Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56.711
Filter
1.
J Nanobiotechnology ; 22(1): 305, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822364

ABSTRACT

BACKGROUND: Renal fibrosis is a progressive process associated with chronic kidney disease (CKD), contributing to impaired kidney function. Active constituents in traditional Chinese herbs, such as emodin (EMO) and asiatic acid (AA), exhibit potent anti-fibrotic properties. However, the oral administration of EMO and AA results in low bioavailability and limited kidney accumulation. Additionally, while oral probiotics have been accepted for CKD treatment through gut microbiota modulation, a significant challenge lies in ensuring their viability upon administration. Therefore, our study aims to address both renal fibrosis and gut microbiota imbalance through innovative co-delivery strategies. RESULTS: In this study, we developed yeast cell wall particles (YCWPs) encapsulating EMO and AA self-assembled nanoparticles (NPYs) and embedded them, along with Lactobacillus casei Zhang, in chitosan/sodium alginate (CS/SA) microgels. The developed microgels showed significant controlled release properties for the loaded NPYs and prolonged the retention time of Lactobacillus casei Zhang (L. casei Zhang) in the intestine. Furthermore, in vivo biodistribution showed that the microgel-carried NPYs significantly accumulated in the obstructed kidneys of rats, thereby substantially increasing the accumulation of EMO and AA in the impaired kidneys. More importantly, through hitchhiking delivery based on yeast cell wall and positive modulation of gut microbiota, our microgels with this synergistic strategy of therapeutic and modulatory interactions could regulate the TGF-ß/Smad signaling pathway and thus effectively ameliorate renal fibrosis in unilateral ureteral obstruction (UUO) rats. CONCLUSION: In conclusion, our work provides a new strategy for the treatment of renal fibrosis based on hitchhiking co-delivery of nanodrugs and probiotics to achieve synergistic effects of disease treatment and targeted gut flora modulation.


Subject(s)
Fibrosis , Gastrointestinal Microbiome , Kidney , Nanoparticles , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Rats , Administration, Oral , Male , Kidney/pathology , Kidney/drug effects , Nanoparticles/chemistry , Microgels/chemistry , Lacticaseibacillus casei , Probiotics/pharmacology , Renal Insufficiency, Chronic/drug therapy , Chitosan/chemistry , Alginates/chemistry , Pentacyclic Triterpenes/pharmacology , Drug Delivery Systems/methods , Tissue Distribution , Cell Wall
2.
Drug Des Devel Ther ; 18: 1785-1797, 2024.
Article in English | MEDLINE | ID: mdl-38828020

ABSTRACT

Objective: Pancreatic surgeries inherently cause ischemia-reperfusion (IR) injury, affecting not only the pancreas but also distant organs. This study was conducted to explore the potential use of dexmedetomidine, a sedative with antiapoptotic, anti-inflammatory, and antioxidant properties, in mitigating the impacts of pancreatic IR on kidney and liver tissues. Methods: A total of 24 rats were randomly divided into four groups: control (C), dexmedetomidine (D), ischemia reperfusion (IR), and dexmedetomidine ischemia reperfusion (D-IR). Pancreatic ischemia was induced in the IR and D-IR groups. Dexmedetomidine was administered intraperitoneally to the D and D-IR groups. Liver and kidney tissue samples were subjected to microscopic examinations after hematoxylin and eosin staining. The levels of thiobarbituric acid reactive substances (TBARS), aryllesterase (AES), catalase (CAT), and glutathione S-transferase (GST) enzyme activity were assessed in liver and kidney tissues. The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and creatinine were measured. Results: A comparison of the groups revealed that the IR group exhibited significantly elevated TBARS (p < 0.0001), AES (p = 0.004), and CAT enzyme activity (p < 0.0001) levels in the liver and kidney compared to groups C and D. Group D-IR demonstrated notably reduced histopathological damage (p < 0.05) and low TBARS (p < 0.0001), AES (p = 0.004), and CAT enzyme activity (p < 0.0001) in the liver and kidney as well as low AST and ALT activity levels (p < 0.0001) in the serum compared to the IR group. Conclusion: The preemptive administration of dexmedetomidine before pancreatic IR provides significant protection to kidney and liver tissues, as evidenced by the histopathological and biochemical parameters in this study. The findings underscored the potential therapeutic role of dexmedetomidine in mitigating the multiorgan damage associated with pancreatic surgeries.


Subject(s)
Dexmedetomidine , Kidney , Liver , Pancreas , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Dexmedetomidine/pharmacology , Dexmedetomidine/administration & dosage , Rats , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Male , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Rats, Sprague-Dawley
3.
Carbohydr Polym ; 339: 122275, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823933

ABSTRACT

Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and few therapeutic options are available. The root of Achyranthis bidentatae (AB) is commonly used for DKD treatment in Traditional Chinese medicine. However, its mechanisms are still unclear. Here, a graminan type fructan ABPW1 with molecular weight of 3998 Da was purified from AB. It was composed of ß-1,2-linked Fruf, ß-2,6-linked-Fruf and ß-1,2,6-linked-Fruf backbone, and terminated with T-Glcp and 2-Fruf residues. ABPW1 protected against kidney injuries and intestinal barrier disruption in Streptozotocin (STZ)/High fat diet (HFD) mice. It could modulate gut microbiota composition, evidenced by a rise in the abundance of Bacteroide and decreases of Rikenella, Alistipes, Laedolimicola and Faecalibaculum. ABPW1 intervention promoted short chain fatty acids (SCFAs) production in STZ/HFD mice, especially propionate and isobutyric acid. Antibiotic treatment further demonstrated the key role of gut microbiota in the renal protective action of ABPW1. In addition, in vitro simulated digestion and fermentation together with in vivo fluorescent labeling studies demonstrated ABPW1 was indigestible in upper digestive tract but could reach the colon and be degraded into SCFAs by gut microbiota there. Overall, these data suggested ABPW1 has the potential application on DKD prevention.


Subject(s)
Achyranthes , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Fructans , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Achyranthes/chemistry , Mice , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Male , Fructans/pharmacology , Fructans/chemistry , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Streptozocin , Kidney/drug effects , Kidney/pathology , Fatty Acids, Volatile/metabolism
5.
Pediatr Int ; 66(1): e15781, 2024.
Article in English | MEDLINE | ID: mdl-38863300

ABSTRACT

BACKGROUND: Immumoglobulin A (IgA) vasculitis (IgAV), formerly known as Henoch-Schönlein purpura (HSP), is a self-limiting systemic vasculitis in children. Kidney involvement is associated with a long-term unfavorable outcome and can lead to significant morbidity. This study was conducted to describe the clinical and laboratory characteristics of childhood IgAV with kidney involvement and to identify risk factors associated with IgAV nephritis (IgAVN). METHODS: This was an ambidirectional descriptive study of 77 children with IgAV. All demographic data, clinical features, and laboratory tests were collected from electronic medical records from January 2010 to December 2022. Risk factors for kidney involvement in IgAV were assessed using multivariate logistic regression. Kaplan-Meier survival analysis was used to calculate the time to commencement of kidney involvement. RESULTS: Twenty-five children (32.4% of the IgAV patients) developed IgAVN. The common findings in IgAV with kidney involvement were microscopic hematuria (100%), nephrotic range proteinuria (44%), and non-nephrotic range proteinuria (40%). Multivariate logistic regression showed that age greater than 10 years (adjusted hazard ratio, AHR 4.66; 95% confidence interval, CI, 1.91-11.41; p = 0.001), obesity (body mass index, BMI, z-score ≥ +2 standard deviations, SDs) (AHR 3.59; 95% CI 1.41-9.17; p = 0.007), and hypertension at onset (AHR 4.78; 95% CI 1.76-12.95; p = 0.002) were associated significantly with kidney involvement. During follow up, most IgAV patients developed nephritis within the first 9 months. CONCLUSION: Age greater than 10 years, obesity, and hypertension at presentation were predictive factors for IgAVN. Our study emphasized that IgAV patients with risk factors should be closely monitored for at least 1 year after the onset of the disease.


Subject(s)
IgA Vasculitis , Humans , Male , Female , Child , Risk Factors , IgA Vasculitis/complications , IgA Vasculitis/epidemiology , IgA Vasculitis/diagnosis , Child, Preschool , Adolescent , Retrospective Studies , Proteinuria/etiology , Proteinuria/epidemiology , Kaplan-Meier Estimate , Hematuria/etiology , Hematuria/epidemiology , Logistic Models , Kidney/pathology , Glomerulonephritis, IGA/complications , Glomerulonephritis, IGA/epidemiology
6.
Cell Death Dis ; 15(6): 401, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849370

ABSTRACT

The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor that affects cellular phenotypes by modulating phagocytosis and metabolism, promoting cell survival, and counteracting inflammation. Its role in renal injury, in particular, unilateral ureteral obstruction (UUO) or ischemia-reperfusion injury (IRI)-induced renal injury remains unclear. In our study, WT and Trem2-/- mice were employed to evaluate the role of TREM2 in renal macrophage infiltration and tissue injury after UUO. Bone marrow-derived macrophages (BMDM) from both mouse genotypes were cultured and polarized for in vitro experiments. Next, the effects of TREM2 on renal injury and macrophage polarization in IRI mice were also explored. We found that TREM2 expression was upregulated in the obstructed kidneys. TREM2 deficiency exacerbated renal inflammation and fibrosis 3 and 7 days after UUO, in association with reduced macrophage infiltration. Trem2-/- BMDM exhibited increased apoptosis and poorer survival compared with WT BMDM. Meanwhile, TREM2 deficiency augmented M1 and M2 polarization after UUO. Consistent with the in vivo observations, TREM2 deficiency led to increased polarization of BMDM towards the M1 proinflammatory phenotype. Mechanistically, TREM2 deficiency promoted M1 and M2 polarization via the JAK-STAT pathway in the presence of TGF-ß1, thereby affecting cell survival by regulating mTOR signaling. Furthermore, cyclocreatine supplementation alleviated cell death caused by TREM2 deficiency. Additionally, we found that TREM2 deficiency promoted renal injury, fibrosis, and macrophage polarization in IRI mice. The current data suggest that TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway. These findings have implications for the role of TREM2 in the regulation of renal injury that justify further evaluation.


Subject(s)
Apoptosis , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Receptors, Immunologic , STAT Transcription Factors , Signal Transduction , Animals , Macrophages/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Kidney/pathology , Kidney/metabolism , Mice, Knockout , Male , Fibrosis , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Ureteral Obstruction/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/complications , Cell Polarity , TOR Serine-Threonine Kinases/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics
7.
Cell Death Dis ; 15(6): 398, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844470

ABSTRACT

In chronic kidney disease (CKD), renal fibrosis is an unavoidable result of various manifestations. However, its pathogenesis is not yet fully understood. Here, we revealed the novel role of Homeobox D10 (HOXD10) in CKD-related fibrosis. HOXD10 expression was downregulated in CKD-related in vitro and in vivo fibrosis models. UUO model mice were administered adeno-associated virus (AAV) containing HOXD10, and HOXD10 overexpression plasmids were introduced into human proximal tubular epithelial cells induced by TGF-ß1. The levels of iron, reactive oxygen species (ROS), lipid ROS, the oxidized glutathione/total glutathione (GSSG/GSH) ratio, malonaldehyde (MDA), and superoxide dismutase (SOD) were determined using respective assay kits. Treatment with AAV-HOXD10 significantly attenuated fibrosis and renal dysfunction in UUO model mice by inhibiting NOX4 transcription, ferroptosis pathway activation, and oxidative stress. High levels of NOX4 transcription, ferroptosis pathway activation and profibrotic gene expression induced by TGF-ß1/erastin (a ferroptosis agonist) were abrogated by HOXD10 overexpression in HK-2 cells. Moreover, bisulfite sequencing PCR result determined that HOXD10 showed a hypermethylated level in TGF-ß1-treated HK-2 cells. The binding of HOXD10 to the NOX4 promoter was confirmed by chromatin immunoprecipitation (ChIP) analysis and dual-luciferase reporter assays. Targeting HOXD10 may represent an innovative therapeutic strategy for fibrosis treatment in CKD.


Subject(s)
Ferroptosis , Fibrosis , Homeodomain Proteins , NADPH Oxidase 4 , Renal Insufficiency, Chronic , Ferroptosis/genetics , Animals , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Humans , Mice , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Male , Mice, Inbred C57BL , Disease Models, Animal , Transcription Factors/metabolism , Transcription Factors/genetics , Kidney/pathology , Kidney/metabolism , Transforming Growth Factor beta1/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Cell Line
8.
Int J Immunopathol Pharmacol ; 38: 3946320241260635, 2024.
Article in English | MEDLINE | ID: mdl-38831558

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder mainly affecting joints, yet the systemic inflammation can influence other organs and tissues. The objective of this study was to unravel the ameliorative capability of Ondansetron (O) or ß-sitosterol (BS) against inflammatory reactions and oxidative stress that complicates Extra-articular manifestations (EAM) in liver, kidney, lung, and heart of arthritic and arthritic irradiated rats. METHODS: This was accomplished by exposing adjuvant-induced arthritis (AIA) rats to successive weekly fractions of total body γ-irradiation (2 Gray (Gy)/fraction once per week for four weeks, up to a total dose of 8 Gy). Arthritic and/or arthritic irradiated rats were either treated with BS (40 mg/kg b.wt. /day, orally) or O (2 mg/kg) was given ip) or were kept untreated as model groups. RESULTS: Body weight changes, paw circumference, oxidative stress indices, inflammatory response biomarkers, expression of Janus kinase-2 (JAK-2), Signal transducer and activator of transcription 3 (STAT3), high mobility group box1 (HMGB1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), as well as pro- and anti-inflammatory mediators in the target organs, besides histopathological examination of ankle joints and extra-articular tissues. Treatment of arthritic and/or arthritic irradiated rats with BS or O powerfully alleviated changes in body weight gain, paw swelling, oxidative stress, inflammatory reactions, and histopathological degenerative alterations in articular and non-articular tissues. CONCLUSION: The obtained data imply that BS or O improved the articular and EAM by regulating oxidative and inflammatory indices in arthritic and arthritic irradiated rats.


Subject(s)
Arthritis, Experimental , Kidney , Liver , Lung , Ondansetron , Oxidative Stress , Sitosterols , Animals , Sitosterols/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung/radiation effects , Arthritis, Experimental/pathology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Kidney/radiation effects , Oxidative Stress/drug effects , Rats , Liver/drug effects , Liver/pathology , Liver/metabolism , Liver/radiation effects , Male , Ondansetron/pharmacology , HMGB1 Protein/metabolism , Heart/drug effects , Heart/radiation effects , Myocardium/pathology , Myocardium/metabolism , Inflammation/pathology , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , STAT3 Transcription Factor/metabolism , Rats, Wistar
9.
Ren Fail ; 46(1): 2347462, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832497

ABSTRACT

Diabetic nephropathy (DN) is one of the most serious and frequent complications among diabetes patients and presently constitutes vast the cases of end-stage renal disease worldwide. Tubulointerstitial fibrosis is a crucial factor related to the occurrence and progression of DN. Oridonin (Ori) is a diterpenoid derived from rubescens that has diverse pharmacological properties. Our previous study showed that Ori can protect against DN by decreasing the inflammatory response. However, whether Ori can alleviate renal fibrosis in DN remains unknown. Here, we investigated the mechanism through which Ori affects the Wnt/ß-catenin signaling pathway in diabetic rats and human proximal tubular epithelial cells (HK-2) exposed to high glucose (HG) levels. Our results revealed that Ori treatment markedly decreased urinary protein excretion levels, improved renal function and alleviated renal fibrosis in diabetic rats. In vitro, HG treatment increased the migration of HK-2 cells while reducing their viability and proliferation rate, and treatment with Ori reversed these changes. Additionally, the knockdown of ß-catenin arrested cell migration and reduced the expression levels of Wnt/ß-catenin signaling-related molecules (Wnt4, p-GSK3ß and ß-catenin) and fibrosis-related molecules (α-smooth muscle actin, collagen I and fibronectin), and Ori treatment exerted an effect similar to that observed after the knockdown of ß-catenin. Furthermore, the combination of Ori treatment and ß-catenin downregulation exerted more pronounced biological effects than treatment alone. These findings may provide the first line of evidence showing that Ori alleviates fibrosis in DN by inhibiting the Wnt/ß-catenin signaling pathway and thereby reveal a novel therapeutic avenue for treating tubulointerstitial fibrosis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Diterpenes, Kaurane , Fibrosis , Rats, Sprague-Dawley , Wnt Signaling Pathway , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Wnt Signaling Pathway/drug effects , Animals , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/therapeutic use , Rats , Fibrosis/drug therapy , Humans , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Cell Line , beta Catenin/metabolism , Cell Movement/drug effects , Kidney/pathology , Kidney/drug effects , Cell Proliferation/drug effects , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/metabolism
10.
J Cell Mol Med ; 28(11): e18364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837668

ABSTRACT

Diabetic kidney disease (DKD) is a leading cause of end stage renal disease with unmet clinical demands for treatment. Lipids are essential for cell survival; however, renal cells have limited capability to metabolize overloaded lipids. Dyslipidaemia is common in DKD patients and renal ectopic lipid accumulation is associated with disease progression. Unveiling the molecular mechanism involved in renal lipid regulation is crucial for exploring potential therapeutic targets. In this review, we focused on the mechanism underlying cholesterol, oxysterol and fatty acid metabolism disorder in the context of DKD. Specific regulators of lipid accumulation in different kidney compartment and TREM2 macrophages, a lipid-related macrophages in DKD, were discussed. The role of sodium-glucose transporter 2 inhibitors in improving renal lipid accumulation was summarized.


Subject(s)
Diabetic Nephropathies , Kidney , Lipid Metabolism , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Kidney/metabolism , Kidney/pathology , Macrophages/metabolism , Cholesterol/metabolism , Fatty Acids/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Oxysterols/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
11.
Urolithiasis ; 52(1): 87, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869700

ABSTRACT

Previous reports show increased severity of perinephric fat stranding (PFS) with elevated serum creatinine in obstructing ureterolithiasis. We sought to investigate this association with our institution's patient population.We reviewed charts of patients diagnosed with obstructive ureterolithiasis or nephrolithiasis in our emergency department between January and October 2018. Patient demographics, lab results, and computed tomography (CT) imaging were reviewed. A blinded radiologist reviewed all CTs and graded hydronephrosis and PFS. Subjects were stratified by degree of PFS and compared via paired t-test, chi-squared test, univariate analysis, and multivariate analysis.We identified 141 patients; 114 had no-mild (Group 1) PFS, while 27 had moderate-severe (Group 2) PFS. Group 1 had a mean age of 56 (SD = 16.1) and mean stone size of 7.3 mm (SD = 4.22); 77% of the cohort had symptoms under 24 h. Group 2 was older with a mean age of 65 (SD = 16.2, p = 0.01) and mean stone size of 10.1 mm (SD = 6.07, p < 0.01); 50% had symptoms less than 24 h (p = 0.01). PFS did not correlate with change in serum creatinine. Univariate and multivariate analysis showed increasing age increased the odds of moderate-severe PFS by 3.5% (OR = 1.035, p < 0.05) while increased stone size increased the odds of moderate-severe PFS by 13.7% (OR = 1.137, p = 0.01).Although increased PFS correlated with increased age and stone size, no correlation was found with presenting creatinine or change in creatinine. Degree of PFS is likely a poor predictor of renal disease severity in acute ureterolithiasis.


Subject(s)
Creatinine , Humans , Middle Aged , Female , Male , Creatinine/blood , Aged , Retrospective Studies , Age Factors , Adult , Ureteral Obstruction/blood , Ureteral Obstruction/complications , Ureteral Obstruction/etiology , Ureterolithiasis/complications , Ureterolithiasis/blood , Tomography, X-Ray Computed , Severity of Illness Index , Adipose Tissue/diagnostic imaging , Adipose Tissue/pathology , Kidney/diagnostic imaging , Kidney/pathology
12.
Hum Genomics ; 18(1): 60, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858783

ABSTRACT

BACKGROUND: Epidemiological studies have revealed a significant association between impaired kidney function and certain mental disorders, particularly bipolar disorder (BIP) and major depressive disorder (MDD). However, the evidence regarding shared genetics and causality is limited due to residual confounding and reverse causation. METHODS: In this study, we conducted a large-scale genome-wide cross-trait association study to investigate the genetic overlap between 5 kidney function biomarkers (eGFRcrea, eGFRcys, blood urea nitrogen (BUN), serum urate, and UACR) and 2 mental disorders (MDD, BIP). Summary-level data of European ancestry were extracted from UK Biobank, Chronic Kidney Disease Genetics Consortium, and Psychiatric Genomics Consortium. RESULTS: Using LD score regression, we found moderate but significant genetic correlations between kidney function biomarker traits on BIP and MDD. Cross-trait meta-analysis identified 1 to 19 independent significant loci that were found shared among 10 pairs of 5 kidney function biomarkers traits and 2 mental disorders. Among them, 3 novel genes: SUFU, IBSP, and PTPRJ, were also identified in transcriptome-wide association study analysis (TWAS), most of which were observed in the nervous and digestive systems (FDR < 0.05). Pathway analysis showed the immune system could play a role between kidney function biomarkers and mental disorders. Bidirectional mendelian randomization analysis suggested a potential causal relationship of kidney function biomarkers on BIP and MDD. CONCLUSIONS: In conclusion, the study demonstrated that both BIP and MDD shared genetic architecture with kidney function biomarkers, providing new insights into their genetic architectures and suggesting that larger GWASs are warranted.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Genome-Wide Association Study , Humans , Depressive Disorder, Major/genetics , Depressive Disorder, Major/pathology , Bipolar Disorder/genetics , Bipolar Disorder/pathology , Polymorphism, Single Nucleotide/genetics , Kidney/physiopathology , Kidney/pathology , Genetic Predisposition to Disease , Biomarkers/blood , Glomerular Filtration Rate/genetics , Quantitative Trait Loci/genetics , Uric Acid/blood
13.
Ren Fail ; 46(2): 2359642, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38860328

ABSTRACT

OBJECTIVES: Most functional magnetic resonance research has primarily examined alterations in the affected kidney, often neglecting the contralateral kidney. Our study aims to investigate whether imaging parameters accurately depict changes in both the renal cortex and medulla in a unilateral ureteral obstruction rat model, thereby showcasing the utility of intravoxel incoherent motion (IVIM) in evaluating contralateral renal changes. METHODS: Six rats underwent MR scans and were subsequently sacrificed for baseline histological examination. Following the induction of left ureteral obstruction, 48 rats were scanned, and the histopathological examinations were conducted on days 3, 7, 10, 14, 21, 28, 35, and 42. The apparent diffusion coefficient (ADC), pure molecular diffusion (D), pseudodiffusion (D*), and perfusion fraction (f) values were measured using IVIM. RESULTS: On the 10th day of obstruction, both cortical and medullary ADC values differed significantly between the UUO10 group and the sham group (p < 0.01). The cortical D values showed statistically significant differences between UUO3 group and sham group (p < 0.01) but not among UUO groups at other time point. Additionally, the cortical and medullary f values were statistically significant between the UUO21 group and the sham group (p < 0.01). Especially, the cortical f values exhibited significant differences between the UUO21 group and the UUO groups with shorter obstruction time (at time point of 3, 7, 10, 14 day) (p < 0.01). CONCLUSIONS: Significant hemodynamic alterations were observed in the contralateral kidney following renal obstruction. IVIM accurately captures changes in the unobstructed kidney. Particularly, the cortical f value exhibits the highest potential for assessing contralateral renal modifications.


Subject(s)
Diffusion Magnetic Resonance Imaging , Disease Models, Animal , Rats, Sprague-Dawley , Ureteral Obstruction , Animals , Ureteral Obstruction/diagnostic imaging , Ureteral Obstruction/physiopathology , Rats , Diffusion Magnetic Resonance Imaging/methods , Male , Kidney Cortex/diagnostic imaging , Kidney Cortex/pathology , Kidney/diagnostic imaging , Kidney/pathology , Kidney Medulla/diagnostic imaging , Kidney Medulla/pathology
14.
Ren Fail ; 46(2): 2357743, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38847502

ABSTRACT

OBJECTIVE: To investigate the correlations between serum antineutrophil cytoplasmic antibody (ANCA) and clinicopathological features, induction treatment response, and prognosis of lupus nephritis (LN) patients. METHODS: In this retrospective study, biopsy-proven LN patients from October 2010 to September 2020 were tested for serum ANCA by indirect immunofluorescence and ELISA and were divided into ANCA-positive group and ANCA-negative group. The clinicopathological data of the two groups were analyzed and compared. RESULTS: Thirty-five of 115 patients (30.43%) were seropositive for ANCA. ANCA-positive patients had significantly higher systemic lupus erythematosus activity index and activity index scores, higher 24-h urinary protein, and lower complement three levels (p = 0.001, 0.028, 0.023, 0.009, respectively). The incidences of oral ulcers, thrombocytopenia, and leukocyturia, and the positive rates of anti-dsDNA antibody and anti-histone antibody were significantly higher in ANCA-positive group (p = 0.006, 0.019, 0.012, 0.001, 0.019, respectively). Class IV LN and fibrinoid necrosis/karyorrhexis were significantly more common in the ANCA-positive group (p = 0.027, 0.002). There was no significant difference in the total remission rate of ANCA-positive patients receiving cyclophosphamide and mycophenolate mofetil as induction therapies (83.33% vs. 66.67%, p > 0.05), while patients receiving cyclophosphamide as induction therapy had a higher total remission rate than those receiving other immunosuppressants (83.33% vs. 20%, p = 0.028). CONCLUSIONS: LN patients with ANCA seropositivity at renal biopsy have a significantly higher disease activity, and their pathological manifestations are predominantly proliferative LN. These patients require a more active immunosuppressive therapy with cyclophosphamide or mycophenolate mofetil to improve their remission rate.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic , Immunosuppressive Agents , Kidney , Lupus Nephritis , Humans , Lupus Nephritis/drug therapy , Lupus Nephritis/pathology , Lupus Nephritis/blood , Lupus Nephritis/immunology , Antibodies, Antineutrophil Cytoplasmic/blood , Female , Retrospective Studies , Male , Adult , Biopsy , Kidney/pathology , Middle Aged , Immunosuppressive Agents/therapeutic use , Young Adult , Mycophenolic Acid/therapeutic use , Prognosis , Antibodies, Antinuclear/blood , Severity of Illness Index , Cyclophosphamide/therapeutic use
15.
Front Endocrinol (Lausanne) ; 15: 1384953, 2024.
Article in English | MEDLINE | ID: mdl-38836233

ABSTRACT

Background: Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme involved in kidney disease, yet its regulation in diabetic kidney disease (DKD) remains inadequately understood. Objective: Therefore, we investigated the changes of NAD+ levels in DKD and the underlying mechanism. Methods: Alternations of NAD+ levels and its biosynthesis enzymes were detected in kidneys from streptozotocin-induced diabetic mouse model by real-time PCR and immunoblot. The distribution of NAD+ de novo synthetic enzymes was explored via immunohistochemical study. NAD+ de novo synthetic metabolite was measured by LC-MS. Human data from NephroSeq were analyzed to verify our findings. Results: The study showed that NAD+ levels were decreased in diabetic kidneys. Both mRNA and protein levels of kynurenine 3-monooxygenase (KMO) in NAD+ de novo synthesis pathway were decreased, while NAD+ synthetic enzymes in salvage pathway and NAD+ consuming enzymes remained unchanged. Further analysis of human data suggested KMO, primarily expressed in the proximal tubules shown by our immunohistochemical staining, was consistently downregulated in human diabetic kidneys. Conclusion: Our study demonstrated KMO of NAD+ de novo synthesis pathway was decreased in diabetic kidney and might be responsible for NAD+ reduction in diabetic kidneys, offering valuable insights into complex regulatory mechanisms of NAD+ in DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , NAD , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , NAD/metabolism , Humans , Mice , Diabetes Mellitus, Experimental/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Kidney/metabolism , Kidney/pathology
16.
PLoS One ; 19(6): e0298484, 2024.
Article in English | MEDLINE | ID: mdl-38837988

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a genetic kidney disease with high phenotypic variability. Furthering insights into patients' ADPKD progression could lead to earlier detection, management, and alter the course to end stage kidney disease (ESKD). We sought to identify patients with rapid decline (RD) in kidney function and to determine clinical factors associated with RD using a data-driven approach. A retrospective cohort study was performed among patients with incident ADPKD (1/1/2002-12/31/2018). Latent class mixed models were used to identify RD patients using differences in eGFR trajectories over time. Predictors of RD were selected based on agreements among feature selection methods, including logistic, regularized, and random forest modeling. The final model was built on the selected predictors and clinically relevant covariates. Among 1,744 patients with incident ADPKD, 125 (7%) were identified as RD. Feature selection included 42 clinical measurements for adaptation with multiple imputations; mean (SD) eGFR was 85.2 (47.3) and 72.9 (34.4) in the RD and non-RD groups, respectively. Multiple imputed datasets identified variables as important features to distinguish RD and non-RD groups with the final prediction model determined as a balance between area under the curve (AUC) and clinical relevance which included 6 predictors: age, sex, hypertension, cerebrovascular disease, hemoglobin, and proteinuria. Results showed 72%-sensitivity, 70%-specificity, 70%-accuracy, and 0.77-AUC in identifying RD. 5-year ESKD rates were 38% and 7% among RD and non-RD groups, respectively. Using real-world routine clinical data among patients with incident ADPKD, we observed that six variables highly predicted RD in kidney function.


Subject(s)
Disease Progression , Glomerular Filtration Rate , Polycystic Kidney, Autosomal Dominant , Humans , Male , Female , Middle Aged , Retrospective Studies , Adult , Kidney/physiopathology , Kidney/pathology , Kidney Failure, Chronic/epidemiology
17.
BMC Vet Res ; 20(1): 256, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867202

ABSTRACT

Acetamiprid (ACDP) is a widely used neonicotinoid insecticide that is popular for its efficacy in controlling fleas in domestic settings and for pets. Our study aims to offer a comprehensive examination of the toxicological impacts of ACDP and the prophylactic effects of cinnamon nanoemulsions (CMNEs) on the pathological, immunohistochemical, and hematological analyses induced by taking ACDP twice a week for 28 days. Forty healthy rats were divided into four groups (n = 10) at random; the first group served as control rats; the second received CMNEs (2 mg/Kg body weight); the third group received acetamiprid (ACDP group; 21.7 mg/Kg body weight), and the fourth group was given both ACDP and CMNEs by oral gavage. Following the study period, tissue and blood samples were extracted and prepared for analysis. According to a GC-MS analysis, CMNEs had several bioactive ingredients that protected the liver from oxidative stress by upregulating antioxidant and anti-inflammatory agents. Our findings demonstrated that whereas ACDP treatment considerably boosted white blood cells (WBCs) and lymphocytes, it significantly lowered body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PLT). ACDP notably reduced antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and elevated hydrogen peroxide and malondialdehyde levels compared with other groups. ACDP remarkably raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels.Moreover, the histopathological and immunohistochemistry assays discovered a severe toxic effect on the liver and kidney following ACDP delivery. Furthermore, cyclooxygenase 2 (COX-2) + immunoexpression was enhanced after treatment with CMNEs. All of the parameters above were returned to nearly normal levels by the coadministration of CMNEs. The molecular docking of cinnamaldehyde with COX-2 also confirmed the protective potential of CMNEs against ACDP toxicity. Our findings highlighted that the coadministration of CMNEs along with ACDP diminished its toxicity by cutting down oxidative stress and enhancing antioxidant capacity, demonstrating the effectiveness of CMNEs in lessening ACDP toxicity.


Subject(s)
Cinnamomum zeylanicum , Emulsions , Insecticides , Liver , Molecular Docking Simulation , Neonicotinoids , Animals , Neonicotinoids/pharmacology , Cinnamomum zeylanicum/chemistry , Insecticides/toxicity , Rats , Emulsions/chemistry , Emulsions/pharmacology , Male , Liver/drug effects , Liver/pathology , Kidney/drug effects , Kidney/pathology , Oxidative Stress/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Antioxidants/pharmacology , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Rats, Sprague-Dawley
18.
Nat Commun ; 15(1): 4923, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862484

ABSTRACT

Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR.


Subject(s)
Cosmic Radiation , Space Flight , Animals , Humans , Mice , Cosmic Radiation/adverse effects , Rats , Male , Kidney/pathology , Kidney/radiation effects , Kidney/metabolism , Kidney Diseases/pathology , Kidney Diseases/etiology , Weightlessness/adverse effects , Astronauts , Mice, Inbred C57BL , Proteomics , Female , Mars , Weightlessness Simulation/adverse effects
19.
Ren Fail ; 46(2): 2363591, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38856314

ABSTRACT

Sepsis is a severe systemic infectious disease that often leads to multi-organ dysfunction. One of the common and serious complications of sepsis is renal injury. In this study, we aimed to investigate the potential mechanistic role of a novel compound called H-151 in septic kidney injury. We also examined its impact on renal function and mouse survival rates. Initially, we confirmed abnormal activation of the STING-TBK1 signaling pathway in the kidneys of septic mice. Subsequently, we treated the mice with H-151 and observed significant improvement in sepsis-induced renal dysfunction. This was evidenced by reductions in blood creatinine and urea nitrogen levels, as well as a marked decrease in inflammatory cytokine levels. Furthermore, H-151 substantially improved the seven-day survival rate of septic mice, indicating its therapeutic potential. Importantly, H-151 also exhibited an inhibitory effect on renal apoptosis levels, further highlighting its mechanism of protecting against septic kidney injury. These study findings not only offer new insights into the treatment of septic renal injury but also provide crucial clues for further investigations into the regulatory mechanisms of the STING-TBK1 signaling pathway and potential drug targets.


Subject(s)
Acute Kidney Injury , Disease Models, Animal , Lipopolysaccharides , Membrane Proteins , Protein Serine-Threonine Kinases , Sepsis , Signal Transduction , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Membrane Proteins/metabolism , Sepsis/complications , Sepsis/metabolism , Sepsis/drug therapy , Signal Transduction/drug effects , Male , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Apoptosis/drug effects , Mice, Inbred C57BL , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL