comparison. In the in vivo experiments, the rats were pre-treated with the CIG and were injured by performing middle cerebral artery occlusion/reperfusion (MCAO/R). After 24 h, the rats were examined for neurological function, pathological changes, brain edema, and polarized Aqp4 expressions in the brain. The HPLC analysis indicated that the CIG was composed of morroniside and loganin. The molecular docking analysis showed that both morroniside and loganin displayed lower binding energies to AQP4-M23 than TGN-020. The CIG pre-treated rats exhibited fewer neurological function deficits, minimized brain swelling, and reduced lesion volumes compared to the MCAO/R rats. In the peri-infarct and infarct regions, the CIG pre-treatment restored the polarized Aqp4 expression which was lost in the MCAO/R rats. The results suggested that the CIG could attenuate brain edema of the cerebral ischemia/reperfusion rats by modulating the polarized Aqp4 through the interaction of AQP4-M23 with morroniside and loganin.


Subject(s)
Aquaporin 4 , Brain Edema , Cornus , Iridoid Glycosides , Iridoids , Molecular Docking Simulation , Neuroprotective Agents , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Aquaporin 4/metabolism , Brain Edema/drug therapy , Rats , Male , Iridoids/pharmacology , Reperfusion Injury/drug therapy , Cornus/chemistry , Neuroprotective Agents/pharmacology , Iridoid Glycosides/pharmacology , Iridoid Glycosides/isolation & purification , Molecular Structure , Brain Ischemia/drug therapy , Brain/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Glycosides
12.
Med Oncol ; 41(8): 186, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918260

ABSTRACT

This comprehensive review delves into the multifaceted aspects of genipin, a bioactive compound derived from medicinal plants, focusing on its anti-cancer potential. The review begins by detailing the sources and phytochemical properties of genipin, underscoring its significance in traditional medicine and its transition into contemporary cancer research. It then explores the intricate relationship between genipin's chemical structure and its observed anti-cancer activity, highlighting the molecular underpinnings contributing to its therapeutic potential. This is complemented by a thorough analysis of preclinical studies, which investigates genipin's efficacy against various cancer cell lines and its mechanisms of action at the cellular level. A crucial component of the review is the examination of genipin's bioavailability and pharmacokinetics, providing insights into how the compound is absorbed, distributed, metabolized, and excreted in the body. Then, this review offers a general and updated overview of the anti-cancer studies of genipin and its derivatives based on its basic molecular mechanisms, induction of apoptosis, inhibition of cell proliferation, and disruption of cancer cell signaling pathways. We include information that complements the genipin study, such as toxicity data, and we differentiate this review by including commercial status, disposition, and regulation. Also, this review of genipin stands out for incorporating information on proposals for a technological approach through its load in nanotechnology to improve its bioavailability. The culmination of this information positions genipin as a promising candidate for developing novel anti-cancer drugs capable of supplementing or enhancing current cancer therapies.


Subject(s)
Iridoids , Neoplasms , Humans , Iridoids/pharmacology , Iridoids/chemistry , Iridoids/therapeutic use , Neoplasms/drug therapy , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/chemistry , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Apoptosis/drug effects
13.
Biomed Pharmacother ; 176: 116911, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861857

ABSTRACT

Atopic dermatitis (AD) is a globally increasing chronic inflammatory skin disease with limited and potentially side-effect-prone treatment options. Monotropein is the predominant iridoid glycoside in Morinda officinalis How roots, which has previously shown promise in alleviating AD symptoms. This study aimed to systematically investigate the pharmacological effects of monotropein on AD using a 2, 4-dinitrochlorobenzene (DNCB)/Dermatophagoides farinae extract (DFE)-induced AD mice and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated keratinocytes. Oral administration of monotropein demonstrated a significant reduction in AD phenotypes, including scaling, erythema, and increased skin thickness in AD-induced mice. Histological analysis revealed a marked decrease in immune cell infiltration in skin lesions. Additionally, monotropein effectively downregulated inflammatory markers, encompassing pro-inflammatory cytokines, T helper (Th)1 and Th2 cytokines, and pro-inflammatory chemokines in skin tissues. Notably, monotropein also led to a considerable decrease in serum immunoglobulin (Ig)E and IgG2a levels. At a mechanistic level, monotropein exerted its anti-inflammatory effects by suppressing the phosphorylation of Janus kinase / signal transducer and activator of transcription proteins in both skin tissues of AD-induced mice and TNF-α/IFN-γ-stimulated keratinocytes. In conclusion, monotropein exhibited a pronounced alleviation of AD symptoms in the experimental models used. These findings underscore the potential application of monotropein as a therapeutic agent in the context of AD, providing a scientific basis for further exploration and development.


Subject(s)
Dermatitis, Atopic , Janus Kinases , Keratinocytes , Signal Transduction , Skin , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/chemically induced , Signal Transduction/drug effects , Mice , Janus Kinases/metabolism , Skin/drug effects , Skin/pathology , Skin/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Cytokines/metabolism , Mice, Inbred BALB C , STAT Transcription Factors/metabolism , Humans , Dinitrochlorobenzene , Anti-Inflammatory Agents/pharmacology , Female , Disease Models, Animal , Inflammation/drug therapy , Inflammation/pathology , Immunoglobulin E/blood , Dermatophagoides farinae/immunology , Iridoids/pharmacology
14.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 193-202, 2024.
Article in English | MEDLINE | ID: mdl-38945884

ABSTRACT

Oleuropein aglycone (OA), which is the absorbed form of oleuropein, is a major phenolic compound in extra virgin olive oil. We analyzed the anti-obesity effect of OA intake combined with mild treadmill walking (MTW, 4 m/min for 20 min/d, 5-6 d/wk, without electric shocks and slope) in rats under a high-fat diet (HF). Four-week-old male Sprague-Dawley rats (n=28) were equally divided into four groups: control (HF), 0.08% oleuropein-supplemented HF (HFO), HF with MTW (HF+W), and HFO with MTW (HFO+W) groups. After 28 d, the inguinal subcutaneous fat content and weight gain were significantly lower in the HFO+W group than in the control group. The HFO+W group also had significantly higher levels of urinary noradrenaline secretion, interscapular brown adipose tissue, uncoupling protein 1, brain transient receptor potential ankyrin subtype 1 (TRPA1), vanilloid subtype 1 (TRPV1), and brain-derived neurotrophic factor (BDNF) than the control group. Especially, the HFO+W group showed a synergistic effect on noradrenaline secretion. Therefore, OA combined with MTW may accelerate the enhancement of UCP1 and BDNF levels in rats with HF-induced obesity by increasing noradrenaline secretion after TRPA1 and TRPV1 activation.


Subject(s)
Adipose Tissue, Brown , Brain-Derived Neurotrophic Factor , Diet, High-Fat , Iridoid Glucosides , Iridoids , Norepinephrine , Obesity , Rats, Sprague-Dawley , TRPA1 Cation Channel , Uncoupling Protein 1 , Animals , Male , Uncoupling Protein 1/metabolism , Iridoid Glucosides/pharmacology , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Iridoids/pharmacology , Norepinephrine/metabolism , TRPA1 Cation Channel/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Rats , Anti-Obesity Agents/pharmacology , Walking , Weight Gain/drug effects , Physical Conditioning, Animal , TRPV Cation Channels
15.
Int J Biol Macromol ; 274(Pt 2): 133213, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889834

ABSTRACT

Poor stability during gastrointestinal digestion is a major challenge for the applications of protein-based nanoparticles as oral delivery systems. In this work, genipin was used to crosslink the partially enzymatic hydrolyzed soy protein nanoparticles, aiming to improve their performance in gastrointestinal tract as delivery carrier. Results showed that the obtained genipin-crosslinked soy protein nanoparticles (GSPNPs) were still spherically monodisperse with a diameter around 60 nm. Encapsulation with GSPNPs significantly improved the solubility of curcumin (Cur) and its stability against UV light as well as long-term storage. Compared to those un-crosslinked nanoparticles, particles crosslinked by genipin had a more compact structure less sensitive to ionic effect and digestive enzymes, showing enhanced digestion stability. The well-maintained nanoparticulate structure of GSPNPs further contributed to the enhanced bioaccessibility and facilitated absorption by epithelial cells. Furthermore, in vivo experiment on rats showed that Cur encapsulated in GSPNPs exhibited a slowed down and sustained absorption manner with an 8.11-fold improvement in its bioavailability. These suggested that GSPNPs could be a promising nanocarrier to enhance the bioavailability of functional factors.


Subject(s)
Biological Availability , Curcumin , Iridoids , Nanoparticles , Soybean Proteins , Curcumin/chemistry , Curcumin/pharmacokinetics , Curcumin/pharmacology , Nanoparticles/chemistry , Iridoids/chemistry , Animals , Rats , Soybean Proteins/chemistry , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/drug effects , Humans , Drug Stability , Digestion/drug effects , Drug Carriers/chemistry , Particle Size , Solubility , Cross-Linking Reagents/chemistry , Rats, Sprague-Dawley , Male , Caco-2 Cells
16.
Nanotechnology ; 35(36)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38861966

ABSTRACT

Synergistic cancer therapies have attracted wide attention owing to their multi-mode tumor inhibition properties. Especially, photo-responsive photoimmunotherapy demonstrates an emerging cancer treatment paradigm that significantly improved treatment efficiency. Herein, near-infrared-II responsive ovalbumin functionalized Gold-Genipin nanosystem (Au-G-OVA NRs) was designed for immunotherapy and deep photothermal therapy of breast cancer. A facile synthesis method was employed to prepare the homogeneous Au nanorods (Au NRs) with good dispersion. The nanovaccine was developed further by the chemical cross-linking of Au-NRs, genipin and ovalbumin. The Au-G-OVA NRs outstanding aqueous solubility, and biocompatibility against normal and cancer cells. The designed NRs possessed enhanced localized surface plasmon resonance (LSPR) effect, which extended the NIR absorption in the second window, enabling promising photothermal properties. Moreover, genipin coating provided complimentary red fluorescent and prepared Au-G-OVA NRs showed significant intracellular encapsulation for efficient photoimmunotherapy outcomes. The designed nanosystem possessed deep photothermal therapy of breast cancer and 90% 4T1 cells were ablated by Au-G-OVA NRs (80µg ml-1concentration) after 1064 nm laser irradiation. In addition, Au-G-OVA NRs demonstrated outstanding vaccination phenomena by facilitating OVA delivery, antigen uptake, maturation of bone marrow dendritic cells, and cytokine IFN-γsecretion for tumor immunosurveillance. The aforementioned advantages permit the utilization of fluorescence imaging-guided photo-immunotherapy for cancers, demonstrating a straightforward approach for developing nanovaccines tailored to precise tumor treatment.


Subject(s)
Gold , Immunotherapy , Infrared Rays , Iridoids , Nanotubes , Ovalbumin , Gold/chemistry , Iridoids/chemistry , Iridoids/pharmacology , Animals , Ovalbumin/chemistry , Ovalbumin/immunology , Mice , Immunotherapy/methods , Cell Line, Tumor , Female , Nanotubes/chemistry , Photothermal Therapy/methods , Phototherapy/methods , Mice, Inbred BALB C , Humans , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Dendritic Cells/immunology , Surface Plasmon Resonance
17.
Carbohydr Polym ; 339: 122174, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823938

ABSTRACT

Segmental bone defects can arise from trauma, infection, metabolic bone disorders, or tumor removal. Hydrogels have gained attention in the field of bone regeneration due to their unique hydrophilic properties and the ability to customize their physical and chemical characteristics to serve as scaffolds and carriers for growth factors. However, the limited mechanical strength of hydrogels and the rapid release of active substances have hindered their clinical utility and therapeutic effectiveness. With ongoing advancements in material science, the development of injectable and biofunctionalized hydrogels holds great promise for addressing the challenges associated with segmental bone defects. In this study, we incorporated lyophilized platelet-rich fibrin (LPRF), which contains a multitude of growth factors, into a genipin-crosslinked gelatin/hyaluronic acid (GLT/HA-0.5 % GP) hydrogel to create an injectable and biofunctionalized composite material. Our findings demonstrate that this biofunctionalized hydrogel possesses optimal attributes for bone tissue engineering. Furthermore, results obtained from rabbit model with segmental tibial bone defects, indicate that the treatment with this biofunctionalized hydrogel resulted in increased new bone formation, as confirmed by imaging and histological analysis. From a translational perspective, this biofunctionalized hydrogel provides innovative and bioinspired capabilities that have the potential to enhance bone repair and regeneration in future clinical applications.


Subject(s)
Bone Regeneration , Freeze Drying , Gelatin , Hyaluronic Acid , Hydrogels , Iridoids , Platelet-Rich Fibrin , Animals , Iridoids/chemistry , Iridoids/pharmacology , Gelatin/chemistry , Rabbits , Hydrogels/chemistry , Hydrogels/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Bone Regeneration/drug effects , Platelet-Rich Fibrin/chemistry , Tissue Engineering/methods , Cross-Linking Reagents/chemistry , Tissue Scaffolds/chemistry , Tibia/drug effects , Tibia/surgery
18.
BMC Plant Biol ; 24(1): 526, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858643

ABSTRACT

Light intensity is a key factor affecting the synthesis of secondary metabolites in plants. However, the response mechanisms of metabolites and genes in Gentiana macrophylla under different light intensities have not been determined. In the present study, G. macrophylla seedlings were treated with LED light intensities of 15 µmol/m2/s (low light, LL), 90 µmol/m2/s (medium light, ML), and 200 µmol/m2/s (high light, HL), and leaves were collected on the 5th day for further investigation. A total of 2162 metabolites were detected, in which, the most abundant metabolites were identified as flavonoids, carbohydrates, terpenoids and amino acids. A total of 3313 and 613 differentially expressed genes (DEGs) were identified in the LL and HL groups compared with the ML group, respectively, mainly enriched in KEGG pathways such as carotenoid biosynthesis, carbon metabolism, glycolysis/gluconeogenesis, amino acids biosynthesis, plant MAPK pathway and plant hormone signaling. Besides, the transcription factors of GmMYB5 and GmbHLH20 were determined to be significantly correlated with loganic acid biosynthesis; the expression of photosystem-related enzyme genes was altered under different light intensities, regulating the expression of enzyme genes involved in the carotenoid, chlorophyll, glycolysis and amino acids pathway, then affecting their metabolic biosynthesis. As a result, low light inhibited photosynthesis, delayed glycolysis, thus, increased certain amino acids and decreased loganic acid production, while high light got an opposite trend. Our research contributed significantly to understand the molecular mechanism of light intensity in controlling metabolic accumulation in G. macrophylla.


Subject(s)
Gentiana , Iridoids , Light , Metabolome , Transcriptome , Gentiana/genetics , Gentiana/metabolism , Iridoids/metabolism , Metabolome/radiation effects , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/radiation effects , Gene Expression Profiling
19.
Chem Pharm Bull (Tokyo) ; 72(6): 547-558, 2024.
Article in English | MEDLINE | ID: mdl-38866476

ABSTRACT

Iridoids, which are a class of monoterpenoids, are attractive synthetic targets due to their diversely substituted cis-fused cyclopenta[c]pyran skeletons. Additionally, various biological activities of iridoids raise the value of synthetic studies on this class of compounds. Here, our synthetic efforts toward 11-noriridoids; (±)-umbellatolide B (6), (±)-10-O-benzoylglobularigenin (9) and 1-O-pentenylaucubigenin (34) are described. For the efficient synthesis of target compounds, common synthetic intermediates (tricyclic enones 17 and 26) were prepared by the Pauson-Khand reaction. The cleavage of the acetal bond on the tricyclic enones and 1,2-reduction introduced the two hydroxy groups on the cyclopentane ring of the core scaffold. Furthermore, the C3-C4 olefin part was constructed by the syn-elimination of a thiocarbonate moiety to obtain 34. The developed synthetic routes for 6, 9, and 34 will be useful for the preparation of iridoid analogs that have a polyfunctionalized core skeleton.


Subject(s)
Iridoids , Iridoids/chemical synthesis , Iridoids/chemistry , Molecular Structure , Stereoisomerism
20.
BMC Complement Med Ther ; 24(1): 224, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858704

ABSTRACT

In the past few decades, there has been a notable rise in the occurrence of several types of candidiasis. Candida albicans is the most common cause of superficial fungal infections in humans. In this study, plumieride, one of the major iridoids from Plumeria obtusa L. leaves, was isolated and investigated for its potential against Candida albicans (CA)-induced dermatitis in mice. qRT-PCR was done to assess the impact of plumieride on the expression of the major virulence genes of CA. Five groups (n = 7) of adult male BALB/c mice were categorized into: group I: non-infected mice; group II: mice infected intradermally with 107-108 CFU/mL of CA; group III: CA-infected mice treated with standard fluconazole (50 mg/kg bwt.); group IV and V: CA-infected mice treated with plumieride (25- and 50 mg/kg. bwt., respectively). All the treatments were subcutaneously injected once a day for 3 days. Skin samples were collected on the 4th day post-inoculation to perform pathological, microbial, and molecular studies. The results of the in vitro study proved that plumieride has better antifungal activity than fluconazole, manifested by a wider zone of inhibition and a lower MIC. Plumieride also downregulated the expression of CA virulence genes (ALS1, Plb1, and Hyr1). CA-infected mice showed extensive dermatitis, confirmed by strong iNOS, TNF-α, IL-1ß, and NF-κB genes or immune expressions. Whereas the treatment of CA-infected mice with plumieride significantly reduced the microscopic skin lesions and modulated the expression of all measured proinflammatory cytokines and inflammatory markers in a dose-dependent manner. Plumieride interfered with the expression of C. albicans virulence factors and modulated the inflammatory response in the skin of mice infected with CA.


Subject(s)
Anti-Inflammatory Agents , Antifungal Agents , Candida albicans , Iridoids , Mice, Inbred BALB C , Animals , Mice , Male , Candida albicans/drug effects , Candida albicans/pathogenicity , Antifungal Agents/pharmacology , Iridoids/pharmacology , Anti-Inflammatory Agents/pharmacology , Candidiasis/drug therapy , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL