Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.791
Filter
1.
J Helminthol ; 98: e43, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38800903

ABSTRACT

Entomopathogenic nematodes (EPNs) are closely associated with Popillia japonica and potentially used as their biological control agents, although field results proved inconsistent and evoked a continual pursuit of native EPNs more adapted to the environment. Therefore, we surveyed the Azorean Archipelago to isolate new strains of Heterorhabditis bacteriophora and to evaluate their virulence against the model organism Galleria mellonella under laboratory conditions. Six strains were obtained from pasture and coastal environments and both nematode and symbiont bacteria were molecularly identified. The bioassays revealed that Az172, Az186, and Az171 presented high virulence across the determination of a lethal dose (LD50) and short exposure time experiments with a comparable performance to Az29. After 72 hours, these virulent strains presented a mean determination of a lethal dose of 11 infective juveniles cm-2, a lethal time (LT50) of 34 hours, and achieved 40% mortality after an initial exposure time of only 60 minutes. Az170 exhibited an intermediate performance, whereas Az179 and Az180 were classified as low virulent strains. However, both strains presented the highest reproductive potential with means of 1700 infective juveniles/mg of larvae. The bioassays of the native EPNs obtained revealed that these strains hold the potential to be used in biological control initiatives targeting P. japonica because of their high virulence and locally adapted to environmental conditions.


Subject(s)
Pest Control, Biological , Rhabditoidea , Animals , Azores , Virulence , Rhabditoidea/microbiology , Rhabditoidea/physiology , Larva/microbiology , Moths/parasitology , Biological Control Agents , Biological Assay , Rhabditida/physiology , Lethal Dose 50
3.
PeerJ ; 12: e17349, 2024.
Article in English | MEDLINE | ID: mdl-38784394

ABSTRACT

Background: Antibiotics are commonly used for controlling microbial growth in diseased organisms. However, antibiotic treatments during early developmental stages can have negative impacts on development and physiology that could offset the positive effects of reducing or eliminating pathogens. Similarly, antibiotics can shift the microbial community due to differential effectiveness on resistant and susceptible bacteria. Though antibiotic application does not typically result in mortality of marine invertebrates, little is known about the developmental and transcriptional effects. These sublethal effects could reduce the fitness of the host organism and lead to negative changes after removal of the antibiotics. Here, we quantify the impact of antibiotic treatment on development, gene expression, and the culturable bacterial community of a model cnidarian, Nematostella vectensis. Methods: Ampicillin, streptomycin, rifampicin, and neomycin were compared individually at two concentrations, 50 and 200 µg mL-1, and in combination at 50 µg mL-1 each, to assess their impact on N. vectensis. First, we determined the impact antibiotics have on larval development. Next Amplicon 16S rDNA gene sequencing was used to compare the culturable bacteria that persist after antibiotic treatment to determine how these treatments may differentially select against the native microbiome. Lastly, we determined how acute (3-day) and chronic (8-day) antibiotic treatments impact gene expression of adult anemones. Results: Under most exposures, the time of larval settlement extended as the concentration of antibiotics increased and had the longest delay of 3 days in the combination treatment. Culturable bacteria persisted through a majority of exposures where we identified 359 amplicon sequence variants (ASVs). The largest proportion of bacteria belonged to Gammaproteobacteria, and the most common ASVs were identified as Microbacterium and Vibrio. The acute antibiotic exposure resulted in differential expression of genes related to epigenetic mechanisms and neural processes, while constant application resulted in upregulation of chaperones and downregulation of mitochondrial genes when compared to controls. Gene Ontology analyses identified overall depletion of terms related to development and metabolism in both antibiotic treatments. Discussion: Antibiotics resulted in a significant increase to settlement time of N. vectensis larvae. Culturable bacterial species after antibiotic treatments were taxonomically diverse. Additionally, the transcriptional effects of antibiotics, and after their removal result in significant differences in gene expression that may impact the physiology of the anemone, which may include removal of bacterial signaling on anemone gene expression. Our research suggests that impacts of antibiotics beyond the reduction of bacteria may be important to consider when they are applied to aquatic invertebrates including reef building corals.


Subject(s)
Anti-Bacterial Agents , Larva , Sea Anemones , Animals , Anti-Bacterial Agents/pharmacology , Sea Anemones/genetics , Sea Anemones/drug effects , Larva/microbiology , Larva/drug effects , Larva/genetics , Ampicillin/pharmacology , Neomycin/pharmacology , Streptomycin/pharmacology , Rifampin/pharmacology , Gene Expression/drug effects
4.
Front Immunol ; 15: 1385863, 2024.
Article in English | MEDLINE | ID: mdl-38774871

ABSTRACT

Background: In response to the replace mammal research models with insects in preliminary immunological studies, interest has grown in invertebrate defense systems. The immunological response is regulated by cytokines; however, while their role in mammals is well understood, little is known of their function in insects. A suitable target for studies into insect immunology is Galleria mellonella (Lepidoptera), the wax moth: a common host for human fungal and bacterial pathogens. G. mellonella is also a perfect subject for studies into the presence of cytokine-like proteins. Specific objectives: The main goal of present research was detection in insect immunocompetent cells the 18 mammalian cytokines (IL-1α, IL-1ß, IL-2, IL-3, IL-6, IL-7, IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, IFN-γ, TNF-α, TNF-ß, GM-CSF, M-CSF, G-CSF), which play important role in immunological response and indication how their level change after fungal infection. Methodology: The changes of cytokine-like proteins level were detected in hemocytes taken from G. mellonella larvae infected with entomopathogenic fungus, C. coronatus. The presence of cytokine-proteins was confirmed with using fluorescence microscopy (in cultured hemocytes) and flow cytometry (in freshly collected hemolymph). The ELISA test was used to detect changes in concentration of examined cytokine-like proteins. Results: Our findings indicated the presence of eighteen cytokine-like molecules in G. mellonella hemocytes during infection with C. coronatus. The hemocytes taken from infected larvae demonstrated higher fluorescence intensity for six cytokine-like proteins (GM-CSF, M-CSF, IL-3, IL-15, IL-1ß and IL-19) compared to untreated controls. ELISA test indicated significantly higher IL-3 and IL-15. M-CSF, IL-1α and IL-19 concentration in the hemolymph after fungal infection, and significantly lower TNF-ß and G-CSF. Conclusions: Our findings confirm that the selected cytokine-like molecules are present in insect hemocytes and that their concentrations change after fungal infection, which might suggest that they play a role in the anti-fungal immunological response.


Subject(s)
Conidiobolus , Cytokines , Larva , Moths , Animals , Conidiobolus/immunology , Larva/immunology , Larva/microbiology , Cytokines/metabolism , Cytokines/immunology , Moths/immunology , Moths/microbiology , Hemocytes/immunology , Hemocytes/metabolism , Hemocytes/microbiology , Insect Proteins/immunology , Insect Proteins/metabolism , Zygomycosis/immunology , Zygomycosis/metabolism
5.
Sci Data ; 11(1): 519, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778070

ABSTRACT

Endosymbionts regulate the behavior of pest species, which could provide insights into their control. The citrus leafminer (Phyllocnistis citrella Stainton) is a widely distributed pest associated with diseases of citrus, especially of young trees. Here, we determined the endosymbiont composition of P. citrella in citrus orchards across China. The resulting dataset comprised average 50,430 high-quality reads for bacterial 16S rRNA V3-V4 regions of endosymbionts from 36 P. citrella larvae sampled from 12 citrus orchards across China. The sequencing depth and sampling size of this dataset were sufficient to reveal most of the endosymbionts of P. citrella. In total, 2,875 bacterial amplicon sequence variants were obtained; taxonomic analysis revealed a total of 372 bacterial genera, most of which were Proteobacteria phylum with Undibacterium being the most abundant genus. This dataset provides the first evidence of P. citrella endosymbionts that could support the development of pest management approaches in citrus orchards.


Subject(s)
Bacteria , Citrus , Moths , Symbiosis , Animals , Bacteria/classification , Bacteria/genetics , China , Larva/microbiology , Moths/microbiology , RNA, Ribosomal, 16S/genetics
6.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38710582

ABSTRACT

AIMS: This study aimed to evaluate the efficiency of two phages [VB_VaC_TDDLMA (phage TDD) and VB_VaC_SRILMA (phage SRI)] alone and in a cocktail to control Vibrio alginolyticus in brine shrimp before their administration in larviculture. METHODS AND RESULTS: Phages were isolated from seawater samples and characterized by host spectrum, growth parameters, adsorption rate, genomic analysis, and inactivation efficiency. Both phages belong to the Caudoviricetes class and lack known virulence or antibiotic-resistance genes. They exhibit specificity, infecting only their host, V. alginolyticus CECT 521. Preliminary experiments in a culture medium showed that phage TDD (reduction of 5.8 log CFU ml-1 after 10 h) outperformed phage SRI (reduction of 4.6 log CFU ml-1 after 6 h) and the cocktail TDD/SRI (reduction of 5.2 log CFU ml-1 after 8 h). In artificial marine water experiments with Artemia franciscana, both single phage suspensions and the phage cocktail, effectively inactivated V. alginolyticus in culture water (reduction of 4.3, 2.1, and 1.9 log CFU ml-1 for phages TDD, SRI, and the phage cocktail, respectively, after 12 h) and in A. franciscana (reduction of 51.6%, 87.3%, and 85.3% for phages TDD, SRI, and the phage cocktail, respectively, after 24 h). The two phages and the phage cocktail did not affect A. franciscana natural microbiota or other Vibrio species in the brine shrimp. CONCLUSIONS: The results suggest that phages can safely and effectively control V. alginolyticus in A. franciscana prior to its administration in larviculture.


Subject(s)
Aquaculture , Artemia , Bacteriophages , Vibrio alginolyticus , Vibrio alginolyticus/virology , Animals , Artemia/microbiology , Artemia/virology , Animal Feed , Seawater/microbiology , Larva/microbiology
7.
Methods Mol Biol ; 2775: 3-11, 2024.
Article in English | MEDLINE | ID: mdl-38758307

ABSTRACT

Galleria mellonella larvae are a popular and simple model organism for infectious disease research. Last instar larvae can be purchased inexpensively from commercial suppliers and infected with Cryptococcus. Injection into the proleg of larvae results in systemic infections. Larvae may then be monitored for survival or homogenized to determine fungal burden. Fixation of infected larvae produces samples suitable for histological staining and analysis.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Disease Models, Animal , Larva , Moths , Cryptococcus neoformans/pathogenicity , Cryptococcosis/microbiology , Cryptococcosis/pathology , Animals , Larva/microbiology , Moths/microbiology
8.
PLoS One ; 19(5): e0301685, 2024.
Article in English | MEDLINE | ID: mdl-38748697

ABSTRACT

Amblyomma ticks are vectors of both Rickettsia rickettsii and R. parkeri in the Americas, where capybaras (Hydrochoerus hydrochaeris) are the main hosts in urban areas, thus contributing to the transmission of spotted fever. Herein, we studied: (i) the seasonal dynamics and abundance of ticks in areas where capybaras live, (ii) the effect of environmental variables on tick abundance, and (iii) the presence of Rickettsia-infected ticks. Between September 2021 and September 2022, we sampled ticks using cloth-dragging at 194 sites on the shore of Lake Paranoá in Brasília, Brazil. We measured environmental data (season, vegetation type, canopy density, temperature, humidity, and presence or vestige of capybara) at each site. Nymphs and adults were morphologically identified to the species level, and a selected tick sample including larvae was subjected to genotypic identification. We investigated Rickettsia-infected ticks by PCR (gltA, htrA, ompB, and ompA genes) and associations between tick abundance and environmental variables using Generalized Linear Models. A total of 30,334 ticks (96% larvae) were captured. Ticks were identified as Amblyomma, with A. sculptum comprising 97% of the adult/nymphs. Genotype identification of a larval sample confirmed that 95% belonged to A. dubitatum. Seasonal variables showed significant effects on tick abundance. Most larvae and nymphs were captured during the early dry season, while the adults were more abundant during the wet season. Vegetation variables and the presence of capybaras showed no association with tick abundance. Rickettsia parkeri group and R. bellii were identified in A. dubitatum, while A. sculptum presented R. bellii. We conclude that: (i) Amblyomma ticks are widely distributed in Lake Paranoá throughout the year, especially larvae at the dry season, (ii) the abundance of Amblyomma ticks is explained more by climatic factors than by vegetation or presence of capybaras, and (iii) A. dubitatum ticks are potential vectors of R. parkeri in Brasília.


Subject(s)
Amblyomma , Rickettsia , Seasons , Animals , Rickettsia/genetics , Rickettsia/isolation & purification , Brazil , Amblyomma/microbiology , Nymph/microbiology , Larva/microbiology , Rickettsia Infections/transmission , Rickettsia Infections/microbiology , Arachnid Vectors/microbiology , Rodentia/microbiology , Rodentia/parasitology , Environment
9.
Arch Microbiol ; 206(6): 257, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734773

ABSTRACT

There is a growing imperative for research into alternative compounds for the treatment of the fungal infections. Thus, many studies have focused on the analysis of antifungal proteins and peptides from different plant sources. Among these molecules are protease inhibitors (PIs). Previously, PIs present in the peptide-rich fractions called PEF1, PEF2 and PEF3 were identified from Capsicum chinense seeds, which have strong activity against phytopathogenic fungi. The aim of this study was to evaluate the mechanism of action and antimicrobial activity of PIs from PEF2 and PEF3 on the growth of yeasts of the genus Candida. In this work, analyses of their antimicrobial activity and cell viability were carried out. Subsequently, the mechanism of action by which the PIs cause the death of the yeasts was evaluated. Cytotoxicity was assessed in vitro by erythrocytes lysis and in vivo in Galleria mellonella larvae. PEF2 and PEF3 caused 100% of the growth inhibition of C. tropicalis and C. buinensis. For C. albicans inhibition was approximately 60% for both fractions. The PEF2 and PEF3 caused a reduction in mitochondrial functionality of 54% and 46% for C. albicans, 26% and 30% for C. tropicalis, and 71% and 68% for C. buinensis, respectively. These fractions induced morphological alterations, led to membrane permeabilization, elevated ROS levels, and resulted in necrotic cell death in C. tropicalis, whilst demonstrating low toxicity toward host cells. From the results obtained here, we intend to contribute to the understanding of the action of PIs in the control of fungal diseases of medical importance.


Subject(s)
Antifungal Agents , Candida , Protease Inhibitors , Antifungal Agents/pharmacology , Candida/drug effects , Candida/growth & development , Protease Inhibitors/pharmacology , Microbial Sensitivity Tests , Animals , Capsicum/microbiology , Reactive Oxygen Species/metabolism , Seeds/growth & development , Plant Extracts/pharmacology , Plant Extracts/chemistry , Erythrocytes/drug effects , Larva/microbiology , Larva/growth & development , Larva/drug effects
10.
Environ Microbiol Rep ; 16(3): e13213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38738810

ABSTRACT

Since a significant proportion of plant matter is consumed by herbivores, a necessary adaptation for many phyllosphere microbes could be to survive through the guts of herbivores. While many studies explore the gut microbiome of herbivores by surveying the microbiome in their frass, few studies compare the phyllosphere microbiome to the gut microbiome of herbivores. High-throughput metabarcode sequencing was used to track the fungal community from milkweed (Asclepias spp.) leaves to monarch caterpillar frass. The most commonly identified fungal taxa that dominated the caterpillar frass after the consumption of leaves were yeasts, mostly belonging to the Basidiomycota phylum. While most fungal communities underwent significant bottlenecks and some yeast taxa increased in relative abundance, a consistent directional change in community structure was not identified from leaf to caterpillar frass. These results suggest that some phyllosphere fungi, especially diverse yeasts, can survive herbivory, but whether herbivory is a key stage of their life cycle remains uncertain. For exploring phyllosphere fungi and the potential coprophilous lifestyles of endophytic and epiphytic fungi, methods that target yeast and Basidiomycota fungi are recommended.


Subject(s)
Asclepias , Fungi , Herbivory , Plant Leaves , Animals , Plant Leaves/microbiology , Asclepias/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Fungi/physiology , Yeasts/classification , Yeasts/isolation & purification , Yeasts/genetics , Mycobiome , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/physiology , Basidiomycota/isolation & purification , Gastrointestinal Microbiome , Larva/microbiology , Moths/microbiology
11.
Microb Pathog ; 191: 106677, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705217

ABSTRACT

A novel endophytic Streptomyces griseorubens CIBA-NS1 was isolated from a salt marsh plant Salicornia sp. The antagonistic effect of S. griseorubens against Vibrio campbellii, was studied both in vitro and in vivo. The strain was validated for its endophytic nature and characterized through scanning electron microscopy, morphological and biochemical studies and 16SrDNA sequencing. The salinity tolerance experiment has shown that highest antibacterial activity was at 40‰ (16 ± 1.4 mm) and lowest was at 10 ‰ salinity (6.94 ± 0.51 mm). In vivo exclusion of Vibrio by S. griseorubens CIBA-NS1 was studied in Penaeus indicus post larvae and evaluated for its ability to improve growth and survival of P. indicus. After 20 days administration of S. griseorubens CIBA-NS1, shrimps were challenged with V. campbellii. The S. griseorubens CIBA-NS1 reduced Vibrio population in test group when compared to control, improved survival (60.5 ± 6.4%) and growth, as indicated by weight gain (1.8 ± 0.05g). In control group survival and growth were 48.4 ± 3.5% and 1.4 ± 0.03 g respectively. On challenge with V. campbellii, the S. griseorubens CIBA-NS1 administered group showed better survival (85.6 ± 10%) than positive control (64.3 ± 10%). The results suggested that S. griseorubens CIBA-NS1 is antagonistic to V. campbellii, reduce Vibrio population in the culture system and improve growth and survival. This is the first report on antagonistic activity of S. griseorubens isolated from salt marsh plant Salicornia sp, as a probiotic candidate to prevent V. campbellii infection in shrimps.


Subject(s)
Chenopodiaceae , Endophytes , Probiotics , Streptomyces , Vibrio , Animals , Vibrio/drug effects , Vibrio/physiology , Chenopodiaceae/microbiology , Probiotics/pharmacology , Endophytes/isolation & purification , Endophytes/physiology , Streptomyces/physiology , Streptomyces/isolation & purification , Streptomyces/genetics , Penaeidae/microbiology , RNA, Ribosomal, 16S/genetics , Antibiosis , Vibrio Infections/microbiology , Vibrio Infections/veterinary , Vibrio Infections/prevention & control , Salinity , Larva/microbiology , DNA, Bacterial/genetics , Phylogeny
12.
Parasitol Res ; 123(5): 223, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805058

ABSTRACT

The primarily bat-associated argasid tick, Secretargas transgariepinus (White, 1846), is a member of the Afrotropical and southern Palaearctic fauna. Probably because of its secretive life style, little is known about this species and records of its collection are scant. Based on morphological revisions of the available specimens, we report new Middle Eastern records for this tick species that had been misidentified as other bat-associated argasid taxa. These specimens are larvae from three localities, and represent the first records of S. transgariepinus from two countries: one larva from Sabratha (Libya) was collected from an unidentified bat species (possibly Eptesicus isabellinus), seven larvae from Azraq-Shishan (Jordan), and 78 larvae from Shamwari (Jordan) were all collected from Otonycteris hemprichii. Twenty larvae from Shamwari were also tested for the presence of both, viral or bacterial microorganisms by PCR. Three ticks were found to be infected with the Murid gammaherpesvirus 68 (MHV-68), one with Borrelia burgdorferi sensu lato, and four with a Rickettsia sp. closely related to Rickettsia slovaca. The findings represent a first evidence for the occurrence of these possible pathogens in S. transgariepinus.


Subject(s)
Argasidae , Chiroptera , Larva , Animals , Jordan , Larva/microbiology , Libya , Chiroptera/parasitology , Argasidae/microbiology , Polymerase Chain Reaction
13.
Microb Ecol ; 87(1): 70, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38740585

ABSTRACT

Stag beetles, recognized as common saproxylic insects, are valued for their vibrant coloration and distinctive morphology. These beetles play a crucial ecological role in decomposition and nutrient cycling, serving as a vital functional component in ecosystem functioning. Although previous studies have confirmed that stag beetles are predominantly fungivores, the fluctuations in their intestinal fungal communities at different developmental stages remain poorly understood. In the current study, high-throughput sequencing was employed to investigate the dynamic changes within intestinal fungal communities at various developmental stages in the stag beetle Dorcus hopei. Results showed that microbial diversity was higher during the larval stage than during the pupal and adult stages. Furthermore, significant differences were identified in the composition of the intestinal fungal communities across the larval, pupal, and adult stages, suggesting that developmental transitions may be crucial factors contributing to variations in fungal community composition and diversity. Dominant genera included Candida, Scheffersomyces, Phaeoacremonium, and Trichosporon. Functional predictions indicated a greater diversity and relative abundance of endosymbiotic fungi in the larval gut, suggesting a potential dependency of larvae on beneficial gut fungi for nutrient acquisition. Additionally, the application of abundance-based ß-null deviation and niche width analyses revealed that the adult gut exerted a stronger selection pressure on its fungal community, favoring certain taxa. This selection process culminates in a more robust co-occurrence network of fungal communities within the adult gut, thereby enhancing their adaptability to environmental fluctuations. This study advances our understanding of the intestinal fungal community structure in stag beetles, providing a crucial theoretical foundation for the development of saproxylic beetle resources, biomass energy utilization, plastic degradation strategies, and beetle conservation efforts.


Subject(s)
Coleoptera , Fungi , Gastrointestinal Microbiome , Larva , Animals , Coleoptera/microbiology , Coleoptera/growth & development , Larva/growth & development , Larva/microbiology , Fungi/genetics , Fungi/classification , Fungi/physiology , Pupa/growth & development , Pupa/microbiology , Mycobiome , Biodiversity , Symbiosis , High-Throughput Nucleotide Sequencing
14.
J Med Microbiol ; 73(5)2024 May.
Article in English | MEDLINE | ID: mdl-38743467

ABSTRACT

Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Acinetobacter baumannii/virology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Virulence , Acinetobacter Infections/microbiology , Animals , Moths/microbiology , Moths/virology , Phage Therapy , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Larva/microbiology , Larva/virology
15.
Open Vet J ; 14(3): 902-912, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682129

ABSTRACT

Background: Aeromonas hydrophila (A. hydrophila) is a bacterium with zoonotic potential and is multidrug-resistant. It utilizes hemolysin and aerolysin to spread infection. Black soldier flies (BSFs) can be antibacterial because of the fatty acids it contains. Aims: This study aimed to investigate and compare the fatty acid profiles of BSF prepupae grown in fermented and nonfermented media using bioinformatics tools and assess their potential as antibacterial agents against A. hydrophila. Methods: The study used BSF prepupae reared on various organic substrates. BSF prepupae grown in fermented or nonfermented substrate were observed against fatty acid. The fatty acid analysis was performed using GC-MS. Fatty acids were analyzed statistically using the one-way ANOVA test with a 95% confidence level. Fatty acid bioactivity was predicted using the online PASS-two-way drug program. Molecular docking on BSF fatty acid compounds was analyzed with PyMol 2.2 and discovery Studio version 21.1.1. Results: The molecular docking test showed the strongest bond was oleic acid with aerolysin and linoleic acid with hemolysin. BSF prepupae grown on fermented media showed higher crude fat and saturated fatty acids (SFAs) but lower unsaturated fatty acids than nonfermented media. Conclusion: Black soldier fly prepupae, particularly those grown on fermented media, possess antibacterial activity against A. hydrophila through potential fatty acid-mediated inhibition of crucial virulence factors.


Subject(s)
Aeromonas hydrophila , Fatty Acids , Fermentation , Aeromonas hydrophila/drug effects , Animals , Fatty Acids/metabolism , Computational Biology , Anti-Bacterial Agents/pharmacology , Diptera/microbiology , Hemolysin Proteins/metabolism , Larva/microbiology , Molecular Docking Simulation
16.
J Vis Exp ; (206)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682933

ABSTRACT

Zebrafish serve as valuable models for research on growth, immunity, and gut microbiota due to their genomic similarities with mammals, transparent embryos developed in a relatively clean chorion environment, and extremely rapid development of larvae compared to rodent models. Germ-free (GF) zebrafish (Danio rerio) are crucial for evaluating pollutant toxicity and establishing human-like disease models related to microbial functions. In comparison to conventionally raised (CR) models (fish in common husbandry), GF zebrafish allow for more accurate manipulation of the host microbiota, aiding in determining the causal relationship between microorganisms and hosts. Consequently, they play a critical role in advancing our understanding of these relationships. However, GF zebrafish models are typically generated and researched during the early life stages (from embryos to larvae) due to limitations in immune function and nutrient absorption. This study optimizes the generation, maintenance, and identification of early GF zebrafish models without feeding and with long-term feeding using GF food (such as Artemia sp., brine shrimp). Throughout the process, daily sampling and culture were performed and identified through multiple detections, including plates and 16S rRNA sequencing. The aseptic rate, survival, and developmental indexes of GF zebrafish were recorded to ensure the quality and quantity of the generated models. Importantly, this study provides details on bacterial isolation and infection techniques for GF fish, enabling the efficient creation of GF fish models from larvae to juvenile stages with GF food support. By applying these procedures in biomedical research, scientists can better understand the relationships between intestinal bacterial functions and host health.


Subject(s)
Germ-Free Life , Larva , Models, Animal , Zebrafish , Animals , Zebrafish/microbiology , Larva/microbiology , Larva/growth & development , Female , Male
17.
Sci Rep ; 14(1): 9903, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688964

ABSTRACT

The edible fungus industry is one of the pillar industries in the Yunnan-Guizhou Plateau, China. The expansion of the planting scale has led to the release of various mushroom residues, such as mushroom feet, and other wastes, which are not treated adequately, resulting in environmental pollution. This study investigated the ability of black soldier fly (Hermetia illucens L.) larvae (BSFL) to degrade mushroom waste. Moreover, this study analyzed changes in the intestinal bacterial community and gene expression of BSFL after feeding on mushroom waste. Under identical feeding conditions, the remaining amount of mushroom waste in Pleurotus ostreatus treatment group was reduced by 18.66%, whereas that in Flammulina velutipes treatment group was increased by 31.08%. Regarding gut microbial diversity, compared with wheat bran-treated control group, Dysgonomonas, Providencia, Enterococcus, Pseudochrobactrum, Actinomyces, Morganella, Ochrobactrum, Raoultella, and Ignatzschineria were the most abundant bacteria in the midgut of BSFL in F. velutipes treatment group. Furthermore, Dysgonomonas, Campylobacter, Providencia, Ignatzschineria, Actinomyces, Enterococcus, Morganella, Raoultella, and Pseudochrobactrum were the most abundant bacteria in the midgut of BSFL in P. ostreatus treatment group. Compared with wheat bran-treated control group, 501 upregulated and 285 downregulated genes were identified in F. velutipes treatment group, whereas 211 upregulated and 43 downregulated genes were identified in P. ostreatus treatment group. Using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses, we identified 14 differentially expressed genes (DEGs) related to amino sugar and nucleotide sugar metabolism in F. velutipes treatment group, followed by 12 DEGs related to protein digestion and absorption. Moreover, in P. ostreatus treatment group, two DEGs were detected for fructose and mannose metabolism, and two were noted for fatty acid metabolism. These results indicate that feeding on edible mushroom waste can alter the intestinal microbial community structure of BSFL; moreover, the larval intestine can generate a corresponding feedback. These changes contribute to the degradation of edible mushroom waste by BSFL and provide a reference for treating edible mushroom waste using BSFL.


Subject(s)
Agaricales , Gastrointestinal Microbiome , Larva , Pleurotus , Animals , Larva/microbiology , Pleurotus/metabolism , Agaricales/metabolism , Agaricales/genetics , Biodegradation, Environmental , Diptera/microbiology , Diptera/metabolism , Flammulina/metabolism , Flammulina/genetics , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
18.
BMC Res Notes ; 17(1): 123, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689371

ABSTRACT

OBJECTIVE: Study of the human infant gut microbiome requires the use of surrogate mammalian species such as mice. We sought to investigate the usefulness of the greater wax moth larva, Galleria mellonella, as an alternative. RESULTS: We have analysed the native gut microbiome of Galleria and developed methods for clearing the native microbiome and introducing species from human infant faecal samples. We find that some species, e.g. enterococci, are more successful at recolonisation, but that others, e.g. Bifidobacterium, are less so. The work paves the way for using Galleria rather than mice in this and similar work.


Subject(s)
Feces , Gastrointestinal Microbiome , Larva , Moths , Animals , Gastrointestinal Microbiome/physiology , Humans , Moths/microbiology , Larva/microbiology , Infant , Feces/microbiology , Bifidobacterium/isolation & purification , Enterococcus/isolation & purification
19.
Front Immunol ; 15: 1380089, 2024.
Article in English | MEDLINE | ID: mdl-38650950

ABSTRACT

Introduction: The culture of Pacific oysters (Crassostrea gigas) is of significant socio-economic importance in the U.S. Pacific Northwest and other temperate regions worldwide, with disease outbreaks acting as significant bottlenecks to the successful production of healthy seed larvae. Therefore, the current study aims to describe the mechanisms of a probiotic combination in improving the survival of C. gigas larvae. Specifically, we investigate changes in C. gigas larval gene expression in response to V. coralliilyticus infection with or without a pre-treatment of a novel probiotic combination. Methods: Treatment groups consisted of replicates of Pacific oyster larvae exposed to a) a combination of four probiotic bacteria at a total concentration of 3.0 x 105 CFU/mL at 18 hours post-fertilization (hpf), b) pathogenic V. coralliilyticus RE22 at a concentration of 6.0 x 103 CFU/mL at 48 hpf, and c) the probiotic combination at 18 hpf and V. coralliilyticus RE22 at 48 hpf. RNA was extracted from washed larvae after 72 hpf, and transcriptome sequencing was used to identify significant differentially expressed genes (DEGs) within each treatment. Results: Larvae challenged with V. coralliilyticus showed enhanced expression of genes responsible for inhibiting immune signaling (i.e., TNFAIP3, PSMD10) and inducing apoptosis (i.e., CDIP53). However, when pre-treated with the probiotic combination, these genes were no longer differentially expressed relative to untreated control larvae. Additionally, pre-treatment with the probiotic combination increased expression of immune signaling proteins and immune effectors (i.e., IL-17, MyD88). Apparent immunomodulation in response to probiotic treatment corresponds to an increase in the survival of C. gigas larvae infected with V. coralliilyticus by up to 82%. Discussion: These results indicate that infection with V. coralliilyticus can suppress the larval immune response while also prompting cell death. Furthermore, the results suggest that the probiotic combination treatment negates the deleterious effects of V. coralliilyticus on larval gene expression while stimulating the expression of genes involved in infection defense mechanisms.


Subject(s)
Crassostrea , Larva , Probiotics , Vibrio , Animals , Larva/immunology , Larva/microbiology , Crassostrea/immunology , Crassostrea/microbiology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Transcriptome , Immunomodulation
20.
Pestic Biochem Physiol ; 201: 105852, 2024 May.
Article in English | MEDLINE | ID: mdl-38685211

ABSTRACT

C-type lectins (CTLs) play essential roles in humoral and cellular immune responses of invertebrates. Previous studies have demonstrated the involvement of CTLs in the humoral immunity of Tribolium castaneum, a worldwide pest in stored products. However, the function of CTLs in cellular immunity remains unclear. Here, we identified a CTL gene located on chromosome X and designated it as CTL2 (TcCTL2) from T. castaneum. It encodes a protein of 305 amino acids with a secretion signal peptide and a carbohydrate-recognition domain. TcCTL2 was mainly expressed in the early pupae and primarily distributed in the hemocytes in the late larvae. It was significantly upregulated after larvae were infected with Escherichia coli or Staphylococcus aureus, while knockdown of TcCTL2 exacerbates larval mortality and bacterial colonization after infection. The purified recombinant TcCTL2 (rTcCTL2) can bind to pathogen-associated molecular patterns and microbes and promote hemocyte-mediated encapsulation, melanization and phagocytosis in vitro. rTcCTL2 also induced bacterial agglutination in a Ca2+-dependent manner. Knockdown of TcCTL2 drastically suppressed encapsulation, melanization, and phagocytosis. Furthermore, silencing of TcCTL2 followed by bacterial infection significantly decreased the expression of transcription factors in Toll and IMD pathways, antimicrobial peptides, and prophenoloxidases and phenoloxidase activity. These results unveiled that TcCTL2 mediates both humoral and cellular immunity to promote bacterial clearance and protect T. castaneum from infectious microbes, which will deepen the understanding of the interaction between CTLs and innate immunity in T. castaneum and permit the optimization of pest control strategies by a combination of RNAi technology and bacterial infection.


Subject(s)
Immunity, Cellular , Immunity, Humoral , Insect Proteins , Lectins, C-Type , Staphylococcus aureus , Tribolium , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Staphylococcus aureus/immunology , Tribolium/immunology , Tribolium/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Hemocytes/immunology , Hemocytes/metabolism , Escherichia coli , Phagocytosis , Larva/immunology , Larva/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL