Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 793
Filter
1.
Biomed Mater ; 19(5)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38955335

ABSTRACT

This study aimed to develop and optimize karanjin-loaded ethosomal nanogel formulation and evaluate its efficacy in alleviating symptoms of psoriasis in an animal model induced by imiquimod. These karanjin-loaded ethosomal nanogel, were formulated to enhance drug penetration into the skin and its epidermal retention. Karanjin was taken to formulate ethosomes due to its potential ani-psoriatic activity. Ethosomes were formulated using the cold method using 32full factorial designs to optimize the formulation components. 9 batches were prepared using two independent variablesX1: concentration of ethanol andX2: concentration of phospholipid whereas vesicle size (Y1) and percentage entrapment efficiency (Y2) were selected as dependent variables. All the dependent variables were found to be statistically significant. The optimized ethosomal suspension (B3) exhibited a vesicle size of 334 ± 2.89 nm with an entrapment efficiency of 94.88 ± 1.24% and showed good stability. The morphology of vesicles appeared spherical with smooth surfaces through transmission electron microscopy analysis. X-ray diffraction analysis confirmed that the drug existed in an amorphous state within the ethosomal formulation. The optimized ethosome was incorporated into carbopol 934 to develop nanogel for easy application on the skin. The nanogel underwent characterization for various parameters including spreadability, viscosity, pH, extrudability, and percentage drug content. The ethosomal formulation remarkably enhanced the skin permeation of karanjin and increased epidermal retention of the drug in psoriatic skin compared to marketed preparation and pure drug. A skin retention study showed that ethosomal nanogel formulation has 48.33% epidermal retention in 6 h.In vivo,the anti-psoriatic activity of karanjin ethosomal nanogel demonstrated significant improvement in psoriasis, indicated by a gradual decrease in skin thickness and scaling as reflected in the Psoriasis Severity Index grading. Therefore, the prepared ethosomal nanogel is a potential vehicle for improved topical delivery of karanjin for better treatment of psoriasis.


Subject(s)
Nanogels , Psoriasis , Skin Absorption , Psoriasis/drug therapy , Psoriasis/pathology , Animals , Nanogels/chemistry , Lecithins/chemistry , Skin/metabolism , Skin/pathology , Particle Size , Liposomes/chemistry , Polyethylene Glycols/chemistry , Glycine max/chemistry , Rats , Male , Imiquimod/chemistry , Drug Carriers/chemistry , Polyethyleneimine/chemistry , X-Ray Diffraction , Ethanol/chemistry , Acrylates
2.
Molecules ; 29(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930869

ABSTRACT

This research aimed to encapsulate the Capparis spinosa fruit extract to increase its stability for incorporation into food products such as jelly or jelly powder. After extraction, the nanoliposomes containing the extract were prepared in ratios of 60-0, 50-10, 40-20, and 30-30 lecithin-to-cholesterol. The effects of lecithin-to-cholesterol concentrations on the related parameters were then evaluated. The results showed that the average particle size was in the range of 95.05 to 164.25 nm, and with an increasing cholesterol concentration, the particle size of the nanoliposomes increased. The addition of cholesterol increased the zeta potential from -60.40 to -68.55 millivolt. Furthermore, cholesterol led to an increase in encapsulation efficiency, and even improved the stability of phenolic compounds loaded in nanoliposomes during storage time. Fourier transform infrared (FTIR) spectroscopy confirmed the successful loading of the extract. Field emission scanning electron microscopy (FE-SEM) analysis revealed nano-sized spherical and almost-elliptical liposomes. For jelly powders, the water solubility index ranged from 39.5 to 43.7% (p > 0.05), and the hygroscopicity values ranged between 1.22 and 9.36 g/100 g (p < 0.05). In conclusion, nanoencapsulated Capparis spinosa extract displayed improved stability and can be used in jelly preparation without any challenge or unfavorable perception.


Subject(s)
Capparis , Liposomes , Nanoparticles , Particle Size , Plant Extracts , Liposomes/chemistry , Plant Extracts/chemistry , Capparis/chemistry , Nanoparticles/chemistry , Lecithins/chemistry , Cholesterol/chemistry , Drug Compounding/methods , Spectroscopy, Fourier Transform Infrared , Solubility
3.
Eur J Pharm Biopharm ; 201: 114379, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908488

ABSTRACT

A novel composite carrier composed of Pluronic lecithin organogels and fatty acid vesicles was used to enhance the stability and facilitate the topical delivery of a natural bioactive drug, magnolol (Mag), for treatment of skin cancer. Jojoba oil was incorporated in the organogel (OG) base to provide a synergistic effect in treatment of skin cancer. The organoleptic properties, rheological behavior, morphology, and drug content of the OG formulations were investigated with emphasis on the impact of vesicle loading on the OG characteristics. The effect of OG on Mag release and ex-vivo permeation studies were evaluated and compared to free Mag in OG. The biological anti-tumor activity of the OG formulae was assessed using a skin cancer model in mice. All OG formulations exhibited uniform drug distribution with drug content ranging from 92.22 ± 0.91 to 100.45 ± 0.77 %. Rheological studies confirmed the OG shear-thinning flow behavior. Ex-vivo permeation studies demonstrated that the permeation of Mag from all OG formulations surpassed that obtained with free Mag in the OG. The anti-tumor activity studies revealed the superior efficacy of 10-hydroxy-decanoic acid (HDA)-based vesicles incorporated in OG formulations in mitigating 7,12- dimethylbenz(a)anthracene (DMBA)-induced skin cancer, thereby offering a promising platform for the local delivery of Mag.


Subject(s)
Biphenyl Compounds , Fatty Acids , Gels , Lecithins , Lignans , Poloxamer , Skin Neoplasms , Animals , Biphenyl Compounds/chemistry , Biphenyl Compounds/administration & dosage , Biphenyl Compounds/pharmacokinetics , Lecithins/chemistry , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Mice , Fatty Acids/chemistry , Lignans/administration & dosage , Lignans/pharmacokinetics , Lignans/pharmacology , Lignans/chemistry , Poloxamer/chemistry , Drug Carriers/chemistry , Administration, Cutaneous , Drug Delivery Systems/methods , Skin Absorption/drug effects , Rheology , Drug Liberation , Female , Skin/metabolism , Skin/drug effects
4.
Food Chem ; 454: 139698, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38795617

ABSTRACT

Enzymatic browning and microbial growth are two natural phenomena that occur when fruits and vegetables are exposed to abnormal conditions, i.e., temperatures in the range of 12-22 °C, leading to their spoilage. Controlling the temperatures during the supply chain aims to optimize the product's shelf life. Irreversible thermochromic beads were fabricated using a simple extrusion technique containing fatty acid, lecithin, and anthocyanin solution-alginate. The pigmentation durability was adjusted based on electrostatic interactions, as evidenced by the reduction in dye leaching in the case of the produced bead at pH = 6 to less than 0.007 after 45 min. Characterization shows that the chosen combination of fatty acids and the quinonoid molecule is useful for producing thermochromic beads, with a color change at 12 °C-22 °C, from blue to purple. Using the prepared thermochromic beads in the supply chain of fresh-cut salad and brussels sprouts showed a great result for monitoring their freshness after 21 ± 1 min.


Subject(s)
Fatty Acids , Flavonoids , Food Packaging , Lecithins , Lecithins/chemistry , Fatty Acids/chemistry , Food Packaging/instrumentation , Flavonoids/chemistry , Vegetables/chemistry , Fruit/chemistry , Temperature
5.
Biomacromolecules ; 25(6): 3554-3565, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38729918

ABSTRACT

Hydrogels are considered as a potential cartilage replacement material based on their structure being similar to natural cartilage, which are of great significance in repairing cartilage defects. However, it is difficult for the existing hydrogels to combine the high load bearing and low friction properties (37 °C) of cartilage through sample methods. Herein, we report a facile and new fabrication strategy to construct the PNIPAm/EYL hydrogel by using the macrophase separation of supersaturated N-isopropylacrylamide (NIPAm) monomer solution to promote the formation of liposomes from egg yolk lecithin (EYL) and asymmetric template method. The PNIPAm/EYL hydrogels possess a relatively high compressive strength (more than 12 MPa), fracture energy (9820 J/m2), good fatigue resistance, lubricating properties, and excellent biocompatibility. Compared with the PNIPAm hydrogel, the friction coefficient (COF 0.046) of PNIPAm/EYL hydrogel is reduced by 50%. More importantly, the COF (0.056) of PNIPAm/EYL hydrogel above lower critical solution temperature (LCST) does not increase significantly, exhibiting heat-tolerant lubricity. The finite element analysis further proves that PNIPAm/EYL hydrogel can effectively disperse the applied stress and dissipate energy under load conditions. This work not only provides new insights for the design of high-strength lubricating hydrogels but also lays a foundation for the treatment of cartilage injury as a substitute material.


Subject(s)
Acrylic Resins , Hydrogels , Hydrogels/chemistry , Acrylic Resins/chemistry , Animals , Hot Temperature , Lubricants/chemistry , Cartilage/chemistry , Lecithins/chemistry , Compressive Strength , Liposomes/chemistry , Egg Yolk/chemistry , Biocompatible Materials/chemistry
6.
J Food Sci ; 89(6): 3290-3305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767864

ABSTRACT

A better understanding of how emulsifier type could differently influence the behavior of nanostructured lipid carriers (NLC) under the gastrointestinal digestion process, as well as at the cellular level, is of utmost importance for the NLC-based formulations' optimization and risk assessment in the food field. In this study, NLC composed by fully hydrogenated soybean and high-oleic sunflower oils were prepared using soy lecithin (NLC Lß) or Tween 80 (NLC Tß) as an emulsifier. ß-Carotene was entrapped within NLC developed as a promising strategy to overcome ß-carotene's low bioavailability and stability. The effect of emulsifier type on the digestibility of ß-carotene-loaded NLC was evaluated using an in vitro dynamic digestion model mimicking peristalsis motion. The influence of ß-carotene-loaded NLC on cell viability was assessed using Caco-2 cells in vitro. NLC Tß remained stable in the gastric compartment, presenting particle size (PS) similar to the initial NLC (PS: 245.68 and 218.18 nm, respectively), while NLC Lß showed lower stability (PS > 1000 nm) in stomach and duodenum phases. NLC Tß also provided high ß-carotene protection and delivery capacity (i.e., ß-carotene bioaccessibility increased 10-fold). Based on the results of digestion studies, NLC Tß has shown better physical stability during the passage through the in vitro dynamic gastrointestinal system than NLC Lß. Moreover, the developed NLC did not compromise cell viability up to 25 µg/mL of ß-carotene. Thus, the NLC developed proved to be a biocompatible structure and able to incorporate and protect ß-carotene for further food applications. PRACTICAL APPLICATION: The findings of this study hold significant implications for industrial applications in terms of developing nanostructured lipid carriers from natural raw materials widely available and used to produce other lipid-based products in the food industry, as an alternative to synthetic ones. In this respect, the ß-carotene-loaded NLC developed in this study would find a great industrial application in the food industry, which is in constant search to develop functional foods capable of increasing the bioavailability of bioactive compounds.


Subject(s)
Digestion , Emulsifying Agents , Nanostructures , beta Carotene , beta Carotene/chemistry , beta Carotene/pharmacokinetics , Caco-2 Cells , Humans , Emulsifying Agents/chemistry , Nanostructures/chemistry , Biological Availability , Drug Carriers/chemistry , Particle Size , Lipids/chemistry , Polysorbates/chemistry , Lecithins/chemistry , Cell Survival/drug effects , Sunflower Oil/chemistry
7.
J Phys Chem B ; 128(22): 5427-5436, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38808516

ABSTRACT

5-Fluorouracil (5-FU) is an antineoplastic agent known for its low bioavailability and limited cellular penetration, often resulting in adverse effects on healthy cells. Thus, finding vehicles that enhance bioavailability, enable controlled release, and mitigate adverse effects is crucial. The study focuses on encapsulating 5-FU within soy lecithin vesicles (SLVs) and assessing its impact on the carrier's properties and functionality. Results show that incorporating 5-FU does not affect SLVs' size or polydispersity, even postlyophilization. Liberation of 5-FU from SLVs requires system disruption rather than spontaneous release, with an encapsulation efficiency of approximately 43% determined using Square Wave Voltammetry. Cytotoxicity assays on colorectal cancer cells reveal SLV-based delivery's significant efficacy, surpassing free drug solution effects with 45% cell viability after 72 h vs 73% viability. The research addresses 5-FU's limited bioavailability by creating a biocompatible nanocarrier for efficient drug delivery, highlighting SLVs as promising for targeted cancer therapy due to sustained antiproliferative effects and improved cellular uptake. The study underscores the importance of tailored drug delivery systems in enhancing therapeutic outcomes and suggests SLV/5-FU formulations as a potential advancement in cancer treatment strategies.


Subject(s)
Cell Survival , Drug Carriers , Fluorouracil , Glycine max , Lecithins , Fluorouracil/chemistry , Fluorouracil/pharmacology , Lecithins/chemistry , Humans , Drug Carriers/chemistry , Cell Survival/drug effects , Glycine max/chemistry , Drug Liberation , Electrochemical Techniques , Nanoparticles/chemistry
8.
Food Res Int ; 186: 114350, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729698

ABSTRACT

In this study, three types of ß-sitosterol-based oleogels (ß-sitosterol + Î³-oryzanol oleogels, ß-sitosterol + lecithin, oleogels and ß-sitosterol + monostearate oleogels), loaded with astaxanthin, were employed as the oil phase to create oleogel-based emulsions (SO, SL, and SM) using high-pressure homogenization. The microstructure revealed that fine-scale crystals were dispersed within the oil phase of the droplets in the ß-sitosterol oleogel-based emulsion. The bioaccessibility of astaxanthin was found to be 58.13 %, 51.24 %, 36.57 %, and 45.72 % for SM, SL, SO, and the control group, respectively. Interestingly, the release of fatty acids was positively correlated with the availability of astaxanthin (P = 0.981). Further analysis of FFAs release and kinetics indicated that the structural strength of the oil-phase in the emulsions influenced the degree and rate of lipolysis. Additionally, the micellar fraction analysis suggested that the nature and composition of the oleogelators in SM and SL also impacted lipolysis and the bioaccessibility of astaxanthin. Furthermore, interfacial binding of lipase and isothermal titration calorimetry (ITC) measurements revealed that the oleogel network within the oil phase of the emulsion acted as a physical barrier, hindering the interaction between lipase and lipid. Overall, ß-sitosterol oleogel-based emulsions offer a versatile platform for delivering hydrophobic molecules, enhancing the bioavailability of active compounds, and achieving sustained release.


Subject(s)
Emulsions , Organic Chemicals , Sitosterols , Xanthophylls , Sitosterols/chemistry , Xanthophylls/chemistry , Organic Chemicals/chemistry , Biological Availability , Lipolysis , Lecithins/chemistry , Fatty Acids/chemistry , Phenylpropionates
9.
Int J Biol Macromol ; 268(Pt 2): 131996, 2024 May.
Article in English | MEDLINE | ID: mdl-38697417

ABSTRACT

This research investigated the effect of lecithin on the complexation of lauric acid with maize starch, potato starch, waxy maize starch, and high amylose maize starch. Rapid visco analysis showed that lecithin altered the setback pattern of potato starch-lauric acid and maize starch-lauric acid mixtures but not waxy maize starch-lauric acid. Further investigation, including differential scanning calorimetry, complex index, and X-ray diffraction, showed that lecithin enhanced the complexation of maize starch, potato starch, and high amylose maize starch with lauric acid. Fourier transform infrared and Raman spectroscopy revealed increasingly ordered structures formed in maize starch-lauric acid-lecithin, potato starch-lauric acid-lecithin, and high amylose maize starch-lauric acid-lecithin systems compared to corresponding binary systems. These highly ordered complexes of maize starch, potato starch, and high amylose maize starch also demonstrated greater resistance to in vitro enzymatic hydrolysis. Waxy maize starch complexation however remained unaffected by lecithin. The results of this study show that lecithin impacts complexation between fatty acids and native starches containing amylose, with the starch source being critical. Lecithin minimally impacted the complexation of low amylose starch and fatty acids.


Subject(s)
Amylose , Lauric Acids , Lecithins , Starch , Zea mays , Lauric Acids/chemistry , Lecithins/chemistry , Starch/chemistry , Amylose/chemistry , Zea mays/chemistry , Solanum tuberosum/chemistry , Hydrolysis , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Calorimetry, Differential Scanning
10.
Pak J Pharm Sci ; 37(1): 139-145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741410

ABSTRACT

Liposomes, a nanoscale carrier, plays an important role in the delivery of drug, affects the in vivo efficacy of drugs. In this paper, silymarin(SM)-loaded liposomes was optimized using the response surface method (RSM), with entrapment efficiency (EE%) as an index. The formulation was optimized as follow: lecithin (7.8mg/mL), SM/lecithin (1/26) and lecithin/cholesterol (10/1). The optimized SM liposomes had a high EE (96.58 ±3.06%), with a particle size of 290.3 ±10.5nm and a zeta potential of +22.98 ±1.73mV. In vitro release tests revealed that SM was released in a sustained-release manner, primarily via diffusion mechanism. In vitro cytotoxicity studies demonstrated that the prepared SM liposomes had stronger inhibitory effects than the model drug. Overall, these results indicate that this liposome system is suitable for intravenous delivery to enhance the antitumor effects of SM.


Subject(s)
Lecithins , Liposomes , Particle Size , Silymarin , Silymarin/pharmacology , Silymarin/chemistry , Silymarin/administration & dosage , Humans , Lecithins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Drug Liberation , Cell Line, Tumor , Cell Survival/drug effects , Cholesterol/chemistry , Chemistry, Pharmaceutical , Drug Compounding
11.
Food Chem ; 452: 139391, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38713980

ABSTRACT

Edible insects with high fat and phosphorus content are a potential novel source of lecithin, however, studies on their minor lipids are limited. In this study, lecithin was extracted from black soldier fly larvae and yellow mealworm. Herein, the effects of lecithin extraction method, matrix and ultrasound pretreatment were explored based on the fatty acid composition and phospholipid profile with soy lecithin as a reference. The use of a wet matrix and ultrasound pretreatment increased the extraction efficiency of total PLs from both insects. Insect lecithin contained a considerable amount of sphingomyelin compared to soy lecithin. In insect lecithin, a total of 47 glycerophospholipid and sphingomyelin molecular species, as well as four molecular species of fatty acyl esters of hydroxy fatty acid, were detected. This study is the first comprehensive investigation of insects as a new source of lecithin with applications in food, cosmetics and in the pharmaceutical industry.


Subject(s)
Larva , Lecithins , Animals , Lecithins/chemistry , Larva/chemistry , Larva/growth & development , Edible Insects/chemistry , Diptera/chemistry , Diptera/growth & development , Tenebrio/chemistry , Simuliidae/chemistry , Fatty Acids/chemistry , Fatty Acids/isolation & purification , Phospholipids/chemistry , Phospholipids/isolation & purification , Lipids/chemistry , Lipids/isolation & purification
12.
Food Res Int ; 187: 114430, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763679

ABSTRACT

Oleogels have been explored as fat substitutes due to their healthier composition compared to trans and saturated fats, also presenting interesting technological perspectives. The aim of this study was to investigate the compositional perspective of multicomponent oleogels. Structuring ability of lecithin (LEC) (20 or 90 wt% of phosphatidylcholine - PC) combined with glycerol monostearate (GMS), sorbitan monostearate (SMS) or sucrose monostearate (SAC) in sunflower oil was evaluated from oleogels properties. The thermal and rheological properties, microstructure and stability of the oleogels were affected by the difference in the chemical composition of LEC and the ratio between LEC and different surfactants. Interestingly, low-phosphatidylcholine LEC (L20) performed better, although systems formed with reduced amounts of LEC tended to be softer (LEC-GMS) and present high oil holding capacity (LEC-SMS). The mixtures of LEC and monostearate-based surfactants showed different behaviors, depending on the surfactant polar head. In LEC-GMS systems, LEC hindered the self-assembly of GMS in sunflower oil, compromising mechanical properties and increasing oil release. When combined with SMS, LEC acted as a crystal habit modifier of SMS, forming a more homogeneous microstructure and producing stronger oleogels with greater oil binding capacity. However, above the threshold concentration, LEC prevented SMS self-assembly, resulting in a weaker gel. A positive interaction was found in LEC-SAC formulations in specific ratios, since SAC cannot act as a single oleogelator. Results show the impact of solubility balance played by LEC and fatty-acid derivatives surfactant when combined and used as oleogelators. This knowledge can contribute to a rational perspective in the preparation and modulation of the properties of edible oleogels.


Subject(s)
Lecithins , Organic Chemicals , Rheology , Sunflower Oil , Surface-Active Agents , Lecithins/chemistry , Organic Chemicals/chemistry , Sunflower Oil/chemistry , Surface-Active Agents/chemistry , Hexoses/chemistry , Fat Substitutes/chemistry , Glycerides/chemistry , Sucrose/chemistry
13.
Int J Biol Macromol ; 268(Pt 1): 131909, 2024 May.
Article in English | MEDLINE | ID: mdl-38679251

ABSTRACT

Astaxanthin is a kind of keto-carotenes with various health benefits. However, its solubility and chemical stability are poor, which leads to low bio-availability. Microcapsules have been reported to improve the solubility, chemical stability, and bio-availability of lipophilic bioactives. Freeze-dried astaxanthin-loaded microcapsules were prepared by layer-by-layer assembly of tertiary emulsions with maltodextrin as the filling matrix. Tertiary emulsions were fabricated by performing chitosan and sodium alginate electrostatic deposition onto soybean lecithin stabilized emulsions. 0.9 wt% of chitosan solution, 0.3 wt% of sodium alginate solution and 20 wt% of maltodextrin were optimized as the suitable concentrations. The prepared microcapsules were powders with irregular blocky structures. The astaxanthin loading was 0.56 ± 0.05 % and the encapsulation efficiency was >90 %. A slow release of astaxanthin could be observed in microcapsules promoted by the modulating of chitosan, alginate and maltodextrin. In vitro simulated digestion displayed that the microcapsules increased the bio-accessibility of astaxanthin to 69 ± 1 %. Chitosan, alginate and maltodextrin can control the digestion of microcapsules. The coating of chitosan and sodium alginate, and the filling of maltodextrin in microcapsules improved the chemical stability of astaxanthin. The constructed microcapsules were valuable to enrich scientific knowledge about improving the application of functional ingredients.


Subject(s)
Alginates , Capsules , Chitosan , Lecithins , Xanthophylls , Xanthophylls/chemistry , Alginates/chemistry , Chitosan/chemistry , Lecithins/chemistry , Polysaccharides/chemistry , Drug Compounding , Emulsions/chemistry , Drug Carriers/chemistry , Layer-by-Layer Nanoparticles
14.
Ultrason Sonochem ; 105: 106873, 2024 May.
Article in English | MEDLINE | ID: mdl-38608436

ABSTRACT

Starting from the consideration of the structure of human milk fat globule (MFG), this study aimed to investigate the effects of ultrasonic treatment on milk fat globule membrane (MFGM) and soy lecithin (SL) complexes and their role in mimicking human MFG emulsions. Ultrasonic power significantly affected the structure of the MFGM-SL complex, further promoting the unfolding of the molecular structure of the protein, and then increased solubility and surface hydrophobicity. Furthermore, the microstructure of mimicking MFG emulsions without sonication was unevenly distributed, and the average droplet diameter was large. After ultrasonic treatment, the droplets of the emulsion were more uniformly dispersed, the particle size was smaller, and the emulsification properties and stability were improved to varying degrees. Especially when the ultrasonic power was 300 W, the mimicking MFG emulsion had the highest encapsulation rate and emulsion activity index and emulsion stability index were increased by 60.88 % and 117.74 %, respectively. From the microstructure, it was observed that the spherical droplets of the mimicking MFG emulsion after appropriate ultrasonic treatment remain well separated without obvious flocculation. This study can provide a reference for the screening of milk fat globules mimicking membrane materials and the further utilization and development of ultrasound in infant formula.


Subject(s)
Emulsions , Glycolipids , Glycoproteins , Lecithins , Lipid Droplets , Lecithins/chemistry , Glycolipids/chemistry , Lipid Droplets/chemistry , Glycoproteins/chemistry , Glycoproteins/analysis , Humans , Glycine max/chemistry , Milk, Human/chemistry , Chemical Phenomena , Particle Size , Ultrasonic Waves , Sonication
15.
Drug Dev Res ; 85(3): e22191, 2024 May.
Article in English | MEDLINE | ID: mdl-38685610

ABSTRACT

Psoriasis is a chronic inflammatory and proliferative skin disease that causes pathological skin changes and has a substantial impact on the quality of patient life. Apremilast was approved by the US Food and Drug Administration as an oral medication for psoriasis and is beneficial in mild to moderate conditions for chronic usage. However, 5%-7% of withdrawals were reported due to severe side effects. To address the issue, a localized drug delivery strategy via the topical route may be a viable approach. However, poor physicochemical properties make it vulnerable to passing through the skin, requiring a specialized drug delivery system to demonstrate its full potential via a topical route like lecithin organogel. The formulation was optimized by screening the suitable lecithin type and non-polar solvents based on the gel formation ability of lecithin and the solubility of apremilast in the solvent. The pseudo-ternary diagram was used to optimize the water content required to form the gel. The optimized gel was found to be shear thinning characterized for rheological parameters, in-vitro diffusion studies, and in-vitro skin distribution studies. Preclinical studies in Imiquimod-induced mice showed a better reduction in severity index, cytokine levels, and epidermal hyperplasia from the lecithin organogel group compared to the apremilast oral administration and marketed standard topical gel group. Based on these results, lecithin organogel can be considered a promising approach to deliver molecules like apremilast by topical route in psoriatic-like conditions.


Subject(s)
Drug Delivery Systems , Gels , Lecithins , Psoriasis , Thalidomide , Thalidomide/analogs & derivatives , Psoriasis/drug therapy , Lecithins/chemistry , Animals , Mice , Thalidomide/administration & dosage , Thalidomide/chemistry , Thalidomide/pharmacokinetics , Skin Absorption/drug effects , Skin/metabolism , Skin/drug effects , Administration, Cutaneous , Administration, Topical , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Drug Evaluation, Preclinical , Imiquimod/administration & dosage , Male
16.
Food Chem ; 449: 139305, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38615636

ABSTRACT

The main objective of this study is to investigate the impact and mechanism of soy lecithin incorporation into the gelatin-cinnamaldehyde emulsion, focusing on how it influences emulsion stability during the electrospinning process. In this work, a cinnamaldehyde/gelatin/soy lecithin (CGS) fiber membrane with excellent antibacterial properties was successfully created. The addition of soy lecithin improves the stability of the emulsion and improves the loading performance and fiber morphology of the CGS fiber membrane. Fourier Transform infrared spectroscopy (FTIR) and urea addition confirmed that soy lecithin may strengthen the interface structure of gelatin in the oil and water phases through hydrogen bonds, thus enhancing the stability of the emulsion in electrospinning. The application tests also revealed that the CGS fiber membrane effectively preserved the sensory quality of beef. This study indicates that the vector construction method can extend the utilization of cinnamaldehyde in food industry.


Subject(s)
Acrolein , Acrolein/analogs & derivatives , Emulsions , Gelatin , Glycine max , Lecithins , Nanofibers , Acrolein/chemistry , Acrolein/pharmacology , Gelatin/chemistry , Emulsions/chemistry , Lecithins/chemistry , Nanofibers/chemistry , Glycine max/chemistry , Animals , Cattle , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
17.
Talanta ; 275: 126062, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38615457

ABSTRACT

Neonatal respiratory distress syndrome (nRDS) is a challenging condition to diagnose which can lead to delays in receiving appropriate treatment. Mid infrared (IR) spectroscopy is capable of measuring the concentrations of two diagnostic nRDS biomarkers, lecithin (L) and sphingomyelin (S) with the potential for point of care (POC) diagnosis and monitoring. The effects of varying other lipid species present in lung surfactant on the mid IR spectra used to train machine learning models are explored. This study presents a lung lipid model of five lipids present in lung surfactant and varies each in a systematic approach to evaluate the ability of machine learning models to predict the lipid concentrations, the L/S ratio and to quantify the uncertainty in the predictions using the jackknife + -after-bootstrap and variant bootstrap methods. We establish the L/S ratio can be determined with an uncertainty of approximately ±0.3 mol/mol and we further identify the 5 most prominent wavenumbers associated with each machine learning model.


Subject(s)
Biomarkers , Infant, Premature , Machine Learning , Respiratory Distress Syndrome, Newborn , Spectrophotometry, Infrared , Humans , Respiratory Distress Syndrome, Newborn/diagnosis , Biomarkers/analysis , Spectrophotometry, Infrared/methods , Infant, Newborn , Sphingomyelins/analysis , Pulmonary Surfactants/analysis , Pulmonary Surfactants/chemistry , Lecithins/analysis , Lecithins/chemistry , Lipids/analysis , Lipids/chemistry
18.
Food Chem ; 451: 139437, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678653

ABSTRACT

This study explores the potential for optimizing a sustainable manufacturing process that maintains the essential characteristics of conventional liposomes using food-grade solvents and components. The focus was comparing the physicochemical, morphological, and interfacial properties of liposomes produced with these food-grade ingredients to those made by conventional methods. It was found that there was no significant difference in particle size (195.87 ± 1.40 nm) and ζ-potential (-45.13 ± 0.65 mV) between liposomes made from food-grade and conventional materials. The manufacturing process for liposomes, utilizing food-grade solvents and components, was optimized through the application of Plackett-Burman design and response surface methodology. This approach helped identify key parameters (soy lecithin, ß-sitosterol, W/O ratio) and their optimal values (3.17 g, 0.25 g, 1:2.59). These findings suggest that it is possible to enhance the use of liposomes as an effective and safe delivery system in the food industry, adhering to the strict guidelines set by regulatory agencies.


Subject(s)
Lecithins , Liposomes , Particle Size , Liposomes/chemistry , Lecithins/chemistry , Sitosterols/chemistry , Microfluidics/instrumentation , Glycine max/chemistry
19.
Colloids Surf B Biointerfaces ; 238: 113901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608466

ABSTRACT

Increased glycine concentrations are associated with altered metabolism of cancer cells and is reflected in the bodily fluids of the brain cancer patients. Various studies have been conducted in past to detect glycine as an imaging biomarker via NMR Spectroscopy tools. However, the use is limited because of the low concentration and different in vivo detection due to overlapping of peaks with myo-inositol in same spectral position. Alongside, little is known about the electrochemical potential of Glycine as a biomarker for brain cancer. The prime impetus of this study was to check the feasibility of glycine as non-invasive biomarker for brain cancer. A divergent approach to detect glycine "non-enzymatically" via unique chitosan lecithin nanocomposite has been utilised during this study. The electrochemical inactivity at provided potential that prevented glycine to get oxidized or reduced without mediator was compensated utilising the chitosan-lecithin nanocomposite. Thus, a redox mediator (Prussian blue) was used for high sensitivity and indirect detection of glycine. The chitosan nanoparticles-lecithin nanocomposite is used as a matrix. The electrochemical analysis of the onco-metabolomic biomarker (glycine) utilizing cyclic voltammetry in glycine spiked multi-Purpose artificial urine was performed to check distribution of glycine over physiological range of glycine. A wide linear range of response varying over the physiological range from 7 to 240 µM with a LOD 8.5 µM was obtained, showing potential of detection in biological samples. We have further evaluated our results via simulating the interaction of mediator and matrix with Glycine by HOMO-LUMO band fluctuations.


Subject(s)
Biosensing Techniques , Chitosan , Electrochemical Techniques , Glycine , Lecithins , Nanocomposites , Glycine/chemistry , Chitosan/chemistry , Nanocomposites/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Humans , Lecithins/chemistry , Particle Size
20.
Food Chem ; 447: 138979, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38518617

ABSTRACT

Traditional Beijing roast duck often suffers from uneven color and high sugar content after roasting. Water-in-oil (W/O) nanoemulsion is a promising alternative to replace high concentration of sugar solution used in sugaring process according to similarity-intermiscibility theory. Herein, 3% of xylose was embedded in the aqueous phase of W/O emulsion to replace 15% maltose solution. W/O emulsions with different ratios of lecithin (LEC) and polyglycerol polyricinoleate (PGPR) were constructed by high-speed homogenization and high-pressure homogenization. Distribution and penetration extent of solutions and emulsions through the duck skin, as well as the color uniformity of Beijing roast duck were analyzed. Emulsions with LEC:PGPR ratios of 1:3 and 2:2 had better stability. Stable interfacial film and spatial structure were important factors influencing emulsion stabilization. The stable W/O emulsions could more uniformly distribute onto the surface of duck skin and longitudinally penetrate through the skin than solutions.


Subject(s)
Ducks , Glycerol/analogs & derivatives , Lecithins , Ricinoleic Acids , Animals , Lecithins/chemistry , Emulsions/chemistry , Sugars , Water/chemistry , Beijing
SELECTION OF CITATIONS
SEARCH DETAIL