Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.505
Filter
1.
J Biochem Mol Toxicol ; 38(9): e23777, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39165170

ABSTRACT

Tramadol (TR), a commonly prescribed pain reliever for moderate to severe pain, has been associated with kidney damage. This study investigates TR-induced nephrotoxicity mechanisms, focusing on its effects on renal proximal tubular cells (PTCs). The study findings demonstrate that TR disrupts PTC bioenergetic processes, leading to oxidative stress and inflammation. Significant toxicity to PTCs was observed with estimated effective concentration 50 values of 9.8 and 11.5 µM based on 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays, respectively. TR also interferes with the function of PTC transporters, including organic cation uptake transporter 1, organic cation transporter 2, P-glycoprotein, and multidrug resistance protein 2. Furthermore, bioenergetics assays showed that TR reduced the activities of mitochondrial complexes I and III, adenosine triphosphate production, mitochondrial membrane potential, and oxygen consumption rate while increasing lactate release. TR also increased the production of reactive oxygen species, lipid peroxidation thiobarbituric acid reactive substances end products, and the expression of the NRf2 gene while decreasing reduced glutathione (GSH-R) stores and catalase and superoxide dismutase antioxidant activities. Additionally, TR increased the production of inflammatory cytokines (TNF-α and IL-6) and their coding genes expression. Interestingly, the study found that antioxidants like GSH-R, inhibitors of IL-6 and TNF-α, and mitochondrial activating Co-Q10 could protect cells against TR-induced cytotoxicity. The study suggests that TR causes nephrotoxicity by disrupting bioenergetic processes, causing oxidative stress and inflammation, but antioxidants and agents targeting mitochondria may have protective and curative potential.


Subject(s)
Energy Metabolism , Inflammation , Oxidative Stress , Tramadol , Oxidative Stress/drug effects , Inflammation/chemically induced , Inflammation/metabolism , Tramadol/adverse effects , Tramadol/pharmacology , Energy Metabolism/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Humans , Cell Line , Animals , Analgesics, Opioid/adverse effects , Analgesics, Opioid/pharmacology
2.
Sci Total Environ ; 949: 175159, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39094650

ABSTRACT

Bisphenol P (BPP) has been detected in human biological samples; however studies on its nephrotoxicity are scarce. Given the susceptibility of kidneys to endocrine-disrupting chemicals, there is an urgent need to investigate the renal toxicity of BPP. This study aimed to evaluate the effects of different concentrations of BPPs on the kidneys of C57BL/6 mice and elucidate the underlying mechanisms of renal damage using a combination of mouse renal transcriptomic data and human renal proximal tubular epithelial cells (HK-2). Mice were exposed to BPP (0, 0.3, 30, 3000 µg/kg bw/d) via gavage for 5 weeks. Renal injury was assessed based on changes in body and kidney weights, serum renal function indices, and histopathological examination. Transcriptomic analysis identified differentially expressed genes and pathways, whereas cellular assays were used to measure cell viability, reactive oxygen species (ROS), apoptosis, and the expression of key genes and proteins. The results show that BPP exposure induces renal injury, as evidenced by increased body weight, abnormal renal function indices, and renal tissue damage. Transcriptomic analysis revealed alterations in genes and pathways related to oxidative stress, p53 signaling, autophagy, and apoptosis. Cellular experiments confirmed that BPP induces oxidative stress and apoptosis. Furthermore, BPP exposure significantly inhibits autophagy, potentially exacerbating apoptosis and contributing to kidney injury. Treatment with a ROS inhibitor (N-Acetylcysteine, NAC) mitigated BPP-induced autophagy inhibition and apoptosis, implicating oxidative stress as a key factor. BPP exposure may lead to renal injury through excessive ROS accumulation, oxidative stress, inflammatory responses, autophagy inhibition, and increased apoptosis. The effects of NAC highlight the role of oxidative stress in BPP-induced nephrotoxicity. These findings enhance our understanding of BPP-induced nephrotoxicity and underscore the need to control BPP exposure to prevent renal disease. This study emphasized the importance of evaluating the safety of new Bisphenol A analogs, including BPP, in environmental toxicology.


Subject(s)
Epithelial Cells , Mice, Inbred C57BL , Oxidative Stress , Phenols , Animals , Humans , Mice , Apoptosis/drug effects , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Epithelial Cells/drug effects , Kidney/cytology , Kidney/drug effects , Kidney/pathology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Oxidative Stress/drug effects , Phenols/toxicity , Reactive Oxygen Species/metabolism
3.
In Vivo ; 38(5): 2107-2114, 2024.
Article in English | MEDLINE | ID: mdl-39187331

ABSTRACT

BACKGROUND/AIM: Angiotensinogen (AGT), a precursor of angiotensin II (AngII), contributes to regulating (patho)physiological conditions, including blood pressure changes, inflammation, and kidney fibrosis. However, the precise role of tissue-specific AGT in kidney fibrosis independent of blood pressure remains to be fully understood. This study investigated the source of intrarenal AGT and its role in kidney injury and fibrosis during obstructive nephropathy. MATERIALS AND METHODS: Proximal tubule- (PT, major source secreting AGT in the kidney; PKO) or liver- (major source of circulating AGT; LKO) AGT knockout (KO) mice were subjected to unilateral ureteral obstruction (UUO), a blood pressure-independent fibrosis model. RESULTS: UUO increased AGT mRNA and protein levels in the kidneys. PKO decreased AGT mRNA, but LKO enhanced it in UUO kidneys compared with the control. In contrast, the intrarenal protein levels of AGT increased in PKO, but not in LKO in UUO kidneys, indicating that the liver is a major source of intrarenal AGT protein. Expression of megalin, a PT receptor involved in the uptake of circulating AGT, was down-regulated in UUO kidneys and was independent of PKO or LKO. However, none of these changes prevented UUO-induced tubular injury and kidney fibrosis. CONCLUSION: Hepatic and proximal tubule AGT play distinct roles in contributing to intrarenal AGT levels during UUO, and their genetic inhibitions fail to prevent kidney injury and fibrosis, suggesting a highly complicated signaling pathway of the renin-angiotensin system and an associated compensatory mechanism in obstructive nephropathy.


Subject(s)
Angiotensinogen , Disease Models, Animal , Fibrosis , Kidney , Mice, Knockout , Ureteral Obstruction , Animals , Mice , Angiotensinogen/metabolism , Angiotensinogen/genetics , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/etiology , Kidney Diseases/pathology , Kidney Diseases/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Liver/metabolism , Liver/pathology , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Ureteral Obstruction/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/genetics , Ureteral Obstruction/pathology
4.
FASEB J ; 38(16): e23884, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39135512

ABSTRACT

The inhibition of the autophagolysosomal pathway mediated by transcription factor EB (TFEB) inactivation in proximal tubular epithelial cells (TECs) is a key mechanism of TEC injury in diabetic kidney disease (DKD). Acetylation is a novel mechanism that regulates TFEB activity. However, there are currently no studies on whether the adjustment of the acetylation level of TFEB can reduce the damage of diabetic TECs. In this study, we investigated the effect of Trichostatin A (TSA), a typical deacetylase inhibitor, on TFEB activity and damage to TECs in both in vivo and in vitro models of DKD. Here, we show that TSA treatment can alleviate the pathological damage of glomeruli and renal tubules and delay the DKD progression in db/db mice, which is associated with the increased expression of TFEB and its downstream genes. In vitro studies further confirmed that TSA treatment can upregulate the acetylation level of TFEB, promote its nuclear translocation, and activate the expression of its downstream genes, thereby reducing the apoptosis level of TECs. TFEB deletion or HDAC6 knockdown in TECs can counteract the activation effect of TSA on autophagolysosomal pathway. We also found that TFEB enhances the transcription of Tfeb through binding to its promoter and promotes its own expression. Our results, thus, provide a novel therapeutic mechanism for DKD that the alleviation of TEC damage by activating the autophagic lysosomal pathway through upregulating TFEB acetylation can, thus, delay DKD progression.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Diabetic Nephropathies , Epithelial Cells , Histone Deacetylase Inhibitors , Hydroxamic Acids , Kidney Tubules, Proximal , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Diabetic Nephropathies/metabolism , Mice , Acetylation , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Hydroxamic Acids/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Male , Mice, Inbred C57BL , Autophagy/drug effects , Apoptosis/drug effects
5.
Medicine (Baltimore) ; 103(33): e39174, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39151531

ABSTRACT

RATIONALE: Light chain proximal tubulopathy (LCPT) is a rare form of renal impairment associated with multiple myeloma (MM). LCPT is caused by inclusions formed of free light chains that are typically crystalline, but can also be noncrystalline structures. PATIENT CONCERNS: A 62-year-old man was hospitalized for the investigation of abnormal urine test results lasting for 1 year and kidney-function abnormalities persisting for more than 1 month. DIAGNOSES: Noncrystalline LCPT and MM. INTERVENTIONS: The patient was treated with the lenalidomide, bortezomib, and dexamethasone and pomalidomide, bortezomib, and dexamethasone chemotherapy regimens. OUTCOMES: Complete remission of MM was achieved, and the patient's renal function returned to normal. LESSONS: This case report highlights the importance of renal pathology in the diagnosis of patients with unexplained chronic kidney disease and proteinuria.


Subject(s)
Multiple Myeloma , Humans , Male , Middle Aged , Multiple Myeloma/complications , Multiple Myeloma/drug therapy , Multiple Myeloma/diagnosis , Multiple Myeloma/pathology , Immunoglobulin Light Chains/urine , Kidney Tubules, Proximal/pathology , Dexamethasone/therapeutic use , Inclusion Bodies/pathology , Thalidomide/therapeutic use , Thalidomide/analogs & derivatives , Lenalidomide/therapeutic use , Lenalidomide/administration & dosage , Bortezomib/therapeutic use
6.
Sci Rep ; 14(1): 19443, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169052

ABSTRACT

Cisplatin-induced nephrotoxicity restricts its clinical use against solid tumors. The present study elucidated the pharmacological effects of Renogrit, a plant-derived prescription medicine, using cisplatin-induced human renal proximal tubular (HK-2) cells and Caenorhabditis elegans. Quantification of phytochemicals in Renogrit was performed on HPTLC and UHPLC platforms. Renogrit was assessed in vitro in HK-2 cells post-exposure to clinically relevant concentration of cisplatin. It was observed that renoprotective properties of Renogrit against cisplatin-induced injury stem from its ability to regulate renal injury markers (KIM-1, NAG levels; NGAL mRNA expression), redox imbalance (ROS generation; GST levels), and mitochondrial dysfunction (mitochondrial membrane potential; SKN-1, HSP-60 expression). Renogrit was also found to modulate apoptosis (EGL-1 mRNA expression; protein levels of p-ERK, p-JNK, p-p38, c-PARP1), necroptosis (intracellular calcium accumulation; RIPK1, RIPK3, MLKL mRNA expression), mitophagy (lysosome population; mRNA expression of PINK1, PDR1; protein levels of p-PINK1, LC3B), and inflammation (IL-1ß activity; protein levels of LXR-α). More importantly, Renogrit treatment did not hamper normal anti-proliferative effects of cisplatin as observed from cytotoxicity analysis on MCF-7, A549, SiHa, and T24 human cancer cells. Taken together, Renogrit could be a potential clinical candidate to mitigate cisplatin-induced nephrotoxicity without compromising the anti-neoplastic properties of cisplatin.


Subject(s)
Apoptosis , Caenorhabditis elegans , Cisplatin , Mitophagy , Cisplatin/adverse effects , Cisplatin/toxicity , Animals , Humans , Mitophagy/drug effects , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Apoptosis/drug effects , Cell Line , Plant Extracts/pharmacology , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Kidney Tubules/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Antineoplastic Agents/adverse effects , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology
7.
Ann Clin Lab Sci ; 54(3): 371-377, 2024 May.
Article in English | MEDLINE | ID: mdl-39048167

ABSTRACT

Adult polycystic kidney disease (APKD) is a genetic disorder leading to premature renal dysfunction and failure. The prevalence of malignant renal tumors occurring in the APKD setting has been rarely reported. OBJECTIVE: To better characterize malignant renal tumors in nephrectomy specimens of APKD and apply modern pathologic evaluation. METHODS: We reviewed our database of APKD specimens over the past 11 years (from 2012 to 2023) for primary malignant tumors within the kidneys of APKD. RESULTS: Of 48 nephrectomy specimens with APKD evaluated, 10 malignant renal tumors were identified, indicating a prevalence of 20.8 % (10/48). These included three clear cell (cc) renal cell carcinomas (RCC) (ranging from 1 mm to 6.7 cm), three papillary RCCs (2.5, 3.5, and 14 cm with lymph node metastasis), two cases of clear cell papillary (CCP) RCC, one acquired cystic disease (ACD) with associated RCC (4 mm), and one urothelial adenocarcinoma. The urothelial adenocarcinoma was found near a tubulovillous adenoma in a collecting duct and stained positively for GATA3 and Uroplakin-2 but was negative for PAX8 & CDX2. The tumor showed extensive invasion into perirenal fatty tissue and the rectum. Next generating sequencing (NGS) analysis of the tumor showed mutations in TERT, RB1, TP53, ERBB2, and TET1 genes, further supporting its urothelial origin. CONCLUSIONS: We found a prevalence of 20.8%, which was higher than in previous reports of malignant renal tumors in patients who underwent resections for APKD. Renal tumors were mostly from damaged proximal tubular origins (clear cell or papillary RCC), but less commonly were from distal tubular or urothelial cells as well (clear cell papillary RCC and urothelial adenocarcinoma).


Subject(s)
Kidney Neoplasms , Polycystic Kidney Diseases , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/epidemiology , Male , Female , Middle Aged , Aged , Polycystic Kidney Diseases/pathology , Polycystic Kidney Diseases/genetics , Adult , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/epidemiology , Kidney Tubules, Proximal/pathology , Nephrectomy
9.
Cell Commun Signal ; 22(1): 351, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970061

ABSTRACT

BACKGROUND: Accompanied by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, aberrant connexin 43 (Cx43) hemichannel-mediated ATP release is situated upstream of inflammasome assembly and inflammation and contributes to multiple secondary complications of diabetes and associated cardiometabolic comorbidities. Evidence suggests there may be a link between Cx43 hemichannel activity and inflammation in the diabetic kidney. The consequences of blocking tubular Cx43 hemichannel-mediated ATP release in priming/activation of the NLRP3 inflammasome in a model of diabetic kidney disease (DKD) was investigated. We examined downstream markers of inflammation and the proinflammatory and chemoattractant role of the tubular secretome on macrophage recruitment and activation. METHODS: Analysis of human transcriptomic data from the Nephroseq repository correlated gene expression to renal function in DKD. Primary human renal proximal tubule epithelial cells (RPTECs) and monocyte-derived macrophages (MDMs) were cultured in high glucose and inflammatory cytokines as a model of DKD to assess Cx43 hemichannel activity, NLRP3 inflammasome activation and epithelial-to-macrophage paracrine-mediated crosstalk. Tonabersat assessed a role for Cx43 hemichannels. RESULTS: Transcriptomic analysis from renal biopsies of patients with DKD showed that increased Cx43 and NLRP3 expression correlated with declining glomerular filtration rate (GFR) and increased proteinuria. In vitro, Tonabersat blocked glucose/cytokine-dependant increases in Cx43 hemichannel-mediated ATP release and reduced expression of inflammatory markers and NLRP3 inflammasome activation in RPTECs. We observed a reciprocal relationship in which NLRP3 activity exacerbated increased Cx43 expression and hemichannel-mediated ATP release, events driven by nuclear factor kappa-B (NFκB)-mediated priming and Cx43 hemichannel opening, changes blocked by Tonabersat. Conditioned media (CM) from RPTECs treated with high glucose/cytokines increased expression of inflammatory markers in MDMs, an effect reduced when macrophages were pre-treated with Tonabersat. Co-culture using conditioned media from Tonabersat-treated RPTECs dampened macrophage inflammatory marker expression and reduced macrophage migration. CONCLUSION: Using a model of DKD, we report for the first time that high glucose and inflammatory cytokines trigger aberrant Cx43 hemichannel activity, events that instigate NLRP3-induced inflammation in RPTECs and epithelial-to-macrophage crosstalk. Recapitulating observations previously reported in diabetic retinopathy, these data suggest that Cx43 hemichannel blockers (i.e., Tonabersat) may dampen multi-system damage observed in secondary complications of diabetes.


Subject(s)
Diabetic Nephropathies , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Humans , Macrophages/metabolism , Macrophages/drug effects , Inflammasomes/metabolism , Connexin 43/metabolism , Connexin 43/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Adenosine Triphosphate/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology
10.
Function (Oxf) ; 5(4)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38984983

ABSTRACT

Megalin (Lrp2) is a multiligand receptor that drives endocytic flux in the kidney proximal tubule (PT) and is necessary for the recovery of albumin and other filtered proteins that escape the glomerular filtration barrier. Studies in our lab have shown that knockout (KO) of Lrp2 in opossum PT cells leads to a dramatic reduction in sodium-glucose co-transporter 2 (SGLT2) transcript and protein levels, as well as differential expression of genes involved in mitochondrial and metabolic function. SGLT2 transcript levels are reduced more modestly in Lrp2 KO mice. Here, we investigated the effects of Lrp2 KO on kidney function and health in mice fed regular chow (RC) or a Western-style diet (WD) high in fat and refined sugar. Despite a modest reduction in SGLT2 expression, Lrp2 KO mice on either diet showed increased glucose tolerance compared to control mice. Moreover, Lrp2 KO mice were protected against WD-induced fat gain. Surprisingly, renal function in male Lrp2 KO mice on WD was compromised, and the mice exhibited significant kidney injury compared with control mice on WD. Female Lrp2 KO mice were less susceptible to WD-induced kidney injury than male Lrp2 KO. Together, our findings reveal both positive and negative contributions of megalin expression to metabolic health, and highlight a megalin-mediated sex-dependent response to injury following WD.


Subject(s)
Diet, Western , Low Density Lipoprotein Receptor-Related Protein-2 , Mice, Knockout , Sodium-Glucose Transporter 2 , Animals , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Diet, Western/adverse effects , Male , Mice , Female , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Mice, Inbred C57BL , Kidney/metabolism , Kidney/pathology
11.
Biochim Biophys Acta Gen Subj ; 1868(10): 130684, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084330

ABSTRACT

It is well-established that dysfunction of megalin-mediated albumin endocytosis by proximal tubule epithelial cells (PTECs) and the activation of the Renin-Angiotensin System (RAS) play significant roles in the development of Diabetic Kidney Disease (DKD). However, the precise correlation between these factors still requires further investigation. In this study, we aimed to elucidate the potential role of angiotensin II (Ang II), a known effector of RAS, as the mediator of albumin endocytosis dysfunction induced by high glucose (HG) in PTECs. To achieve this, we utilized LLC-PK1 and HK-2 cells, which are well-established in vitro models of PTECs. Using albumin-FITC or DQ-albumin as tracers, we observed that incubation of LLC-PK1 and HK-2 cells with HG (25 mM for 48 h) significantly reduced canonical receptor-mediated albumin endocytosis, primarily due to the decrease in megalin expression. HG increased the concentration of Ang II in the LLC-PK1 cell supernatant, a phenomenon associated with an increase in angiotensin-converting enzyme (ACE) expression and a decrease in prolyl carboxypeptidase (PRCP) expression. ACE type 2 (ACE2) expression remained unchanged. To investigate the potential impact of Ang II on HG effects, the cells were co-incubated with angiotensin receptor inhibitors. Only co-incubation with 10-7 M losartan (an antagonist for type 1 angiotensin receptor, AT1R) attenuated the inhibitory effect of HG on albumin endocytosis, as well as megalin expression. Our findings contribute to understanding the genesis of tubular albuminuria observed in the early stages of DKD, which involves the activation of the Ang II/AT1R axis by HG.


Subject(s)
Albumins , Angiotensin II , Endocytosis , Epithelial Cells , Glucose , Kidney Tubules, Proximal , Receptor, Angiotensin, Type 1 , Endocytosis/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/drug effects , Angiotensin II/pharmacology , Glucose/metabolism , Glucose/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Animals , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Albumins/metabolism , Swine , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Renin-Angiotensin System/drug effects , Signal Transduction/drug effects , Cell Line , Losartan/pharmacology
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167342, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39002705

ABSTRACT

The complex pathogenesis of kidney disease is closely related to the diversity of kidney intrinsic cells. In this study, single-cell transcriptome sequencing technology was used to sequence and analyze blood and kidney tissue cells in normal control rats and rats with chronic kidney disease (CKD), focusing on key cell populations and functional enrichment to explore the pathogenesis of CKD. Oil red O staining and enzyme-linked immunosorbent assay (ELISA) were used to detect lipid droplets and free fatty acid (FFA). Quantitative real-time polymerase chain reaction (RT-PCR), western blot (WB) were used to verify the differential gene hydroxyacid oxidase 2 (HAO2) and fatty acid metabolic process in tissue to ensure the reliability of single-cell sequencing results. We successfully established a single-cell transcriptome atlas of blood and kidney tissue in rats with CKD, which were annotated into 14 cell subsets (MPCs, PT, Tc, DCT, B-IC, A-IC, CNT, ALOH, BC, Neu, Endo, Pla, NKT, Baso) according to marker gene, and the integrated single-cell atlas of rats showed a significant increase and decrease of MPCs and PTs in the CKD group, respectively. Functional analysis found extensive enrichment of metabolic-related pathways in PT cells, includes fatty acid metabolic process, cellular amino acid metabolic process and generation of precursor metabolites and energy. Immunohistochemical experiments determined that the differential gene HAO2 was localized in the renal tubules, and its expression was significantly reduced in CKD group compared with control, and oil red O staining showed that lipid droplets increased in the CKD group, after overexpression of HAO2 the lipid droplets was inhibited. ELISA assay showed that ATP content decreased in the CKD group and FFA increased in the CKD group. Moreover, the mitochondrial membrane potential of the cells in the OE-HAO2 group was significantly increased compared with OE-NC. The acyl-CoA oxidase 1(ACOX1), peroxisome proliferator-activated receptor alpha (PPARα), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were decreased in the CKD group, while genes and proteins were increased after overexpression of HAO2, and the AMP-activated protein kinase (AMPK) phosphorylated proteins were increased, the acetyl-CoA carboxylase (ACC) phosphorylated proteins were decreased, reversely. Therefore, HAO2 may be an important regulator of fatty acid metabolic processes in CKD, and overexpression of HAO2 can enhance fatty acid metabolism by promoting fatty acid oxidation (FAO) pathway.


Subject(s)
Fatty Acids , Kidney Tubules, Proximal , Renal Insufficiency, Chronic , Animals , Rats , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , Fatty Acids/metabolism , Rats, Sprague-Dawley , Transcriptome , Disease Models, Animal
13.
Am J Physiol Renal Physiol ; 327(3): F397-F411, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38961842

ABSTRACT

Epigenetic mechanisms are considered to contribute to diabetic nephropathy by maintaining memory of poor glycemic control during the early stages of diabetes. However, DNA methylation changes in the human kidney are poorly characterized, because of the lack of cell type-specific analysis. We examined DNA methylation in proximal tubules (PTs) purified from patients with diabetic nephropathy and identified differentially methylated CpG sites, given the critical role of proximal tubules in the kidney injury. Hypermethylation was observed at CpG sites annotated to genes responsible for proximal tubule functions, including gluconeogenesis, nicotinamide adenine dinucleotide synthesis, transporters of glucose, water, phosphate, and drugs, in diabetic kidneys, whereas genes involved in oxidative stress and the cytoskeleton exhibited demethylation. Methylation levels of CpG sites annotated to ACTN1, BCAR1, MYH9, UBE4B, AFMID, TRAF2, TXNIP, FOXO3, and HNF4A were correlated with the estimated glomerular filtration rate, whereas methylation of the CpG site in RUNX1 was associated with interstitial fibrosis and tubular atrophy. Hypermethylation of G6PC and HNF4A was accompanied by decreased expression in diabetic kidneys. Proximal tubule-specific hypomethylation of metabolic genes related to HNF4A observed in control kidneys was compromised in diabetic kidneys, suggesting a role for aberrant DNA methylation in the dedifferentiation process. Multiple genes with aberrant DNA methylation in diabetes overlapped genes with altered expressions in maladaptive proximal tubule cells, including transcription factors PPARA and RREB1. In conclusion, DNA methylation derangement in the proximal tubules of patients with diabetes may drive phenotypic changes, characterized by inflammatory and fibrotic features, along with impaired function in metabolism and transport.NEW & NOTEWORTHY Cell type-specific DNA methylation patterns in the human kidney are not known. We examined DNA methylation in proximal tubules of patients with diabetic nephropathy and revealed that oxidative stress, cytoskeleton, and metabolism genes were aberrantly methylated. The results indicate that aberrant DNA methylation in proximal tubules underlies kidney dysfunction in diabetic nephropathy. Aberrant methylation could be a target for reversing memory of poor glycemic control.


Subject(s)
CpG Islands , DNA Methylation , Diabetic Nephropathies , Epigenesis, Genetic , Kidney Tubules, Proximal , Phenotype , Humans , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/physiopathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/physiopathology , Male , Female , Middle Aged , Aged , Case-Control Studies , Glomerular Filtration Rate
14.
Gene ; 928: 148766, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39019097

ABSTRACT

Dent disease (DD) is a hereditary renal disorder characterized by low molecular weight (LMW) proteinuria and progressive renal failure. Inactivating mutations of the CLCN5 gene encoding the 2Cl-/H+exchanger ClC-5 have been identified in patients with DD type 1. ClC-5 is essentially expressed in proximal tubules (PT) where it is thought to play a role in maintaining an efficient endocytosis of LMW proteins. However, the exact pathological roles of ClC-5 in progressive dysfunctions observed in DD type 1 are still unclear. To address this issue, we designed a mouse model carrying the most representative type of ClC-5 missense mutations found in DD patients. These mice showed a characteristic DD type 1 phenotype accompanied by altered endo-lysosomal system and autophagy functions. With ageing, KI mice showed increased renal fibrosis, apoptosis and major changes in cell metabolic functions as already suggested in previous DD models. Furthermore, we made the interesting new discovery that the Lipocalin-2-24p3R pathway might be involved in the progression of the disease. These results suggest a crosstalk between the proximal and distal nephron in the pathogenesis mechanisms involved in DD with an initial PT impairment followed by the Lipocalin-2 internalisation and 24p3R overexpression in more distal segments of the nephron. This first animal model of DD carrying a pathogenic mutation of Clcn5 and our findings pave the way aimed at exploring therapeutic strategies to limit the consequences of ClC-5 disruption in patients with DD type 1 developing chronic kidney disease.


Subject(s)
Chloride Channels , Disease Models, Animal , Mice, Transgenic , Animals , Chloride Channels/genetics , Chloride Channels/metabolism , Mice , Dent Disease/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Mutation, Missense , Humans , Lipocalin-2/genetics , Lipocalin-2/metabolism , Autophagy/genetics , Apoptosis/genetics , Genetic Diseases, X-Linked , Nephrolithiasis
15.
Cell Signal ; 122: 111308, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059756

ABSTRACT

BACKGROUND: The protection of the diabetic kidney by Empagliflozin (EMPA) is attributed to its interaction with the sodium glucose cotransporter 2 located on proximal tubular epithelial cells (PTECs). Estrogen-related receptor α (ESRRA), known for its high expression in PTECs and association with mitochondrial biogenesis, plays a crucial role in this process. This study aimed to explore the impact of ESRRA on mitochondrial mass in diabetic tubular injury and elucidate the mechanism underlying the protective effects of EMPA. METHODS: Mitochondrial changes in PTECs of 16-week-old diabetic mice were assessed using transmission electron microscopy (TEM) and RNA-sequences. In vivo, EMPA administration was carried out in db/db mice for 8 weeks, while in vitro experiments involved modifying ESRRA expression in HK2 cells using pcDNA-ESRRA or EMPA. RESULTS: Evaluation through TEM revealed reduced mitochondrial mass and swollen mitochondria in PTECs, whereas no significant changes were observed under light microscopy. Analysis of RNA-sequences identified 110 downregulated genes, including Esrra, associated with mitochondrial function. Notably, ESRRA overexpression rescued the loss of mitochondrial mass induced by high glucose (HG) in HK2 cells. EMPA treatment ameliorated the ultrastructural alterations and mitigated the downregulation of ESRRA both in db/db mice and HG-treated HK2 cells. CONCLUSION: The diminished expression of ESRRA is implicated in the decline of mitochondrial mass in PTECs during the early stages of diabetes, highlighting it as a key target of EMPA for preventing the progression of diabetic kidney injury.


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Glucosides , Mitochondria , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/ultrastructure , Benzhydryl Compounds/pharmacology , Mice , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Male , ERRalpha Estrogen-Related Receptor , Humans , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/ultrastructure , Mice, Inbred C57BL , Cell Line , Receptors, Estrogen/metabolism
16.
Cell Death Dis ; 15(6): 397, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844455

ABSTRACT

Integrin αvß6 holds promise as a therapeutic target for organ fibrosis, yet targeted therapies are hampered by concerns over inflammatory-related side effects. The role of αvß6 in renal inflammation remains unknown, and clarifying this issue is crucial for αvß6-targeted treatment of chronic kidney disease (CKD). Here, we revealed a remarkable positive correlation between overexpressed αvß6 in proximal tubule cells (PTCs) and renal inflammation in CKD patients and mouse models. Notably, knockout of αvß6 not only significantly alleviated renal fibrosis but also reduced inflammatory responses in mice, especially the infiltration of pro-inflammatory macrophages. Furthermore, conditional knockout of αvß6 in PTCs in vivo and co-culture of PTCs with macrophages in vitro showed that depleting αvß6 in PTCs suppressed the migration and pro-inflammatory differentiation of macrophages. Screening of macrophage activators showed that αvß6 in PTCs activates macrophages via secreting IL-34. IL-34 produced by PTCs was significantly diminished by αvß6 silencing, and reintroduction of IL-34 restored macrophage activities, while anti-IL-34 antibody restrained macrophage activities enhanced by αvß6 overexpression. Moreover, RNA-sequencing of PTCs and verification experiments demonstrated that silencing αvß6 in PTCs blocked hypoxia-stimulated IL-34 upregulation and secretion by inhibiting YAP expression, dephosphorylation, and nuclear translocation, which resulted in the activation of Hippo signaling. While application of a YAP agonist effectively recurred IL-34 production by PTCs, enhancing the subsequent macrophage migration and activation. Besides, reduced IL-34 expression and YAP activation were also observed in global or PTCs-specific αvß6-deficient injured kidneys. Collectively, our research elucidates the pro-inflammatory function and YAP/IL-34/macrophage axis-mediated mechanism of αvß6 in renal inflammation, providing a solid rationale for the use of αvß6 inhibition to treat kidney inflammation and fibrosis.


Subject(s)
Integrins , Macrophages , Mice, Knockout , Renal Insufficiency, Chronic , Animals , Macrophages/metabolism , Mice , Humans , Integrins/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Inflammation/pathology , Inflammation/metabolism , Male , Antigens, Neoplasm/metabolism , Mice, Inbred C57BL , Signal Transduction , Disease Models, Animal , YAP-Signaling Proteins/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Fibrosis
17.
Am J Physiol Renal Physiol ; 327(2): F208-F223, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38870264

ABSTRACT

Increased dietary phosphate consumption intensifies renal phosphate burden. Several mechanisms for phosphate-induced renal tubulointerstitial fibrosis have been reported. Considering the dual nature of phosphate as both a potential renal toxin and an essential nutrient for the body, kidneys may possess inherent protective mechanisms against phosphate overload, rather than succumbing solely to injury. However, there is limited understanding of such mechanisms. To identify these mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) analysis of the kidneys of control and dietary phosphate-loaded (Phos) mice at a time point when the Phos group had not yet developed tubulointerstitial fibrosis. scRNA-seq analysis identified the highest number of differentially expressed genes in the clusters belonging to proximal tubular epithelial cells (PTECs). Based on these differentially expressed genes, in silico analyses suggested that the Phos group activated peroxisome proliferator-activated receptor-α (PPAR-α) and fatty acid ß-oxidation (FAO) in the PTECs. This activation was further substantiated through various experiments, including the use of an FAO activity visualization probe. Compared with wild-type mice, Ppara knockout mice exhibited exacerbated tubulointerstitial fibrosis in response to phosphate overload. Experiments conducted with cultured PTECs demonstrated that activation of the PPAR-α/FAO pathway leads to improved cellular viability under high-phosphate conditions. The Phos group mice showed a decreased serum concentration of free fatty acids, which are endogenous PPAR-α agonists. Instead, experiments using cultured PTECs revealed that phosphate directly activates the PPAR-α/FAO pathway. These findings indicate that noncanonical metabolic reprogramming via endogenous activation of the PPAR-α/FAO pathway in PTECs is essential to counteract phosphate toxicity.NEW & NOTEWORTHY This study revealed the activation of peroxisome proliferator-activated receptor-α and fatty acid ß-oxidation in proximal tubular epithelial cells as an endogenous mechanism to protect the kidney from phosphate toxicity. These findings highlight noncanonical metabolic reprogramming as a potential target for suppressing phosphate toxicity in the kidneys.


Subject(s)
Kidney Tubules, Proximal , PPAR alpha , Phosphates , Animals , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/drug effects , PPAR alpha/metabolism , PPAR alpha/genetics , Phosphates/metabolism , Phosphates/toxicity , Fibrosis , Mice, Inbred C57BL , Male , Mice , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Fatty Acids/metabolism , Mice, Knockout , Oxidation-Reduction
18.
JCI Insight ; 9(15)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916959

ABSTRACT

Acute kidney injury (AKI) strongly upregulates the transcription factor Foxm1 in the proximal tubule in vivo, and Foxm1 drives epithelial proliferation in vitro. Here, we report that deletion of Foxm1 either with a nephron-specific Cre driver or by inducible global deletion reduced proximal tubule proliferation after ischemic injury in vivo. Foxm1 deletion led to increased AKI to chronic kidney disease transition, with enhanced fibrosis and ongoing tubule injury 6 weeks after injury. We report ERK mediated FOXM1 induction downstream of the EGFR in primary proximal tubule cells. We defined FOXM1 genomic binding sites by cleavage under targets and release using nuclease (CUT&RUN) and compared the genes located near FOXM1 binding sites with genes downregulated in primary proximal tubule cells after FOXM1 knockdown. The aligned data sets revealed the cell cycle regulator cyclin F (CCNF) as a putative FOXM1 target. We identified 2 cis regulatory elements that bound FOXM1 and regulated CCNF expression, demonstrating that Ccnf is strongly induced after kidney injury and that Foxm1 deletion abrogates Ccnf expression in vivo and in vitro. Knockdown of CCNF also reduced proximal tubule proliferation in vitro. These studies identify an ERK/FOXM1/CCNF signaling pathway that regulates injury-induced proximal tubule cell proliferation.


Subject(s)
Acute Kidney Injury , Cell Proliferation , Epithelial Cells , Forkhead Box Protein M1 , Kidney Tubules, Proximal , Animals , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/genetics , Mice , Cell Proliferation/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/cytology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Male , Cyclins/metabolism , Cyclins/genetics , Mice, Knockout , Disease Models, Animal , Gene Expression Regulation
19.
Toxicology ; 506: 153840, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830481

ABSTRACT

Cisplatin (CDDP) is administered as an anticancer drug across a broad spectrum of cancer treatments, but it causes severe renal damage. Several studies have attempted to elucidate the cause of CDDP-induced renal injury, but the detailed mechanism remains unclear. We previously found that S3 cells are more sensitive to CDDP than S1 and S2 cells by using immortalized cells derived from S1, S2, and S3 segments of proximal tubules. In this study, we investigated the potential contribution of reactive oxygen species (ROS) to the sensitivity of S3 cells to CDDP. The results showed that S3 cells have high sensitivity to CDDP, paraquat (PQ) and three ROS substances. To examine the mechanisms underlying the sensitivity to ROS in S3 cells, we compared the cellular responses of CDDP- and PQ-exposed S3 cells. The results indicated that the levels of intracellular ROS and lipid peroxides were increased in S3 cells after CDDP and PQ exposure. The intracellular levels of antioxidant proteins such as thioredoxin, thioredoxin reductase 1 and glutathione peroxidase 4 were also increased by exposure to PQ, but these proteins were decreased by CDDP exposure in S3 cells. Furthermore, the levels of intracellular free Fe2+ were increased by CDDP exposure only in S3 cells but not S1 or S2 cells, and cytotoxicity by exposure to CDDP in S3 cells was suppressed by ferroptosis inhibitors. These results suggested that the induction of ferroptosis due to the ROS production through attenuation of the antioxidant system and elevated free Fe2+ is partly responsible for the sensitivity of S3 cells to CDDP.


Subject(s)
Antineoplastic Agents , Cisplatin , Ferroptosis , Kidney Tubules, Proximal , Reactive Oxygen Species , Cisplatin/toxicity , Cisplatin/pharmacology , Ferroptosis/drug effects , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Reactive Oxygen Species/metabolism , Antineoplastic Agents/toxicity , Antineoplastic Agents/pharmacology , Animals , Paraquat/toxicity , Cell Line , Cell Line, Transformed , Mice , Cell Survival/drug effects
20.
Exp Cell Res ; 440(1): 114116, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38830568

ABSTRACT

During the progression of diabetic kidney disease, proximal tubular epithelial cells respond to high glucose to induce hypertrophy and matrix expansion leading to renal fibrosis. Recently, a non-canonical PTEN has been shown to be translated from an upstream initiation codon CUG (leucine) to produce a longer protein called PTEN-Long (PTEN-L). Interestingly, the extended sequence present in PTEN-L contains cell secretion/penetration signal. Role of this non-canonical PTEN-L in diabetic renal tubular injury is not known. We show that high glucose decreases expression of PTEN-L. As a mechanism of its function, we find that reduced PTEN-L activates Akt-2, which phosphorylates and inactivate tuberin and PRAS40, resulting in activation of mTORC1 in tubular cells. Antibacterial agent acriflavine and antiviral agent ATA regulate translation from CUG codon. Acriflavine and ATA, respectively, decreased and increased expression of PTEN-L to altering Akt-2 and mTORC1 activation in the absence of change in expression of canonical PTEN. Consequently, acriflavine and ATA modulated high glucose-induced tubular cell hypertrophy and lamininγ1 expression. Importantly, expression of PTEN-L inhibited high glucose-stimulated Akt/mTORC1 activity to abrogate these processes. Since PTEN-L contains secretion/penetration signals, addition of conditioned medium containing PTEN-L blocked Akt-2/mTORC1 activity. Notably, in renal cortex of diabetic mice, we found reduced PTEN-L concomitant with Akt-2/mTORC1 activation, leading to renal hypertrophy and lamininγ1 expression. These results present first evidence for involvement of PTEN-L in diabetic kidney disease.


Subject(s)
Diabetic Nephropathies , Glucose , Kidney Tubules, Proximal , Mechanistic Target of Rapamycin Complex 1 , PTEN Phosphohydrolase , Animals , Humans , Male , Mice , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Down-Regulation/drug effects , Glucose/metabolism , Glucose/pharmacology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL