Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 349
Filter
1.
Acta Biomater ; 185: 296-311, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39025395

ABSTRACT

Hierarchical collagen fibers are the primary source of strength in tendons and ligaments; however, these fibers largely do not regenerate after injury or with repair, resulting in limited treatment options. We previously developed a static culture system that guides ACL fibroblasts to produce native-sized fibers and early fascicles by 6 weeks. These constructs are promising ligament replacements, but further maturation is needed. Mechanical cues are critical for development in vivo and in engineered tissues; however, the effect on larger fiber and fascicle formation is largely unknown. Our objective was to investigate whether intermittent cyclic stretch, mimicking rapid muscle activity, drives further maturation in our system to create stronger engineered replacements and to explore whether cyclic loading has differential effects on cells at different degrees of collagen organization to better inform engineered tissue maturation protocols. Constructs were loaded with an established intermittent cyclic loading regime at 5 or 10 % strain for up to 6 weeks and compared to static controls. Cyclic loading drove cells to increase hierarchical collagen organization, collagen crimp, and tissue tensile properties, ultimately producing constructs that matched or exceeded immature ACL properties. Further, the effect of loading on cells varied depending on degree of organization. Specifically, 10 % load drove early improvements in tensile properties and composition, while 5 % load was more beneficial later in culture, suggesting a shift in mechanotransduction. This study provides new insight into how cyclic loading affects cell-driven hierarchical fiber formation and maturation, which will help to develop better rehabilitation protocols and engineer stronger replacements. STATEMENT OF SIGNIFICANCE: Collagen fibers are the primary source of strength and function in tendons and ligaments throughout the body. These fibers have limited regenerate after injury, with repair, and in engineered replacements, reducing treatment options. Cyclic load has been shown to improve fibril level alignment, but its effect at the larger fiber and fascicle length-scale is largely unknown. Here, we demonstrate intermittent cyclic loading increases cell-driven hierarchical fiber formation and tissue mechanics, producing engineered replacements with similar organization and mechanics as immature ACLs. This study provides new insight into how cyclic loading affects cell-driven fiber maturation. A better understanding of how mechanical cues regulate fiber formation will help to develop better engineered replacements and rehabilitation protocols to drive repair after injury.


Subject(s)
Collagen , Tissue Engineering , Tissue Engineering/methods , Animals , Collagen/chemistry , Ligaments/physiology , Ligaments/metabolism , Ligaments/cytology , Stress, Mechanical , Fibroblasts/metabolism , Fibroblasts/cytology , Anterior Cruciate Ligament/cytology , Anterior Cruciate Ligament/metabolism , Tensile Strength , Tissue Scaffolds/chemistry
2.
Stem Cells ; 42(7): 636-649, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38597671

ABSTRACT

Although mesenchymal stromal cell (MSC) based therapies hold promise in regenerative medicine, their clinical application remains challenging due to issues such as immunocompatibility. MSC-derived exosomes are a promising off-the-shelf therapy for promoting wound healing in a cell-free manner. However, the potential to customize the content of MSC-exosomes, and understanding how such modifications influence exosome effects on tissue regeneration remain underexplored. In this study, we used an in vitro system to compare the priming of human MSCs by 2 inflammatory inducers TNF-α and CRX-527 (a highly potent synthetic TLR4 agonist that can be used as a vaccine adjuvant or to induce anti-tumor immunity) on exosome molecular cargo, as well as on an in vivo rat ligament injury model to validate exosome potency. Different microenvironmental stimuli used to prime MSCs in vitro affected their exosomal microRNAs and mRNAs, influencing ligament healing. Exosomes derived from untreated MSCs significantly enhance the mechanical properties of healing ligaments, in contrast to those obtained from MSCs primed with inflammation-inducers, which not only fail to provide any improvement but also potentially deteriorate the mechanical properties. Additionally, a link was identified between altered exosomal microRNA levels and expression changes in microRNA targets in ligaments. These findings elucidate the nuanced interplay between MSCs, their exosomes, and tissue regeneration.


Subject(s)
Exosomes , Ligaments , Mesenchymal Stem Cells , Wound Healing , Mesenchymal Stem Cells/metabolism , Exosomes/metabolism , Humans , Animals , Rats , Wound Healing/drug effects , Ligaments/metabolism , Ligaments/injuries , Cellular Microenvironment , MicroRNAs/genetics , MicroRNAs/metabolism , Rats, Sprague-Dawley , Male
3.
Neurourol Urodyn ; 43(5): 1217-1229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558173

ABSTRACT

INTRODUCTION: The pathogenesis of pelvic organ prolapse (POP), an age-related disease, has not been fully elucidated. Therapeutic targets of POP are limited. Silencing information regulator 2 related enzyme 1 (SIRT1), a gene considered capable of regulating oxidative stress and cellular senescence, has been widely demonstrated involved in aging and age-related diseases. The present study aimed to explore the role of SIRT1 in POP in vivo and in vitro. METHODS: Expression levels of SIRT1 in uterosacral ligament (USL) tissues from patients with or without POP were measured using immunohistochemical assays. SRT1720, a SIRT1 agonist, was used to upregulate SIRT1, and hydrogen peroxide (H2O2) was used to establish an oxidative stress model in human uterosacral ligament fibroblasts (hUSLFs). The effects of SIRT1 on cell viability, apoptosis, senescence, and reactive oxygen species (ROS) levels were detected, respectively. Western blot assays were used to examine expression levels of apoptosis- and senescence-associated biomarkers. Unpaired Student's t test, Mann-Whitney U test, χ2 test, and one-way ANOVA were performed for determining statistically significant differences. RESULTS: Compared to the control group, expression levels of SIRT1 were downregulated in USL tissues and hUSLFs from patients with POP, and associated with stage (p < 0.05). hUSLFs of patients with POP had lower growth rates (p < 0.0001) than those of the control group, which were improved by upregulating SIRT1 (p < 0.05). The senescent proportion was higher in the POP group than the control group (43.63 ± 10.62% vs. 4.84 ± 5.32%, p < 0.0001), which could be reduced by upregulating SIRT1 (p < 0.0001). High ROS levels in the POP group were also alleviated by SRT1720. H2O2 exposure increased ROS levels, inhibited proliferation, and triggered apoptosis and senescence in hUSLFs of patients without POP in a concentration-dependent manner. Further, these damages were alleviated by pretreatment with SRT1720. CONCLUSIONS: SIRT1 is downregulated in patients with POP, and the development of SIRT1 activators or agonists may have applications in the treatment and prevention of POP through antioxidative stress and antisenescence effects.


Subject(s)
Apoptosis , Cellular Senescence , Fibroblasts , Ligaments , Oxidative Stress , Pelvic Organ Prolapse , Reactive Oxygen Species , Sirtuin 1 , Humans , Sirtuin 1/metabolism , Oxidative Stress/drug effects , Cellular Senescence/drug effects , Female , Ligaments/drug effects , Ligaments/metabolism , Ligaments/pathology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Pelvic Organ Prolapse/metabolism , Pelvic Organ Prolapse/pathology , Apoptosis/drug effects , Middle Aged , Reactive Oxygen Species/metabolism , Cells, Cultured , Hydrogen Peroxide/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Cell Survival/drug effects , Aged , Sacrum/drug effects , Sacrum/pathology , Adult , Uterus/drug effects , Uterus/metabolism , Uterus/pathology
4.
Int Urogynecol J ; 35(4): 881-891, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488886

ABSTRACT

INTRODUCTION AND HYPOTHESIS: The objective was to investigate the correlation between endogenous vaginal microecological alterations and female pelvic organ prolapse (POP). METHODS: Patients who underwent vaginal hysterectomy were retrospectively analyzed as the POP group (n = 30) and the non-POP group (n = 30). The vaginal microbial metabolites and enzyme levels were tested using the dry chemoenzymatic method. The mRNA and protein expression were tested using real-time quantitative PCR and immunohistochemistry. SPSS version 25.0 and GraphPad Prism 8.0 were performed for statistical analysis. RESULTS: Compared with the non-POP group, the vaginal pH, H2O2 positivity and leukocyte esterase positivity were higher in patients with POP (all p < 0.05). Further analysis showed that patients with pelvic organ prolapse quantification (POP-Q) stage IV had higher rates of vaginal pH, H2O2 positivity and leukocyte esterase positivity than those with POP-Q stage III. Additionally, the mRNA expression of decorin (DCN), transforming growth factor beta 1 (TGF-ß1), and matrix metalloproteinase-3 (MMP-3) in uterosacral ligament tissues were higher, whereas collagen I and III were lower. Similarly, the positive expression of MMP-3 in uterosacral ligament tissue was significantly upregulated in the POP group compared with the non-POP group (p = 0.035), whereas collagen I (p = 0.004) and collagen III (p = 0.019) in uterosacral ligament tissue were significantly downregulated in the POP group. Correlation analysis revealed that there was a significant correlation between vaginal microecology and collagen metabolism. In addition, MMP-3 correlated negatively with collagen I and collagen III (p = 0.002, r = -0.533; p = 0.002, r = -0.534 respectively), whereas collagen I correlated positively with collagen III (p = 0.001, r = 0.578). CONCLUSIONS: Vaginal microecological dysbiosis affects the occurrence of female POP, which could be considered a novel therapeutic option.


Subject(s)
Pelvic Organ Prolapse , Vagina , Female , Humans , Pelvic Organ Prolapse/metabolism , Middle Aged , Retrospective Studies , Matrix Metalloproteinase 3/metabolism , Decorin/metabolism , Decorin/genetics , Aged , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Hysterectomy, Vaginal , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type III/metabolism , Collagen Type III/genetics , RNA, Messenger/metabolism , Ligaments/metabolism , Microbiota , Adult
5.
Commun Biol ; 7(1): 159, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326542

ABSTRACT

Pelvic organ prolapse (POP) markedly affects the quality of life of women, including significant financial burden. Using single-cell RNA sequencing, we constructed a transcriptional profile of 30,452 single cells of the uterosacral ligament in POP and control samples, which has never been constructed before. We identified 10 major cell types, including smooth muscle cells, endothelial cells, fibroblasts, neutrophils, macrophages, monocytes, mast cells, T cells, B cells, and dendritic cells. We performed subpopulation analysis and pseudo-time analysis of POP primary cells, and explored differentially expressed genes. We verified previous cell clusters of human neutrophils of uterosacral ligaments. We found a significant reduction in receptor-ligand pairs related to ECM and cell adhesion between fibroblasts and endothelial cells in POP. The transcription factors related to the extracellular matrix, development, and immunity were identified in USL. Here we provide insight into the molecular mechanisms of POP and valuable information for future research directions.


Subject(s)
Endothelial Cells , Pelvic Organ Prolapse , Humans , Female , Endothelial Cells/metabolism , Quality of Life , Ligaments/metabolism , Pelvic Organ Prolapse/genetics , Pelvic Organ Prolapse/metabolism , Single-Cell Analysis
6.
Drug Discov Ther ; 17(6): 415-427, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38044121

ABSTRACT

The altered behaviors and functions of pelvic floor fibroblasts are pathophysiological changes of pelvic organ prolapse (POP). Our previous study showed that advanced glycated end products (AGEs) accumulated in the pelvic tissues of POP and induced fibroblast apoptosis. The study was designed to investigate whether quercetin antagonize AGEs-induced apoptosis and functional inhibition of fibroblasts. The uptake of 5-ethynyl-2'-deoxyuridine (EdU) was evaluated for cell proliferation. Flow cytometric analysis was applied for cell apoptosis. Intracellular reactive oxygen species (ROS) content was determined by the fluorescence of dichlorofluorescein (DCF). The contractility of fibroblasts was measured by collagen gel contraction assay. The expressions of extracellular matrix (ECM) related genes and the expression of miR-4429 and caspase-3 were quantified by qPCR. The expressions of phosphatase and tensin homolog (PTEN), phosphoinositide 3-kinase (PI3K), serine-threonine kinase (Akt), and phosphorylated Akt (p-Akt) were analyzed by Western Blot. The down-regulation of miR-4429 was achieved by cell transfection. Quercetin antagonized AGEs-induced apoptosis, proliferation inhibition, and ROS increase in fibroblasts. Quercetin did not alleviate AGEs-induced contractile impairment of fibroblasts. Quercetin reduced the gene expressions of lysyl oxidase like protein 1 (LOXL1)and matrix metallopeptidase 1 (MMP1), and increased the gene expressions of lysyl oxidase (LOX) and fibrillin 2 (FBN2) in fibroblasts. Quercetin reversed AGEs-induced upregulation of PTEN and downregulation of PI3K, P-Akt, and miR-4429 in fibroblasts. The inhibitory effect of quercetin on AGEs-induced fibroblast apoptosis was inhibited by downregulating the expression of miR-4429. In conclusion, quercetin antagonized AGEs-induced apoptosis and functional inhibition of fibroblasts from the prolapsed uterosacral ligament. And inhibiting AGEs-induced down-regulation of miR-4429/PTEN/PI3K/Akt pathway was the mechanism underlying the antagonistic effect of quercetin on AGEs-induced apoptosis.


Subject(s)
MicroRNAs , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein-Lysine 6-Oxidase/metabolism , Protein-Lysine 6-Oxidase/pharmacology , Quercetin/pharmacology , Reactive Oxygen Species/metabolism , MicroRNAs/metabolism , Apoptosis , Fibroblasts , Ligaments/metabolism , Cell Proliferation
7.
Reprod Sci ; 30(12): 3495-3506, 2023 12.
Article in English | MEDLINE | ID: mdl-37430099

ABSTRACT

Menopause is a significant risk factor for pelvic organ prolapse (POP), suggesting that ovarian sex steroids play a major role in the etiology of the condition. POP results from failure of the uterine-cervix-vagina support structures, including the uterosacral ligament (USL). We previously identified consistent degenerative USL phenotypes that occur in POP and used their characteristics to develop a standardized POP Histologic Quantification System (POP-HQ). In this study, POP and matched control USL tissue was first segregated into the unique POP-HQ phenotypes, and specimens were then compared for estrogen receptor (ER) alpha (ERα), ERbeta (ERß), the G-protein estrogen receptor (GPER), and androgen receptor (AR) content via immunohistochemical staining. ER and AR expression levels in the control USL tissues were indistinguishable from those observed in the POP-A phenotype, and partially overlapped with those of the POP-I phenotype. However, control-USL steroid receptor expression was statistically distinct from the POP-V phenotype. This difference was driven mainly by the increased expression of GPER and AR in smooth muscle, connective tissue, and endothelial cells, and increased expression of ERα in connective tissue. These findings support a multifactorial etiology for POP involving steroid signaling that contributes to altered smooth muscle, vasculature, and connective tissue content in the USL. Furthermore, these data support the concept that there are consistent and distinct degenerative processes that lead to POP and suggest that personalized approaches are needed that target specific cell and tissues in the pelvic floor to treat or prevent this complex condition.


Subject(s)
Pelvic Organ Prolapse , Receptors, Estrogen , Female , Humans , Receptors, Estrogen/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Receptors, Androgen/metabolism , Endothelial Cells/metabolism , Ligaments/metabolism , Ligaments/pathology , Pelvic Organ Prolapse/genetics , Pelvic Organ Prolapse/metabolism , Pelvic Organ Prolapse/pathology , Estrogens/metabolism
8.
Arch Biochem Biophys ; 740: 109585, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37001748

ABSTRACT

Elastin is an important extracellular matrix protein that contributes to the elasticity of cells, tissues, and organs. Although crosslinking amino acids such as desmosine and isodesmosine have been identified in elastin, details regarding the structure remain unclear. In this study, an elastin crosslinker, lysinonorleucine, was chemically synthesized and detected in hydrolyzed bovine ligament and eggshell membrane samples utilizing tandem mass spectrometry. Merodesmosine, another crosslinker of elastin, was also measured in the same samples using the same analytical method. The resulting data should aid in the elucidating the crosslinking structure of elastin and eggshell membranes.


Subject(s)
Egg Shell , Elastin , Cattle , Animals , Elastin/chemistry , Egg Shell/chemistry , Egg Shell/metabolism , Desmosine/metabolism , Ligaments/chemistry , Ligaments/metabolism
9.
Appl Biochem Biotechnol ; 195(1): 33-50, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35932368

ABSTRACT

Elastin is considered an excellent resource for obtaining antioxidant peptides due to unique amino acid composition. However, it is hardly soluble in water or in dilute acid or alkali; most of the elastases have low yields for preparing elastin peptides, making it difficult to meet industrial applications. To address above problems, enzymes capable of hydrolyzing elastin into soluble peptides were preferred from typical commercial protease preparations. The optimal enzymatic hydrolysis process conditions for elastin peptides were obtained by response surface optimization design. The molecular weight, amino acid composition, and antioxidant activity of the enzymatic hydrolysis products were determined. The results show that the alkaline protease NUE has a strong hydrolysis effect. The optimized enzymatic hydrolysis conditions are as follows: substrate concentration is 5%, enzyme concentration is 650 U/mL, pH is 10.0, temperature is 60 °C, time is 6 h. The degree of hydrolysis of elastic protein peptides obtained through this method is 14.42%. The distribution of molecular weight is 200-6500 Da, more than 85% of the component molecular amount is greater than 800 Da; the amino acid content related to antioxidant activity has reached 68 mg/100 mg, so it has extremely high free radical clearance. Compared with acid and alkali methods, the anti-oxidation capacity of enzyme-based peptide is better, the reaction conditions are milder, the yield is higher, and by-products and pollutants are fewer. It provides an effective way to industrialized production of elastin peptides with high antioxidant activity and a basis for its widespread application in the food and pharmaceutical industries.


Subject(s)
Antioxidants , Elastin , Animals , Cattle , Antioxidants/chemistry , Peptides/chemistry , Hydrolysis , Amino Acids , Ligaments/metabolism
10.
Physiol Rep ; 10(16): e15426, 2022 08.
Article in English | MEDLINE | ID: mdl-35993414

ABSTRACT

Cruciate ligaments (CL) of the knee joint are injured following trauma or aging. MicroRNAs (miRs) are potential therapeutic targets in musculoskeletal disorders, but there is little known about the role of miRs and their expression ligaments during aging. This study aimed to (1) identify if mice with normal physical activity, wild-stock house mice are an appropriate model to study age-related changes in the knee joint and (2) investigate the expression of miRs in aging murine cruciate ligaments. Knee joints were collected from 6 and 24 months old C57BL/6 and wild-stock house mice (Mus musculus domesticus) for ligament and cartilage (OARSI) histological analysis. Expression of miR targets in CLs was determined in 6-, 12-, 24-, and 30-month-old wild-stock house mice, followed by the analysis of predicted mRNA target genes and Ingenuity Pathway Analysis. Higher CL and knee OARSI histological scores were found in 24-month-old wild-stock house mice compared with 6- and 24-month-old C57BL/6 and 6-month-old wild-stock house mice (p < 0.05). miR-29a and miR-34a were upregulated in 30-month-old wild-stock house mice in comparison with 6-, 12-, and 24-month-old wild-stock house mice (p < 0.05). Ingenuity Pathway Analysis on miR-29a and 34a targets was associated with inflammation through interleukins, TGFß and Notch genes, and p53 signaling. Collagen type I alpha 1 chain (COL1A1) correlated negatively with both miR-29a (r = -0.35) and miR-34a (r = -0.33). The findings of this study support wild-stock house mice as an appropriate aging model for the murine knee joint. This study also indicated that miR-29a and miR-34a may be potential regulators of COL1A1 gene expression in murine CLs.


Subject(s)
MicroRNAs , Animals , Knee Joint , Ligaments/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction
11.
G3 (Bethesda) ; 12(10)2022 09 30.
Article in English | MEDLINE | ID: mdl-35866615

ABSTRACT

Degenerative suspensory ligament desmitis is a progressive idiopathic condition that leads to scarring and rupture of suspensory ligament fibers in multiple limbs in horses. The prevalence of degenerative suspensory ligament desmitis is breed related. Risk is high in the Peruvian Horse, whereas pony and draft breeds have low breed risk. Degenerative suspensory ligament desmitis occurs in families of Peruvian Horses, but its genetic architecture has not been definitively determined. We investigated contrasts between breeds with differing risk of degenerative suspensory ligament desmitis and identified associated risk variants and candidate genes. We analyzed 670k single nucleotide polymorphisms from 10 breeds, each of which was assigned one of the four breed degenerative suspensory ligament desmitis risk categories: control (Belgian, Icelandic Horse, Shetland Pony, and Welsh Pony), low risk (Lusitano, Arabian), medium risk (Standardbred, Thoroughbred, Quarter Horse), and high risk (Peruvian Horse). Single nucleotide polymorphisms were used for genome-wide association and selection signature analysis using breed-assigned risk levels. We found that the Peruvian Horse is a population with low effective population size and our breed contrasts suggest that degenerative suspensory ligament desmitis is a polygenic disease. Variant frequency exhibited signatures of positive selection across degenerative suspensory ligament desmitis breed risk groups on chromosomes 7, 18, and 23. Our results suggest degenerative suspensory ligament desmitis breed risk is associated with disturbances to suspensory ligament homeostasis where matrix responses to mechanical loading are perturbed through disturbances to aging in tendon (PIN1), mechanotransduction (KANK1, KANK2, JUNB, SEMA7A), collagen synthesis (COL4A1, COL5A2, COL5A3, COL6A5), matrix responses to hypoxia (PRDX2), lipid metabolism (LDLR, VLDLR), and BMP signaling (GREM2). Our results do not suggest that suspensory ligament proteoglycan turnover is a primary factor in disease pathogenesis.


Subject(s)
Horse Diseases , Muscular Diseases , Animals , Genome-Wide Association Study , Genomics , Horse Diseases/genetics , Horse Diseases/pathology , Horses/genetics , Ligaments/metabolism , Ligaments/pathology , Mechanotransduction, Cellular , Muscular Diseases/metabolism , Proteoglycans/metabolism
12.
Genes (Basel) ; 13(5)2022 05 06.
Article in English | MEDLINE | ID: mdl-35627214

ABSTRACT

Background: The relationship between pelvic organ prolapse (POP), an aging-related disease, and the senescence-related protein mitofusin 2 (Mfn2) has rarely been studied. The aim of the present study was to explore the therapeutic effects of the downregulation of Mfn2 expression by stem cells on POP through animal experiments. Methods: First, a rat POP model was constructed by ovariectomy and traction. The rats in the non-pelvic organ prolapse (NPOP) and POP groups were divided into four groups for negative controls (N1−N4, N1: NPOP-normal saline; N2: NPOP-untransfected stem cells; N3: NPOP-short hairpin negative control (NPOP-sh-NC); N4: NPOP-short hairpin-Mfn2 (NPOP-sh-Mfn2)), and four groups for prolapse (P1−P4, P1: POP-normal saline; P2: POP-untransfected stem cells; P3: POP-sh-NC; P4: POP-sh-Mfn2), respectively. Stem cells were then cultured and isolated. The expression of Mfn2 was inhibited by lentivirus transfection, and the stem cells were injected into the uterosacral ligament of the rats in each group. The expression levels of Mfn2 and procollagen 1A1/1A2/3A1 in the uterosacral ligaments of the rats were observed at 0, 7, 14, and 21 days after injection. Results: Compared to the rats in the NPOP group, the POP rats had significant prolapse. The Mfn2 expression in the uterosacral ligaments of the POP rats was significantly increased (p < 0.05, all), and the expression of procollagen 1A1/1A2/3A1 was significantly decreased (p < 0.001, all). The POP rat model maintained the same trend after 21 days (without stem cell injection). At day 14, compared to the rats in the N1 group, the Mfn2 expression in the uterosacral ligament of the rats in the N4 group was significantly decreased (p < 0.05, all), and the expression of procollagens was significantly increased (p < 0.05, all). Similarly, compared to the rats in the P1 group, the Mfn2 expression in the uterosacral ligament of the rats in the P4 group was significantly decreased (p < 0.05, all), and the expression of procollagens was significantly increased (p < 0.05, all). Similarly, on day 21, the Mfn2 mRNA and protein expression in the uterosacral ligament of the POP and NPOP rats was significantly decreased (p < 0.05, all), and the expression of procollagens was significantly increased (p < 0.05, all) in the rats in the sh-Mfn2 group (N4, P4) compared to the rats in the saline group (N1, P1). Conclusions: The downregulation of Mfn2 expression by stem cells decreased the expression of Mfn2 and increased the expression of procollagen1A1/1A2/3A1 in the uterosacral ligament of the POP rats; this effect was significant 14−21 days after the injection. Thus, Mfn2 may be a new target for POP control.


Subject(s)
GTP Phosphohydrolases/metabolism , Mesenchymal Stem Cells , Mitochondrial Proteins/metabolism , Pelvic Organ Prolapse , Animals , Down-Regulation , Female , Hydrolases/genetics , Ligaments/metabolism , Mesenchymal Stem Cells/metabolism , Pelvic Organ Prolapse/genetics , Pelvic Organ Prolapse/metabolism , Pelvic Organ Prolapse/therapy , Postmenopause , Procollagen/genetics , Procollagen/metabolism , Rats , Saline Solution/metabolism
13.
Ageing Res Rev ; 77: 101598, 2022 05.
Article in English | MEDLINE | ID: mdl-35218968

ABSTRACT

Spinal stenosis is a common degenerative spine disorder in the aged population and the spinal ligament aging is a main contributor to this chronic disease. However, the underlying mechanisms of spinal ligament aging remain unclear. Epigenetics is the study of heritable and reversible changes in the function of a gene or genome that occur without any alteration in the primary DNA sequence. Epigenetic alterations have been demonstrated to play crucial roles in age-related diseases and conditions, and they are recently studied as biomarkers and therapeutic targets in the field of cancer research. The main epigenetic modifications, including DNA methylation alteration, histone modifications as well as dysregulated noncoding RNA modulation, have all been implicated in spinal ligament aging diseases. DNA methylation modulates the expression of critical genes including WNT5A, GDNF, ACSM5, miR-497 and miR-195 during spinal ligament degeneration. Histone modifications widely affect gene expression and obvious histone modification abnormalities have been found in spinal ligament aging. MicroRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) exert crucial regulating effects on spinal ligament aging conditions via targeting various osteogenic or fibrogenic differentiation related genes. To our knowledge, there is no systematic review yet to summarize the involvement of epigenetic mechanisms of spinal ligament aging in degenerative spinal diseases. In this study, we systematically discussed the different epigenetic modifications and their potential functions in spinal ligament aging process.


Subject(s)
MicroRNAs , Spine , Aged , Aging/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Humans , Ligaments/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
14.
Int Urogynecol J ; 33(8): 2203-2212, 2022 08.
Article in English | MEDLINE | ID: mdl-34036402

ABSTRACT

INTRODUCTION AND HYPOTHESIS: Pelvic organ prolapse (POP) is a common condition in older women that affects quality of life. Mechanical injury of the pelvic floor support system contributes to POP development. In our study, we aimed to examine the mechanical damage to human uterosacral ligament fibroblasts (hUSLFs) to preliminarily explore the mechanism of mechanical transduction in POP. METHODS: hUSLFs were derived from POP and non-POP patients. Mechanical stress was induced by the FX-5000 T-cell stress loading system. Student's t-test was used for comparisons between different groups. RESULTS: We found that hUSLFs from POP patients were larger and longer than those from non-POP patients and exhibited cytoskeleton F-actin rearrangement. Collagen I and III expression levels were lower and matrix metalloproteinase 1 (MMP1) levels were higher in POP patients than in non-POP patients. Additionally, the apoptosis rate was significantly increased in POP patients compared to non-POP patients. After mechanical stretching, hUSLFs underwent a POP-like transformation. Cells became longer, and the cytoskeleton became thicker and rearranged. The extracellular matrix (ECM) was remodelled because of the upregulation of collagen I and III expression and downregulation of MMP1 expression. Mechanical stress also induced hUSLF apoptosis. Notably, we found that the p38 MAPK pathway was activated by mechanical stretching. CONCLUSIONS: Mechanical stress induced morphological changes in ligament fibroblasts, leading to cytoskeleton and ECM remodelling and cell apoptosis. p38 MAPK might be involved in this process, providing novel insights into the mechanical biology of and possible therapies for this disease.


Subject(s)
Matrix Metalloproteinase 1 , Pelvic Organ Prolapse , Aged , Collagen Type I/metabolism , Female , Fibroblasts , Humans , Ligaments/metabolism , Pelvic Organ Prolapse/metabolism , Quality of Life , Stress, Mechanical , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Acta Biomater ; 140: 700-716, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34954418

ABSTRACT

Fibrocartilaginous entheses are structurally complex tissues that translate load from elastic ligaments to stiff bone via complex zonal gradients in the organization, mineralization, and cell phenotype. Currently, these complex gradients necessary for long-term mechanical function are not recreated in soft tissue-to-bone healing or engineered replacements, contributing to high failure rates. Previously, we developed a culture system that guides ligament fibroblasts to develop aligned native-sized collagen fibers using high-density collagen gels and mechanical boundary conditions. These constructs are promising ligament replacements, however functional ligament-to-bone attachments, or entheses, are required for long-term function in vivo. The objective of this study was to investigate the effect of compressive mechanical boundary conditions and the addition of beta-tricalcium phosphate (ßTCP), a known osteoconductive agent, on the development of zonal ligament-to-bone entheses. We found that compressive boundary clamps, that restrict cellular contraction and produce a zonal tensile-compressive environment, guide ligament fibroblasts to produce 3 unique zones of collagen organization and zonal accumulation of glycosaminoglycans (GAGs), type II, and type X collagen. Ultimately, by 6 weeks of culture these constructs had similar organization and composition as immature bovine entheses. Further, ßTCP applied under the clamp enhanced maturation of these entheses, leading to significantly increased tensile moduli, and zonal GAG accumulation, ALP activity, and calcium-phosphate accumulation, suggesting the initiation of endochondral ossification. This culture system produced some of the most organized entheses to date, closely mirroring early postnatal enthesis development, and provides an in vitro platform to better understand the cues that drive enthesis maturation in vivo. STATEMENT OF SIGNIFICANCE: Ligaments are attached to bone via entheses. Entheses are complex tissues with gradients in organization, composition, and cell phenotype. Entheses are necessary for proper transfer of load from ligament-to-bone, but currently are not restored with healing or replacements. Here, we provide new insight into how tensile-compressive boundary conditions and ßTCP drive zonal gradients in collagen organization, mineralization, and matrix composition, producing tissues similar to immature ligament-to-bone attachments. Collectively, this culture system uses a bottom-up approach with mechanical and biochemical cues to produce engineered replacements which closely mirror postnatal enthesis development. This culture system is a promising platform to better understanding the cues that regulate enthesis formation so to better drive enthesis regeneration following graft repair and in engineered replacements.


Subject(s)
Collagen , Ligaments , Tissue Engineering , Animals , Bone and Bones/metabolism , Calcium Phosphates , Cattle , Collagen/metabolism , Glycosaminoglycans/metabolism , Ligaments/metabolism
16.
Front Immunol ; 12: 572592, 2021.
Article in English | MEDLINE | ID: mdl-34880852

ABSTRACT

Background: The pathogenesis of Ankylosing spondylitis (AS) has not been elucidated, especially involving hip joint disease. The purpose of this study was to analyze the proteome of diseased hip in AS and to identify key protein biomarkers. Material and Methods: We used label-free quantification combined with liquid chromatography mass spectrometry (LC-MS/MS) to screen for differentially expressed proteins in hip ligament samples between AS and No-AS groups. Key protein was screened by Bioinformatics methods. and verified by in vitro experiments. Results: There were 3,755 identified proteins, of which 92.916% were quantified. A total of 193 DEPs (49 upregulated proteins and 144 downregulated proteins) were identified according to P < 0.01 and Log|FC| > 1. DEPs were mainly involved in cell compartment, including the vacuolar lumen, azurophil granule, primary lysosome, etc. The main KEGG pathway included Phagosome, Glycerophospholipid metabolism, Lysine degradation, Pentose phosphate pathway. Myeloperoxidase (MPO) was identified as a key protein involved in Phagosome pathway. The experiment of siRNA interfering with cells further confirmed that the upregulated MPO may promote the inflammatory response of fibroblasts. Conclusions: The overexpression of MPO may contribute to the autoimmune inflammatory response of AS-affected hip joint through the phagosome pathway.


Subject(s)
Ligaments/metabolism , Osteoarthritis, Hip/etiology , Peroxidase/biosynthesis , Phagosomes/physiology , Proteome , Spondylitis, Ankylosing/complications , Adult , Biomarkers , Cells, Cultured , Computational Biology/methods , Female , Fibroblasts/metabolism , Gene Expression Regulation , Gene Ontology , Humans , Male , Middle Aged , Osteoarthritis, Hip/genetics , Osteoarthritis, Hip/metabolism , Peroxidase/genetics , Protein Interaction Maps , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Young Adult
17.
Med Sci Monit ; 27: e930433, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34176919

ABSTRACT

BACKGROUND Pelvic organ prolapse (POP) is a disease associated with collagen loss and decreased fibroblast proliferation. Transforming growth factor beta 1 (TGF-ß1) controls collagen synthesis and degradation in pelvic connective tissue. Although the p44/42 MAPK pathway has been implicated in collagen production and extracellular matrix disorders, its expression in POP remains unknown. This study aimed to investigate TGF-ß1 and p44/42 expression in cardinal ligament tissues in patients with POP. MATERIAL AND METHODS Cardinal ligament tissues were obtained from 30 patients with POP (POP group) and 30 patients with benign gynecological disorders who had undergone total hysterectomy (control group). The clinical characteristics of the 2 groups were summarized. Immunohistochemical staining and western blotting analysis were performed to measure the expression of TGF-ß1, p44/42, phospho-p44/42, MMP9, TIMP1, caspase 3, collagen I, and collagen III in the cardinal ligament tissues. RESULTS Patients with POP had significantly lower TGF-ß1 and phospho-p44/42 levels than did control patients (P<0.05). The expression of TIMP1, collagen I, and collagen III was significantly lower, and the expression of MMP9 and caspase 3 was significantly higher in the POP group than in the control group (P<0.05). Moreover, the expression of phospho-p44/42 was positively correlated with the expression of TGF-ß1, collagen I, and collagen III. CONCLUSIONS The expression levels of phospho-p44/42 and TGF-ß1 were decreased in patients with POP and were positively correlated with collagen expression. Low levels of TGF-ß1 and phospho-p44/42 expression in patients with POP may be associated with the occurrence of POP.


Subject(s)
Collagen/genetics , Gene Expression/genetics , Ligaments/metabolism , Mitogen-Activated Protein Kinases/genetics , Pelvic Organ Prolapse/genetics , Transforming Growth Factor beta1/genetics , China , Collagen/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Female , Humans , Middle Aged , Mitogen-Activated Protein Kinases/metabolism , Pelvic Organ Prolapse/metabolism , Transforming Growth Factor beta1/metabolism
18.
Invest Ophthalmol Vis Sci ; 62(3): 1, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33646289

ABSTRACT

Purpose: Patients with nanophthalmos who undergo intraocular surgery often present with abnormal ciliary zonules. In a previous study, we reported mutation in MYRF that is implicated in the pathogenesis of nanophthalmos. The aim of this study was to model the mutation in mice to explore the role of MYRF on zonule structure and its major molecular composition, including FBN1 and FBN2. Methods: Human MYRF nanophthalmos frameshift mutation was generated in mouse using the CRISPR-Cas9 system. PCR and Sanger sequencing were used for genotype analysis of the mice model. Anterior chamber depth (ACD) was measured using hematoxylin and eosin-stained histology samples. Morphologic analysis of ciliary zonules was carried out using silver staining and immunofluorescence. Transcript and protein expression levels of MYRF, FBN1, and FBN2 in ciliary bodies were quantified using quantitative real-time PCR (qRT-PCR) and Western blot. Results: A nanophthalmos frameshift mutation (c.789delC, p.N264fs) of MYRF in mice showed ocular phenotypes similar to those reported in patients with nanophthalmos. ACD was reduced in MYRF mutant mice (MYRFmut/+) compared with that in littermate control mice (MYRF+/+). In addition, the morphology of ciliary zonules showed reduced zonular fiber density and detectable structural dehiscence of zonular fibers. Furthermore, qRT-PCR analysis and Western blot showed a significant decrease in mRNA expression levels of MYRF, FBN1, and FBN2 in MYRFmut/+ mice. Conclusions: Changes in the structure and major molecular composition of ciliary zonules accompanied with shallowing anterior chamber were detected in MYRFmut/+ mice. Therefore, MYRF mutant mice strain is a useful model for exploring pathogenesis of zonulopathy, which is almost elusive for basic researches due to lack of appropriate animal models.


Subject(s)
Ciliary Body/pathology , Frameshift Mutation , Glaucoma, Angle-Closure/genetics , Hyperopia/genetics , Ligaments/pathology , Microphthalmos/genetics , Transcription Factors/genetics , Uveal Diseases/genetics , Animals , Anterior Chamber/pathology , Blotting, Western , CRISPR-Cas Systems/genetics , Disease Models, Animal , Female , Fibrillin-1/genetics , Fibrillin-2/genetics , Gene Expression Regulation/physiology , Genotyping Techniques , Humans , Immunohistochemistry , Ligaments/metabolism , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Uveal Diseases/metabolism , Uveal Diseases/pathology
19.
Life Sci ; 270: 119125, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33513394

ABSTRACT

AIMS: Human periodontal ligament stem cells (hPDLSCs) tether the teeth to the surrounding bone and are considered as major functional stem cells responsible for regeneration of the alveolar bone and periodontal ligament tissue. However, the outcome of stem cell regenerative therapy is affected by the survival rate and their differentiation potential of transplanted cells. This is primarily because of local oxidative stress and chronic inflammation at the transplantation site. Therefore, our study aimed to explore whether a natural antioxidant, curcumin could increase the tissue regeneration ability of transplanted hPDLSCs. MAIN METHODS: A hydrogen peroxide environment and a rat cranial bone defect model were built to mimic the oxidative stress conditions in vitro and in vivo, respectively. We evaluated the effect of curcumin on oxidative status, apoptosis, mitochondrial function and osteogenic differentiation of H2O2-stimulated hPDLSCs in vitro. We also measured the effect of curcumin on cell viability and bone repair ability of transplanted hPDLSCs in vivo. KEY FINDINGS: Our data showed that curcumin enhanced cell proliferation, reduced the reactive oxygen species (ROS) levels and apoptosis, maintained the standard mitochondrial structure and function, and promoted osteogenic differentiation of H2O2-stimulated hPDLSCs. The extracellular regulated protein kinases 1/2 (Erk1/2) signaling pathway was determined to be involved in the osteogenic differentiation of the H2O2-stimulated hPDLSCs. Moreover, curcumin enhanced the viability and the bone repair ability of hPDLSCs in vivo. SIGNIFICANCE: Curcumin reduced apoptosis and promoted osteogenesis of the hPDLSCs under oxidative stress, and might therefore have a potential clinical use with respect to tissue regeneration.


Subject(s)
Curcumin/pharmacology , Periodontal Ligament/metabolism , Stem Cell Transplantation/methods , Animals , Apoptosis/drug effects , Bone and Bones/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Curcumin/metabolism , Female , Humans , Ligaments/metabolism , Male , Molar/metabolism , Osteogenesis/drug effects , Oxidative Stress/physiology , Rats, Sprague-Dawley , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Young Adult
20.
Rheumatology (Oxford) ; 60(8): 3879-3887, 2021 08 02.
Article in English | MEDLINE | ID: mdl-33347577

ABSTRACT

OBJECTIVES: Primary frozen shoulder (pFS) has three phases that differ in clinical presentation. It is characterized by contracture of the joint capsule. We hypothesized that there is a general upregulation of collagens in pFS, and that this is highest in the first phase of the disease. The aims of this study were to investigate the expression of various collagens and degradation of collagens in patients with primary pFS and relate this to the three phases of the condition. METHODS: From twenty-six patients with pFS and eight control patients with subacromial impingement, biopsies were obtained during shoulder arthroscopy from the middle glenohumeral ligament and the anterior capsule, and mRNA levels for collagens, MMP-2 and -14 and TGF-ß1, - ß2 and -ß3 in the tissue were analysed using real-time PCR. RESULTS: Genes for collagens type I, III, IV, V, VI and XIV, were activated in pFS, and the total mRNA for all collagens was increased (P < 0.05). This upregulation was independent of disease phases in pFS. In addition, MMP-2, MMP-14, TGF-ß1 and TGF-ß3 were upregulated in all phases of the disease. CONCLUSION: There is a general upregulation and an increased degradation of collagens in pFS in all three phases of the disease. This indicates a constantly increased turnover of the fibrotic tissue in the capsule from pFS. The difference in clinical presentation of pFS observed in the three phases of the disease is not primarily a result of variations in collagen production.


Subject(s)
Bursitis/genetics , Collagen/genetics , RNA, Messenger/metabolism , Adult , Biopsy , Bursitis/metabolism , Case-Control Studies , Collagen Type I/genetics , Collagen Type III/genetics , Collagen Type IV/genetics , Collagen Type V/genetics , Collagen Type VI/genetics , Disease Progression , Female , Gene Expression , Humans , Joint Capsule/metabolism , Ligaments/metabolism , Male , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 2/genetics , Middle Aged , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta3/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL