Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114.144
Filter
1.
Yakugaku Zasshi ; 144(6): 643-650, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825473

ABSTRACT

Inspired by the mechanism by which microorganisms utilize siderophores to ingest iron, four different FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups, K3[FeIII-LC3], K2[FeIII-LC2H1], K[FeIII-LC1H2], and [FeIII-LH3], were prepared. They were modified on an Au substrate surface (Fe-L/Au) and applied as microorganism immobilization devices for fast, sensitive, selective detection of microorganisms, where H6LC3, H5LC2H1, H4LC1H2, and H3LH3 denote the tri-catecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and tri-hydroxamate type of artificial siderophores, respectively. Their adsorption properties for the several microorganisms were investigated using scanning electron microscopy (SEM), quartz crystal microbalance (QCM), and electric impedance spectroscopy (EIS) methods. The artificial siderophore-iron complexes modified on the Au substrates Fe-LC3/Au, Fe-LC2H1/Au, Fe-LC1H2/Au, and Fe-LH3/Au showed specific microorganism immobilization behavior with selectivity based on the structure of the artificial siderophores. Their specificities corresponded well with the structural characteristics of natural siderophores that microorganisms release from the cell and/or use to take up an iron. These findings suggest that release and uptake are achieved through specific interactions between the artificial siderophore-FeIII complexes and receptors on the cell surfaces of microorganisms. This study revealed that Fe-L/Au systems have specific potential to serve as effective immobilization probes of microorganisms for rapid, selective detection and identification of a variety of microorganisms.


Subject(s)
Siderophores , Gold , Iron , Adsorption , Cells, Immobilized , Quartz Crystal Microbalance Techniques , Microscopy, Electron, Scanning , Ligands , Catechols , Hydroxamic Acids
2.
Anal Chim Acta ; 1312: 342755, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834267

ABSTRACT

BACKGROUND: Identifying drug-binding targets and their corresponding sites is crucial for drug discovery and mechanism studies. Limited proteolysis-coupled mass spectrometry (LiP-MS) is a sophisticated method used for the detection of compound and protein interactions. However, in some cases, LiP-MS cannot identify the target proteins due to the small structure changes or the lack of enrichment of low-abundant protein. To overcome this drawback, we developed a thermostability-assisted limited proteolysis-coupled mass spectrometry (TALiP-MS) approach for efficient drug target discovery. RESULTS: We proved that the novel strategy, TALiP-MS, could efficiently identify target proteins of various ligands, including cyclosporin A (a calcineurin inhibitor), geldanamycin (an HSP90 inhibitor), and staurosporine (a kinase inhibitor), with accurately recognizing drug-binding domains. The TALiP protocol increased the number of target peptides detected in LiP-MS experiments by 2- to 8-fold. Meanwhile, the TALiP-MS approach can not only identify both ligand-binding stability and destabilization proteins but also shows high complementarity with the thermal proteome profiling (TPP) and machine learning-based limited proteolysis (LiP-Quant) methods. The developed TALiP-MS approach was applied to identify the target proteins of celastrol (CEL), a natural product known for its strong antioxidant and anti-cancer angiogenesis effect. Among them, four proteins, MTHFD1, UBA1, ACLY, and SND1 were further validated for their strong affinity to CEL by using cellular thermal shift assay. Additionally, the destabilized proteins induced by CEL such as TAGLN2 and CFL1 were also validated. SIGNIFICANCE: Collectively, these findings underscore the efficacy of the TALiP-MS method for identifying drug targets, elucidating binding sites, and even detecting drug-induced conformational changes in target proteins in complex proteomes.


Subject(s)
Proteolysis , Humans , Mass Spectrometry/methods , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Benzoquinones/chemistry , Benzoquinones/pharmacology , Temperature , Pentacyclic Triterpenes/chemistry , Cyclosporine/pharmacology , Cyclosporine/chemistry , Cyclosporine/metabolism , Staurosporine/pharmacology , Staurosporine/metabolism , Ligands , Drug Discovery , Binding Sites
3.
Biochemistry (Mosc) ; 89(4): 747-764, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831510

ABSTRACT

G protein-coupled receptors (GPCRs) play a key role in the transduction of extracellular signals to cells and regulation of many biological processes, which makes these membrane proteins one of the most important targets for pharmacological agents. A significant increase in the number of resolved atomic structures of GPCRs has opened the possibility of developing pharmaceuticals targeting these receptors via structure-based drug design (SBDD). SBDD employs information on the structure of receptor-ligand complexes to search for selective ligands without the need for an extensive high-throughput experimental ligand screening and can significantly expand the chemical space for ligand search. In this review, we describe the process of deciphering GPCR structures using X-ray diffraction analysis and cryoelectron microscopy as an important stage in the rational design of drugs targeting this receptor class. Our main goal was to present modern developments and key features of experimental methods used in SBDD of GPCR-targeting agents to a wide range of specialists.


Subject(s)
Drug Design , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Humans , Ligands , Cryoelectron Microscopy , Animals , X-Ray Diffraction
4.
J Mater Sci Mater Med ; 35(1): 28, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833196

ABSTRACT

AIM: This study aimed to comprehensively assess the biocompatibility and toxicity profiles of poly(methyl methacrylate) (PMMA) and its monomeric unit, methyl methacrylate (MMA), crucial components in dental materials for interim prosthetic restorations. METHODOLOGY: Molecular docking was employed to predict the binding affinities, energetics, and steric features of MMA and PMMA with selected receptors involved in bone metabolism and tissue development, including RANKL, Fibronectin, BMP9, NOTCH2, and other related receptors. The HADDOCK standalone version was utilized for docking calculations, employing a Lamarckian genetic algorithm to explore the conformational space of ligand-receptor interactions. Furthermore, molecular dynamics (MD) simulations over 100 nanoseconds were conducted using the GROMACS package to evaluate dynamic actions and structural stability. The LigandScout was utilized for pharmacophore modeling, which employs a shape-based screening approach to identify potential ligand binding sites on protein targets. RESULTS: The molecular docking studies elucidated promising interactions between PMMA and MMA with key biomolecular targets relevant to dental applications. MD simulation results provided strong evidence supporting the structural stability of PMMA complexes over time. Pharmacophore modeling highlighted the significance of carbonyl and hydroxyl groups as pharmacophoric features, indicating compounds with favorable biocompatibility profiles. CONCLUSION: This study underscores the potential of PMMA in dental applications, emphasizing its structural stability, molecular interactions, and safety considerations. These findings lay a foundation for future advancements in dental biomaterials, guiding the design and optimization of materials for enhanced biocompatibility. Future directions include experimental validation of computational findings and the development of PMMA-based dental materials with improved biocompatibility and clinical performance.


Subject(s)
Biocompatible Materials , Dental Materials , Materials Testing , Molecular Docking Simulation , Molecular Dynamics Simulation , Polymethyl Methacrylate , Biocompatible Materials/chemistry , Polymethyl Methacrylate/chemistry , Dental Materials/chemistry , Humans , Ligands , Computer Simulation , Binding Sites
5.
PLoS One ; 19(6): e0304512, 2024.
Article in English | MEDLINE | ID: mdl-38829838

ABSTRACT

The Organic Cation Transporter Novel 1 (OCTN1), also known as SLC22A4, is widely expressed in various human tissues, and involved in numerous physiological and pathological processes remains. It facilitates the transport of organic cations, zwitterions, with selectivity for positively charged solutes. Ergothioneine, an antioxidant compound, and acetylcholine (Ach) are among its substrates. Given the lack of experimentally solved structures of this protein, this study aimed at generating a reliable 3D model of OCTN1 to shed light on its substrate-binding preferences and the role of sodium in substrate recognition and transport. A chimeric model was built by grafting the large extracellular loop 1 (EL1) from an AlphaFold-generated model onto a homology model. Molecular dynamics simulations revealed domain-specific mobility, with EL1 exhibiting the highest impact on overall stability. Molecular docking simulations identified cytarabine and verapamil as highest affinity ligands, consistent with their known inhibitory effects on OCTN1. Furthermore, MM/GBSA analysis allowed the categorization of substrates into weak, good, and strong binders, with molecular weight strongly correlating with binding affinity to the recognition site. Key recognition residues, including Tyr211, Glu381, and Arg469, were identified through interaction analysis. Ach demonstrated a low interaction energy, supporting the hypothesis of its one-directional transport towards to outside of the membrane. Regarding the role of sodium, our model suggested the involvement of Glu381 in sodium binding. Molecular dynamics simulations of systems at increasing levels of Na+ concentrations revealed increased sodium occupancy around Glu381, supporting experimental data associating Na+ concentration to molecule transport. In conclusion, this study provides valuable insights into the 3D structure of OCTN1, its substrate-binding preferences, and the role of sodium in the recognition. These findings contribute to the understanding of OCTN1 involvement in various physiological and pathological processes and may have implications for drug development and disease management.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Organic Cation Transport Proteins , Humans , Organic Cation Transport Proteins/chemistry , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics , Symporters/chemistry , Symporters/metabolism , Binding Sites , Protein Binding , Ergothioneine/chemistry , Ergothioneine/metabolism , Sodium/metabolism , Sodium/chemistry , Computer Simulation , Acetylcholine/metabolism , Acetylcholine/chemistry , Ligands
6.
Proc Natl Acad Sci U S A ; 121(24): e2321344121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830107

ABSTRACT

The estrogen receptor-α (ER) is thought to function only as a homodimer but responds to a variety of environmental, metazoan, and therapeutic estrogens at subsaturating doses, supporting binding mixtures of ligands as well as dimers that are only partially occupied. Here, we present a series of flexible ER ligands that bind to receptor dimers with individual ligand poses favoring distinct receptor conformations-receptor conformational heterodimers-mimicking the binding of two different ligands. Molecular dynamics simulations showed that the pairs of different ligand poses changed the correlated motion across the dimer interface to generate asymmetric communication between the dimer interface, the ligands, and the surface binding sites for epigenetic regulatory proteins. By examining the binding of the same ligand in crystal structures of ER in the agonist vs. antagonist conformers, we also showed that these allosteric signals are bidirectional. The receptor conformer can drive different ligand binding modes to support agonist vs. antagonist activity profiles, a revision of ligand binding theory that has focused on unidirectional signaling from the ligand to the coregulator binding site. We also observed differences in the allosteric signals between ligand and coregulator binding sites in the monomeric vs. dimeric receptor, and when bound by two different ligands, states that are physiologically relevant. Thus, ER conformational heterodimers integrate two different ligand-regulated activity profiles, representing different modes for ligand-dependent regulation of ER activity.


Subject(s)
Estrogen Receptor alpha , Estrogens , Molecular Dynamics Simulation , Protein Multimerization , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/chemistry , Allosteric Regulation , Humans , Ligands , Estrogens/metabolism , Estrogens/chemistry , Binding Sites , Protein Binding , Protein Conformation
7.
Nat Commun ; 15(1): 4687, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824166

ABSTRACT

Ligand-induced activation of G protein-coupled receptors (GPCRs) can initiate signaling through multiple distinct pathways with differing biological and physiological outcomes. There is intense interest in understanding how variation in GPCR ligand structure can be used to promote pathway selective signaling ("biased agonism") with the goal of promoting desirable responses and avoiding deleterious side effects. Here we present an approach in which a conventional peptide ligand for the type 1 parathyroid hormone receptor (PTHR1) is converted from an agonist which induces signaling through all relevant pathways to a compound that is highly selective for a single pathway. This is achieved not through variation in the core structure of the agonist, but rather by linking it to a nanobody tethering agent that binds with high affinity to a separate site on the receptor not involved in signal transduction. The resulting conjugate represents the most biased agonist of PTHR1 reported to date. This approach holds promise for facile generation of pathway selective ligands for other GPCRs.


Subject(s)
Receptor, Parathyroid Hormone, Type 1 , Receptors, G-Protein-Coupled , Signal Transduction , Single-Domain Antibodies , Ligands , Humans , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptor, Parathyroid Hormone, Type 1/agonists , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , HEK293 Cells , Signal Transduction/drug effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Protein Binding , Animals , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism
8.
J Nanobiotechnology ; 22(1): 245, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735921

ABSTRACT

BACKGROUND: The general sluggish clearance kinetics of functional inorganic nanoparticles tend to raise potential biosafety concerns for in vivo applications. Renal clearance is a possible elimination pathway for functional inorganic nanoparticles delivered through intravenous injection, but largely depending on the surface physical chemical properties of a given particle apart from its size and shape. RESULTS: In this study, three small-molecule ligands that bear a diphosphonate (DP) group, but different terminal groups on the other side, i.e., anionic, cationic, and zwitterionic groups, were synthesized and used to modify ultrasmall Fe3O4 nanoparticles for evaluating the surface structure-dependent renal clearance behaviors. Systematic studies suggested that the variation of the surface ligands did not significantly increase the hydrodynamic diameter of ultrasmall Fe3O4 nanoparticles, nor influence their magnetic resonance imaging (MRI) contrast enhancement effects. Among the three particle samples, Fe3O4 nanoparticle coated with zwitterionic ligands, i.e., Fe3O4@DMSA, exhibited optimal renal clearance efficiency and reduced reticuloendothelial uptake. Therefore, this sample was further labeled with 99mTc through the DP moieties to achieve a renal-clearable MRI/single-photon emission computed tomography (SPECT) dual-modality imaging nanoprobe. The resulting nanoprobe showed satisfactory imaging capacities in a 4T1 xenograft tumor mouse model. Furthermore, the biocompatibility of Fe3O4@DMSA was evaluated both in vitro and in vivo through safety assessment experiments. CONCLUSIONS: We believe that the current investigations offer a simple and effective strategy for constructing renal-clearable nanoparticles for precise disease diagnosis.


Subject(s)
Kidney , Magnetic Resonance Imaging , Tomography, Emission-Computed, Single-Photon , Animals , Magnetic Resonance Imaging/methods , Mice , Tomography, Emission-Computed, Single-Photon/methods , Ligands , Kidney/diagnostic imaging , Kidney/metabolism , Cell Line, Tumor , Contrast Media/chemistry , Female , Mice, Inbred BALB C , Humans , Tissue Distribution , Neoplasms/diagnostic imaging , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry
9.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731447

ABSTRACT

Neuromuscular blocking agents (NMBAs) are routinely used during anesthesia to relax skeletal muscle. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels; NMBAs can induce muscle paralysis by preventing the neurotransmitter acetylcholine (ACh) from binding to nAChRs situated on the postsynaptic membranes. Despite widespread efforts, it is still a great challenge to find new NMBAs since the introduction of cisatracurium in 1995. In this work, an effective ensemble-based virtual screening method, including molecular property filters, 3D pharmacophore model, and molecular docking, was applied to discover potential NMBAs from the ZINC15 database. The results showed that screened hit compounds had better docking scores than the reference compound d-tubocurarine. In order to further investigate the binding modes between the hit compounds and nAChRs at simulated physiological conditions, the molecular dynamics simulation was performed. Deep analysis of the simulation results revealed that ZINC257459695 can stably bind to nAChRs' active sites and interact with the key residue Asp165. The binding free energies were also calculated for the obtained hits using the MM/GBSA method. In silico ADMET calculations were performed to assess the pharmacokinetic properties of hit compounds in the human body. Overall, the identified ZINC257459695 may be a promising lead compound for developing new NMBAs as an adjunct to general anesthesia, necessitating further investigations.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Neuromuscular Blocking Agents , Receptors, Nicotinic , Neuromuscular Blocking Agents/chemistry , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Humans , Drug Discovery/methods , Protein Binding , Binding Sites , Ligands
10.
PLoS One ; 19(5): e0302853, 2024.
Article in English | MEDLINE | ID: mdl-38768139

ABSTRACT

BACKGROUND: Chronic Kidney Disease (CKD) and Metabolic dysfunction-associated steatohepatitis (MASH) are metabolic fibroinflammatory diseases. Combining single-cell (scRNAseq) and spatial transcriptomics (ST) could give unprecedented molecular disease understanding at single-cell resolution. A more comprehensive analysis of the cell-specific ligand-receptor (L-R) interactions could provide pivotal information about signaling pathways in CKD and MASH. To achieve this, we created an integrative analysis framework in CKD and MASH from two available human cohorts. RESULTS: The analytical framework identified L-R pairs involved in cellular crosstalk in CKD and MASH. Interactions between cell types identified using scRNAseq data were validated by checking the spatial co-presence using the ST data and the co-expression of the communicating targets. Multiple L-R protein pairs identified are known key players in CKD and MASH, while others are novel potential targets previously observed only in animal models. CONCLUSION: Our study highlights the importance of integrating different modalities of transcriptomic data for a better understanding of the molecular mechanisms. The combination of single-cell resolution from scRNAseq data, combined with tissue slide investigations and visualization of cell-cell interactions obtained through ST, paves the way for the identification of future potential therapeutic targets and developing effective therapies.


Subject(s)
Renal Insufficiency, Chronic , Single-Cell Analysis , Transcriptome , Humans , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Ligands , Gene Expression Profiling , Cell Communication/genetics , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Signal Transduction
11.
J Med Chem ; 67(10): 8020-8042, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38727048

ABSTRACT

Promising targeted therapy options to overcome drug resistance and side effects caused by platinum(II) drugs for treatment in hepatocellular carcinoma are urgently needed. Herein, six novel multifunctional platinum(IV) complexes through linking platinum(II) agents and glycyrrhetinic acid (GA) were designed and synthesized. Among them, complex 20 showed superior antitumor activity against tested cancer cells including cisplatin resistance cells than cisplatin and simultaneously displayed good liver-targeting ability. Moreover, complex 20 can significantly cause DNA damage and mitochondrial dysfunction, promote reactive oxygen species generation, activate endoplasmic reticulum stress, and eventually induce apoptosis. Additionally, complex 20 can effectively inhibit cell migration and invasion and trigger autophagy and ferroptosis in HepG-2 cells. More importantly, complex 20 demonstrated stronger tumor inhibition ability than cisplatin or the combo of cisplatin/GA with almost no systemic toxicity in HepG-2 or A549 xenograft models. Collectively, complex 20 could be developed as a potential anti-HCC agent for cancer treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Glycyrrhetinic Acid , Liver Neoplasms , Humans , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/chemistry , Glycyrrhetinic Acid/chemical synthesis , Glycyrrhetinic Acid/analogs & derivatives , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Animals , Mice , Drug Resistance, Multiple/drug effects , Ligands , Hepatocytes/drug effects , Hepatocytes/metabolism , Mice, Nude , Apoptosis/drug effects , Hep G2 Cells , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Cisplatin/pharmacology , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/therapeutic use , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
12.
J Comput Aided Mol Des ; 38(1): 22, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753096

ABSTRACT

Although the size of virtual libraries of synthesizable compounds is growing rapidly, we are still enumerating only tiny fractions of the drug-like chemical universe. Our capability to mine these newly generated libraries also lags their growth. That is why fragment-based approaches that utilize on-demand virtual combinatorial libraries are gaining popularity in drug discovery. These à la carte libraries utilize synthetic blocks found to be effective binders in parts of target protein pockets and a variety of reliable chemistries to connect them. There is, however, no data on the potential impact of the chemistries used for making on-demand libraries on the hit rates during virtual screening. There are also no rules to guide in the selection of these synthetic methods for production of custom libraries. We have used the SAVI (Synthetically Accessible Virtual Inventory) library, constructed using 53 reliable reaction types (transforms), to evaluate the impact of these chemistries on docking hit rates for 40 well-characterized protein pockets. The data shows that the virtual hit rates differ significantly for different chemistries with cross coupling reactions such as Sonogashira, Suzuki-Miyaura, Hiyama and Liebeskind-Srogl coupling producing the highest hit rates. Virtual hit rates appear to depend not only on the property of the formed chemical bond but also on the diversity of available building blocks and the scope of the reaction. The data identifies reactions that deserve wider use through increasing the number of corresponding building blocks and suggests the reactions that are more effective for pockets with certain physical and hydrogen bond-forming properties.


Subject(s)
Molecular Docking Simulation , Protein Binding , Proteins , Small Molecule Libraries , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Proteins/chemistry , Proteins/metabolism , Binding Sites , Drug Discovery/methods , Ligands , Drug Design , Humans
13.
Biosens Bioelectron ; 258: 116381, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38744116

ABSTRACT

Surface proteins on the membrane of nano-sized extracellular vesicles (EVs) not only play crucial roles in cell-to-cell communication, but also are specific binding targets for EV detection, isolation and tracking. The low abundance of protein biomarkers on EV surface, the formation of clusters and the complex EV surface network impose significant challenges to the study of EVs. Employing bulky sized affinity ligands, such as antibodies, in the detection and characterization of these vesicles often result in reduced sensitivity of detection or poor quantification of proteins on the EV surface. By virtue of their small size and high specificity, Affibody molecules emerge as a potential alternative to their monoclonal antibody counterparts as robust affinity ligands in EV research. In this study, we present a theoretical framework on the superiority of anti-HER2 Affibodies over anti-HER2 antibodies in labeling and detecting HER2-positive EVs, followed by the demonstration of the advantages of HER2 Affibodies in accessing EV surface and the detection of EVs through multiple types of approaches including fluorescence intensity, colorimetry, and fluorescence polarization. HER2 Affibodies outperformed by 10-fold over three HER2 antibody clones in accessing HER2-positive EVs derived from different human cancer cell lines. Furthermore, HRP-Affibody molecules could detect EVs from cancer cells spiked into human serum with at least a 2-fold higher sensitivity compared with that of their antibody counterparts. In addition, in fluorescence polarization assays in which no separation of free from bound ligand is required, FITC-labeled HER2 Affibodies could sensitively detect HER2-positive EVs with a clinically relevant limit of detection, whilst HER2 antibodies failed to detect EVs in the same conditions. With the demonstrated superiority in accessing and detecting surface targets over bulky-sized antibodies in EVs, Affibodies may become the next-generation of affinity ligands in the precise characterization and quantification of molecular architecture on the surface of EVs.


Subject(s)
Biosensing Techniques , Extracellular Vesicles , Receptor, ErbB-2 , Extracellular Vesicles/chemistry , Humans , Ligands , Biosensing Techniques/methods , Cell Line, Tumor , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology
14.
Nat Commun ; 15(1): 4054, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744881

ABSTRACT

Nuclear receptors are ligand-activated transcription factors that can often be useful drug targets. Unfortunately, ligand promiscuity leads to two-thirds of receptors remaining clinically untargeted. PXR is a nuclear receptor that can be activated by diverse compounds to elevate metabolism, negatively impacting drug efficacy and safety. This presents a barrier to drug development because compounds designed to target other proteins must avoid PXR activation while retaining potency for the desired target. This problem could be avoided by using PXR antagonists, but these compounds are rare, and their molecular mechanisms remain unknown. Here, we report structurally related PXR-selective agonists and antagonists and their corresponding co-crystal structures to describe mechanisms of antagonism and selectivity. Structural and computational approaches show that antagonists induce PXR conformational changes incompatible with transcriptional coactivator recruitment. These results guide the design of compounds with predictable agonist/antagonist activities and bolster efforts to generate antagonists to prevent PXR activation interfering with other drugs.


Subject(s)
Pregnane X Receptor , Pregnane X Receptor/metabolism , Pregnane X Receptor/antagonists & inhibitors , Humans , Ligands , Crystallography, X-Ray , Hep G2 Cells , Models, Molecular , Protein Binding
15.
J Cell Mol Med ; 28(9): e18358, 2024 May.
Article in English | MEDLINE | ID: mdl-38693868

ABSTRACT

Gastric cancer is considered a class 1 carcinogen that is closely linked to infection with Helicobacter pylori (H. pylori), which affects over 1 million people each year. However, the major challenge to fight against H. pylori and its associated gastric cancer due to drug resistance. This research gap had led our research team to investigate a potential drug candidate targeting the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. In this study, a total of 45 daidzein derivatives were investigated and the best 10 molecules were comprehensively investigated using in silico approaches for drug development, namely pass prediction, quantum calculations, molecular docking, molecular dynamics simulations, Lipinski rule evaluation, and prediction of pharmacokinetics. The molecular docking study was performed to evaluate the binding affinity between the target protein and the ligands. In addition, the stability of ligand-protein complexes was investigated by molecular dynamics simulations. Various parameters were analysed, including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM). The results has confirmed that the ligand-protein complex CID: 129661094 (07) and 129664277 (08) formed stable interactions with the target protein. It was also found that CID: 129661094 (07) has greater hydrogen bond occupancy and stability, while the ligand-protein complex CID 129664277 (08) has greater conformational flexibility. Principal component analysis revealed that the ligand-protein complex CID: 129661094 (07) is more compact and stable. Hydrogen bond analysis revealed favourable interactions with the reported amino acid residues. Overall, this study suggests that daidzein derivatives in particular show promise as potential inhibitors of H. pylori.


Subject(s)
Helicobacter pylori , Isoflavones , Molecular Docking Simulation , Molecular Dynamics Simulation , Helicobacter pylori/drug effects , Helicobacter pylori/metabolism , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/metabolism , Humans , Hydrogen Bonding , Ligands , Protein Binding , Principal Component Analysis , Helicobacter Infections/microbiology , Helicobacter Infections/drug therapy , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Stomach Neoplasms/microbiology , Stomach Neoplasms/drug therapy
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124408, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38723464

ABSTRACT

To investigate the structure and bioactivity relationship, six Pd(II)/Pt(II) complexes with N-isobutylglycine (L1) and cyclohexylglycine (L2) as N^O amino acid bidentate ligands, 1,10'-phenanthroline (phen) and 2,2'-bipyridine (bipy) as N^N donor ligands, and [Pd(L1)(bipy)]NO3 (1), [Pd(L2)(bipy)]NO3 (2), [Pd(L1)(phen)]NO3 (3), [Pd(L2)(phen)]NO3·2H2O (4), [Pt(L1)(phen)]NO3 (5), along with [Pt(L2)(phen)]NO3 (6) were prepared and then characterized. The geometry of each compound was validated by doing a DFT calculation. Furthermore, tests were conducted on the complexes' water solubilities and lipophilicity. All bipy complexes had superior aqueous solubility and less lipophilicity in comparison with phen complexes, as well as complexes containing cyclohexyl-glycine compared to isobutyl-glycine complexes, probably because of the steric effects and polarity of cyclohexylglycine. The in-vitro anticancer activities of these compounds were examined against HCT116, A549, and MCF7 cancerous cell lines. Data revealed that all Pd/Pt complexes demonstrate higher anticancer activity than carboplatin, and complexes 3 and 4 are more cytotoxic than cisplatin against the HCT116 cell line, particularly against MCF7 cancerous cells. In addition, among all compounds, complex 4 has more anticancer ability than oxaliplatin. Due to different solubility and lipophilicity behavior, the accumulation of Pt complexes and clinical Pt drugs in each cancerous cell was investigated. The binding capabilities of these complexes to DNA, as the main target in chemotherapy, occur through minor grooves and intercalate into DNA, which was done using absorption, fluorescence, and circular dichroism spectroscopy. Finally, the docking simulation study showed the mode of DNA bindings is in good agreement with the spectral binding data.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Glycine , Palladium , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Glycine/chemistry , Glycine/analogs & derivatives , Glycine/pharmacology , Palladium/chemistry , Palladium/pharmacology , Ligands , Structure-Activity Relationship , Cell Line, Tumor , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Platinum/chemistry , Platinum/pharmacology , DNA/metabolism , DNA/chemistry , Solubility
17.
J Phys Chem Lett ; 15(21): 5696-5704, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38768263

ABSTRACT

Rising global population and increased food demands have resulted in the increased use of organophosphate pesticides (OPs), leading to toxin accumulation and transmission to humans. Pralidoxime (2-PAM), an FDA-approved drug, serves as an antidote for OP therapy. However, the atomic-level detoxification mechanisms regarding the design of novel antidotes remain unclear. This is the first study to examine the binding and unbinding pathways of 2-PAM to human acetylcholinesterase (HuAChE) through three identified doors using an enhanced sampling method called ligand-binding parallel cascade selection molecular dynamics (LB-PaCS-MD). Remarkably, LB-PaCS-MD could identify a predominant in-line binding mechanism through the acyl door at 63.79% ± 6.83%, also implicating it in a potential unbinding route (90.14% ± 4.22%). Interestingly, crucial conformational shifts in key residues, W86, Y341, and Y449, and the Ω loop significantly affect door dynamics and ligand binding modes. The LB-PaCS-MD technique can study ligand-binding pathways, thereby contributing to the design of antidotes and covalent drugs.


Subject(s)
Acetylcholinesterase , Cholinesterase Inhibitors , Molecular Dynamics Simulation , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Humans , Ligands , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Pralidoxime Compounds/chemistry , Pralidoxime Compounds/metabolism , Pralidoxime Compounds/pharmacology , Binding Sites , Protein Binding , Antidotes/chemistry , Antidotes/pharmacology , Antidotes/metabolism
18.
J Bioinform Comput Biol ; 22(2): 2450004, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38812467

ABSTRACT

Biomolecular interaction recognition between ligands and proteins is an essential task, which largely enhances the safety and efficacy in drug discovery and development stage. Studying the interaction between proteins and ligands can improve the understanding of disease pathogenesis and lead to more effective drug targets. Additionally, it can aid in determining drug parameters, ensuring proper absorption, distribution, and metabolism within the body. Due to incomplete feature representation or the model's inadequate adaptation to protein-ligand complexes, the existing methodologies suffer from suboptimal predictive accuracy. To address these pitfalls, in this study, we designed a new deep learning method based on transformer and GCN. We first utilized the transformer network to grasp crucial information of the original protein sequences within the smile sequences and connected them to prevent falling into a local optimum. Furthermore, a series of dilation convolutions are performed to obtain the pocket features and smile features, subsequently subjected to graphical convolution to optimize the connections. The combined representations are fed into the proposed model for classification prediction. Experiments conducted on various protein-ligand binding prediction methods prove the effectiveness of our proposed method. It is expected that the PfgPDI can contribute to drug prediction and accelerate the development of new drugs, while also serving as a valuable partner for drug testing and Research and Development engineers.


Subject(s)
Computational Biology , Drug Discovery , Neural Networks, Computer , Proteins , Proteins/chemistry , Proteins/metabolism , Ligands , Computational Biology/methods , Drug Discovery/methods , Deep Learning , Protein Binding , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Databases, Protein , Humans
19.
Chem Commun (Camb) ; 60(46): 5972-5975, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38767578

ABSTRACT

Here we report two novel synthetic riboswitches that respond to ASP2905 and theophylline and function in reconstituted cell-free protein synthesis (CFPS) system. We encapsulated the CFPS system as well as DNA-templated encoding reporter genes regulated by these orthogonal riboswitches inside liposomes, and achieved switchable and orthogonal control over gene expression by external stimulation with the cognate ligands.


Subject(s)
Artificial Cells , Riboswitch , Theophylline , Theophylline/chemistry , Artificial Cells/chemistry , Artificial Cells/metabolism , Liposomes/chemistry , Gene Expression Regulation , Protein Biosynthesis , Cell-Free System , Genes, Reporter , Ligands
20.
Dalton Trans ; 53(22): 9495-9509, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38767612

ABSTRACT

In this work, the study of the new ligand 3,3'-bis[N,N-bis(pyridine-2-ylmethyl)aminomethyl]-2,2'-dihydroxybiphenyl (L) is reported, where a central 2,2'-biphenol (BPH) fluorophore was functionalized at 3,3'-positions with two dipicolylamine (DPA) side arms as receptor units. Following the synthesis and full chemical-physical characterization, the acid-base and Zn2+-coordination abilities of L were investigated through a combination of potentiometric, UV-Vis, fluorescence, NMR, XRD and DFT measurements. The optical properties of the ligand turned out to be strongly dependent on the pH, being straightforwardly associated with the protonation state of the BPH moiety, whereas its peculiar design allowed to form stable mono and dinuclear Zn2+ complexes. In the latter species, the presence of two Zn2+ ions coordinatively unsaturated and placed at close distance to each other, prompted us to test their usefulness as metallo-receptors for two environmental pollutants of great relevance, ibuprofen and ketoprofen. Potentiometric and fluorescence investigations evidenced that these important non-steroidal anti-inflammatory drugs (NSAIDs) are effectively coordinated by the metallo-receptors and, of relevance, both the stability and the fluorescence properties of the resulting ternary adducts are markedly affected by the different chemical architectures of the two substrates. This study aims at highlighting the promising perspectives arising from the use of polyamino phenolic ligands as chemosensors for H+/Zn2+ and other additional anionic targets in their metal-complexed forms.


Subject(s)
Amines , Coordination Complexes , Fluorescent Dyes , Ibuprofen , Ketoprofen , Picolinic Acids , Zinc , Zinc/chemistry , Ligands , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Amines/chemistry , Picolinic Acids/chemistry , Ketoprofen/chemistry , Ibuprofen/chemistry , Water/chemistry , Density Functional Theory , Phenols/chemistry , Spectrometry, Fluorescence , Molecular Structure , Models, Molecular , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL