Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.197
Filter
1.
Int Heart J ; 65(3): 580-585, 2024.
Article in English | MEDLINE | ID: mdl-38825499

ABSTRACT

Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Conversely, RyR2 loss-of-function mutations cause a new disease entity, termed calcium release deficiency syndrome (CRDS), which may include RYR2-related long QT syndrome (LQTS). Importantly, unlike CPVT, patients with CRDS do not always exhibit exercise- or epinephrine-induced ventricular arrhythmias, which precludes a diagnosis of CRDS. Here we report a boy and his father, who both experienced exercise-induced cardiac events and harbor the same RYR2 E4107A variant. In the boy, an exercise stress test (EST) and epinephrine provocation test (EPT) did not induce any ventricular arrhythmias. QTc was slightly prolonged (QTc: 474 ms), and an EPT induced QTc prolongation (QTc-baseline: 466 ms, peak: 532 ms, steady-state: 527 ms). In contrast, in his father, QTc was not prolonged (QTc: 417 ms), and neither an EST nor EPT induced QTc prolongation. However, an EST induced multifocal premature ventricular contraction (PVC) bigeminy and bidirectional PVC couplets. Thus, they exhibited distinct clinical phenotypes: the boy exhibited LQTS (or CRDS) phenotype, whereas his father exhibited CPVT phenotype. These findings suggest that, in addition to the altered RyR2 function, other unidentified factors, such as other genetic, epigenetic, and environmental factors, and aging, may be involved in the diverse phenotypic manifestations. Considering that a single RYR2 variant can cause both CPVT and LQTS (or CRDS) phenotypes, in cascade screening of patients with CPVT and CRDS, an EST and EPT are not sufficient and genetic analysis is required to identify individuals who are at increased risk for life-threatening arrhythmias.


Subject(s)
Long QT Syndrome , Phenotype , Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Male , Long QT Syndrome/genetics , Long QT Syndrome/diagnosis , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/diagnosis , Electrocardiography , Pedigree , Adult , Exercise Test , Mutation
2.
J Coll Physicians Surg Pak ; 34(6): 659-666, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840347

ABSTRACT

OBJECTIVE: To evaluate the effect of favipiravir administered to diabetic and non-diabetic COVID-19 patients on the QT/QTc interval. STUDY DESIGN: Analytical study. Place and Duration of the Study: Republic of Turkey, Ministry of Health, State Hospital, Corlu, Tekirdag, Turkiye, from March to September 2021. METHODOLOGY: Electrocardiogram (ECG) analysis was performed on all participants (n=180) divided into four groups. Group 1 included only healthy volunteers. Group 2 included only cases diagnosed with T2DM. Group 3 included only severe acute respiratory syndrome coronavirus-2 (SARS-Cov-2) cases. Group 4 included cases diagnosed with both SARS and T2DM. Favipiravir was administered only to the cases in Group 3 and Group 4. In the cases that were administered favipiravir, the QT/QTc interval was calculated and recorded at different time intervals on the first and fifth days of the therapy. The difference between groups was determined by Tukeye's test after ANOVA. Pearson's correlation test was used to determine whether there was a linear relationship between two numericals. The alpha significance value was determined to be <0.05 in all statistical analyses. RESULTS: When all groups were compared, it was seen that both QT and QTc values ​​increased in Groups 3 and 4, which were administered favipiravir (p <0.05). Favipiravir may cause an increased risk of ventricular and atrial arrhythmias. CONCLUSION: Favipiravir may cause QT interval prolongation, particularly in SARS-Cov-2 patients diagnosed with T2DM. KEY WORDS: COVID-19, Drug-induced long QT syndrome, Intra-infarct haemorrhage; Favipiravir, Type 2 diabetes mellitus.


Subject(s)
Amides , Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Diabetes Mellitus, Type 2 , Electrocardiography , Long QT Syndrome , Pyrazines , SARS-CoV-2 , Humans , Pyrazines/therapeutic use , Pyrazines/adverse effects , Amides/therapeutic use , Amides/adverse effects , Male , Female , Middle Aged , Diabetes Mellitus, Type 2/drug therapy , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , COVID-19/complications , Long QT Syndrome/chemically induced , Adult , Turkey , Aged
3.
Neuron ; 112(11): 1730-1732, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38843779

ABSTRACT

In a recent issue of Nature, Chen and colleagues1 reveal the potential for antisense oligonucleotides (ASOs) to rescue the neuropathological mechanisms underlying Timothy syndrome (TS) using three-dimensional neuronal models. Combining in vitro and in vivo approaches, the authors present a strategy to translate disease biology findings into potential therapeutics.


Subject(s)
Autistic Disorder , Long QT Syndrome , Neurons , Syndactyly , Humans , Autistic Disorder/genetics , Autistic Disorder/pathology , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Syndactyly/genetics , Oligonucleotides, Antisense/pharmacology , Animals
4.
J Cardiothorac Surg ; 19(1): 321, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845009

ABSTRACT

BACKGROUND: Long QT Syndrome (LQTS) and Beckwith-Wiedemann Syndrome (BWS) are complex disorders with unclear origins, underscoring the need for in-depth molecular investigations into their mechanisms. The main aim of this study is to identify the shared key genes between LQTS and BWS, shedding light on potential common molecular pathways underlying these syndromes. METHODS: The LQTS and BWS datasets are available for download from the GEO database. Differential expression genes (DEGs) were identified. Weighted gene co-expression network analysis (WGCNA) was used to detect significant modules and central genes. Gene enrichment analysis was performed. CIBERSORT was used for immune cell infiltration analysis. The predictive protein interaction (PPI) network of core genes was constructed using STRING, and miRNAs regulating central genes were screened using TargetScan. RESULTS: Five hundred DEGs associated with Long QT Syndrome and Beckwith-Wiedemann Syndrome were identified. GSEA analysis revealed enrichment in pathways such as T cell receptor signaling, MAPK signaling, and adrenergic signaling in cardiac myocytes. Immune cell infiltration indicated higher levels of memory B cells and naive CD4 T cells. Four core genes (CD8A, ICOS, CTLA4, LCK) were identified, with CD8A and ICOS showing low expression in the syndromes and high expression in normal samples, suggesting potential inverse regulatory roles. CONCLUSION: The expression of CD8A and ICOS is low in long QT syndrome and Beckwith-Wiedemann syndrome, indicating their potential as key genes in the pathogenesis of these syndromes. The identification of shared key genes between LQTS and BWS provides insights into common molecular mechanisms underlying these disorders, potentially facilitating the development of targeted therapeutic strategies.


Subject(s)
Beckwith-Wiedemann Syndrome , CD8 Antigens , Inducible T-Cell Co-Stimulator Protein , Long QT Syndrome , Humans , Long QT Syndrome/genetics , Beckwith-Wiedemann Syndrome/genetics , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/metabolism , CD8 Antigens/genetics , CD8 Antigens/metabolism , Gene Expression Profiling/methods
5.
JAMA Netw Open ; 7(6): e2415576, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38848063

ABSTRACT

Importance: Rifampin-resistant tuberculosis treatment regimens require electrocardiographic (ECG) monitoring due to the use of multiple QTc-prolonging agents. Formal 12-lead ECG devices represent a significant burden in resource-constrained clinics worldwide and a potential barrier to treatment scale-up in some settings. Objective: To evaluate the diagnostic accuracy of a handheld 6-lead ECG device within resource-constrained clinics. Design, Setting, and Participants: This diagnostic study was performed within a multicenter, pragmatic (broad eligibility criteria with no exclusions for randomized participants), phase 3 rifampin-resistant tuberculosis treatment trial (BEAT Tuberculosis [Building Evidence for Advancing New Treatment for Tuberculosis]) in South Africa. A total of 192 consecutive trial participants were assessed, and 191 were recruited for this substudy between January 21, 2021, and March 27, 2023. A low proportion (3 of 432 [0.7%]) of all screened trial participants were excluded due to a QTc interval greater than 450 milliseconds. Triplicate reference standard 12-lead ECG results were human calibrated with readers blinded to 6-lead ECG results. Main Outcomes and Measures: Diagnostic accuracy, repeatability, and feasibility of a 6-lead ECG device. Results: A total of 191 participants (median age, 36 years [IQR, 28-45 years]; 81 female participants [42.4%]; 91 participants [47.6%] living with HIV) with a median of 4 clinic visits (IQR, 3-4 visits) contributed 2070 and 2015 12-lead and 6-lead ECG assessments, respectively. Across 170 participants attending 489 total clinic visits where valid triplicate QTc measurements were available for both devices, the mean 12-lead QTc measurement was 418 milliseconds (range, 321-519 milliseconds), and the mean 6-lead QTc measurement was 422 milliseconds (range, 288-574 milliseconds; proportion of variation explained, R2 = 0.4; P < .001). At a QTc interval threshold of 500 milliseconds, the 6-lead ECG device had a negative predictive value of 99.8% (95% CI, 98.8%-99.9%) and a positive predictive value of 16.7% (95% CI, 0.4%-64.1%). The normal expected range of within-individual variability of the 6-lead ECG device was high (±50.2 milliseconds [coefficient of variation, 6.0%]) relative to the 12-lead ECG device (±22.0 milliseconds [coefficient of variation, 2.7%]). The mean (SD) increase in the 12-lead QTc measurement during treatment was 10.1 (25.8) milliseconds, with 0.8% of clinic visits (4 of 489) having a QTc interval of 500 milliseconds or more. Conclusions and Relevance: This study suggests that simplified, handheld 6-lead ECG devices are effective triage tests that could reduce the need to perform 12-lead ECG monitoring in resource-constrained settings.


Subject(s)
Electrocardiography , Humans , Female , Male , Adult , Electrocardiography/instrumentation , Electrocardiography/methods , South Africa , Middle Aged , Long QT Syndrome/diagnosis , Reproducibility of Results , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/diagnosis , Resource-Limited Settings
6.
Clin Transl Sci ; 17(5): e13808, 2024 May.
Article in English | MEDLINE | ID: mdl-38700272

ABSTRACT

Sitravatinib (MGCD516) is an orally available, small molecule, tyrosine kinase inhibitor that has been evaluated in patients with advanced solid tumors. Concentration-corrected QT interval (QTc; C-QTc) modeling was undertaken, using 767 matched concentration-ECG observations from 187 patients across two clinical studies in patients with advanced solid malignancies, across a dose range of 10-200 mg, via a linear mixed-effects (LME) model. The effect on heart rate (HR)-corrected QT interval via Fridericia's correction method (QTcF) at the steady-state maximum concentration (Cmax,ss) for the sitravatinib proposed therapeutic dosing regimen (100 mg malate once daily [q.d.]) without and with relevant intrinsic and extrinsic factors were predicted. No significant changes in HR from baseline were observed. Hysteresis between sitravatinib plasma concentration and change in QTcF from baseline (ΔQTcF) was not observed. There was no significant relationship between sitravatinib plasma concentration and ΔQTcF. The final C-QTc model predicted a mean (90% confidence interval [CI]) ΔQTcF of 3.92 (1.95-5.89) ms and 2.94 (0.23-6.10) ms at the proposed therapeutic dosing regimen in patients with normal organ function (best case scenario) and patients with hepatic impairment (worst-case scenario), respectively. The upper bounds of the 90% CIs were below the regulatory threshold of concern of 10 ms. The results of the described C-QTc analysis, along with corroborating results from nonclinical safety pharmacology studies, indicate that sitravatinib has a low risk of QTc interval prolongation at the proposed therapeutic dose of 100 mg malate q.d.


Subject(s)
Electrocardiography , Heart Rate , Neoplasms , Humans , Neoplasms/drug therapy , Heart Rate/drug effects , Male , Female , Middle Aged , Aged , Adult , Dose-Response Relationship, Drug , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Models, Biological , Aged, 80 and over , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Young Adult , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics
7.
Card Electrophysiol Clin ; 16(2): 203-210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749642

ABSTRACT

Bidirectional ventricular tachycardia is a unique arrhythmia that can herald lethal arrhythmia syndromes. Using cases based on real patient stories, this article examines 3 different presentations to help clinicians learn the differential diagnosis associated with this condition. Each associated genetic disorder will be briefly discussed, and valuable tips for distinguishing them from each other will be provided.


Subject(s)
Tachycardia, Ventricular , Child , Humans , Male , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Diagnosis, Differential , Electrocardiography , Long QT Syndrome/genetics , Long QT Syndrome/diagnosis , Long QT Syndrome/physiopathology , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/physiopathology , Adolescent
8.
BMC Neurol ; 24(1): 170, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783204

ABSTRACT

PURPOSE: QT interval prolongation is one of the most common electrocardiographic (ECG) abnormalities in patients with aneurysmal subarachnoid hemorrhage (aSAH). Whether corrected QT interval (QTc) prolongation is associated with perioperative cardiac events and dismal neurological outcome in mid to long-term follow-up in patients after aSAH is insufficiently studied and remains controversial. METHODS: We retrospectively studied the adult (≥ 18 years) patients admitted to our institution between Jan 2018 and Dec 2020 for aSAH who underwent intracranial aneurysm clipping or embolization. The patients were divided into 2 groups (normal and QTc prolongation groups) according to their QTc. To minimize the confounding bias, a propensity score matching (PSM) analysis was performed to compare the neurologic outcomes between patients with normal QTc and QTc prolongation. RESULTS: After screening, 908 patients were finally included. The patients were divided into 2 groups: normal QTc groups (n = 714) and long QTc group (n = 194). Female sex, hypokalemia, posterior circulation aneurysm, and higher Hunt-Hess grade were associated with QTc prolongation. In multiple regression analysis, older age, higher hemoglobin level, posterior circulation aneurysm, and higher Hunt-Hess grade were identified to be associated with worse outcome during 1-year follow-up. Before PSM, patients with QTc prolongation had higher rate of perioperative cardiac arrest or ventricular arrhythmias. After PSM, there was no statistical difference between normal and QTc prolongation groups in perioperative cardiac events. However, patients in the QTc prolongation group still had worse neurologic outcome during 1-year follow-up. CONCLUSIONS: QTc prolongation is associated with worse outcome in patients following SAH, which is independent of perioperative cardiac events.


Subject(s)
Embolization, Therapeutic , Intracranial Aneurysm , Long QT Syndrome , Subarachnoid Hemorrhage , Humans , Male , Female , Retrospective Studies , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/surgery , Middle Aged , Intracranial Aneurysm/surgery , Intracranial Aneurysm/complications , Long QT Syndrome/etiology , Embolization, Therapeutic/methods , Embolization, Therapeutic/adverse effects , Adult , Aged , Microsurgery/methods , Microsurgery/adverse effects , Treatment Outcome , Electrocardiography/methods
10.
Int J Risk Saf Med ; 35(2): 181-190, 2024.
Article in English | MEDLINE | ID: mdl-38701163

ABSTRACT

BACKGROUND: Delamanid (DLM) is a relatively new drug for drug-resistant tuberculosis (DR-TB) that has been used in Indonesia since 2019 despite its limited safety data. DLM is known to inhibit hERG potassium channel with the potential to cause QT prolongation which eventually leads to Torsades de pointes (TdP). OBJECTIVE: This study aims to analyse the changes of QTc interval in DR-TB patients on DLM regimen compared to shorter treatment regimens (STR). METHODS: A retrospective cohort was implemented on secondary data obtained from two participating hospitals. The QTc interval and the changes in QTc interval from baseline (ΔQTc) were assessed every 4 weeks for 24 weeks. RESULTS: The maximum increased of QTc interval and ΔQTc interval were smaller in the DLM group with mean difference of 18,6 (95%CI 0.3 to 37.5) and 31.6 milliseconds (95%CI 14.1 to 49.1) respectively. The proportion of QTc interval prolongation in DLM group were smaller than STR group (RR=0.62; 95%CI 0.42 to 0.93). CONCLUSION: This study has shown that DLM regimens are less likely to increase QTc interval compared to STR. However, close monitoring of the risk of QT interval prolongation needs to be carried out upon the use of QT interval prolonging antituberculoid drugs.


Subject(s)
Antitubercular Agents , Electrocardiography , Long QT Syndrome , Nitroimidazoles , Oxazoles , Tuberculosis, Multidrug-Resistant , Humans , Retrospective Studies , Male , Female , Tuberculosis, Multidrug-Resistant/drug therapy , Adult , Antitubercular Agents/adverse effects , Antitubercular Agents/administration & dosage , Antitubercular Agents/therapeutic use , Long QT Syndrome/chemically induced , Nitroimidazoles/adverse effects , Nitroimidazoles/therapeutic use , Nitroimidazoles/administration & dosage , Oxazoles/adverse effects , Oxazoles/therapeutic use , Oxazoles/administration & dosage , Middle Aged , Indonesia , Torsades de Pointes/chemically induced
11.
Acta Biomater ; 181: 391-401, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704114

ABSTRACT

Potassium ion transport across myocardial cell membrane is essential for type 2 long QT syndrome (LQT2). However, the dysfunction of potassium ion transport due to genetic mutations limits the therapeutic effect in treating LQT2. Biomimetic ion channels that selectively and efficiently transport potassium ions across the cellular membranes are promising for the treatment of LQT2. To corroborate this, we synthesized a series of foldamer-based ion channels with different side chains, and found a biomimetic ion channel of K+ (BICK) with the highest transport activity among them. The selected BICK can restore potassium ion transport and increase transmembrane potassium ion current, thus shortening phase 3 of action potential (AP) repolarization and QT interval in LQT2. Moreover, BICK does not affect heart rate and cardiac rhythm in treating LQT2 model induced by E4031 in isolated heart as well as in guinea pigs. By restoring ion transmembrane transport tactic, biomimetic ion channels, such as BICK, will show great potential in treating diseases related to ion transport blockade. STATEMENT OF SIGNIFICANCE: Type 2 long QT syndrome (LQT2) is a disease caused by K+ transport disorder, which can cause malignant arrhythmia and even death. There is currently no radical cure, so it is critical to explore ways to improve K+ transmembrane transport. In this study, we report that a small-molecule biomimetic ion channel BICK can efficiently simulate natural K+ channel proteins on the cardiomyocyte and cure E4031-induced LQT2 in guinea pig by restoring K+ transport function for the first time. This study found that the potassium transmembrane transport by BICK significantly reduced the QT interval, which provides a conceptually new strategy for the treatment of LQT2 disease.


Subject(s)
Long QT Syndrome , Potassium , Long QT Syndrome/metabolism , Animals , Potassium/metabolism , Guinea Pigs , Humans , Action Potentials/drug effects , Ion Transport/drug effects , Male , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Potassium Channels/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Heart Rate/drug effects
13.
Arch Cardiovasc Dis ; 117(5): 313-320, 2024 May.
Article in English | MEDLINE | ID: mdl-38704288

ABSTRACT

BACKGROUND: In patients with congenital long QT syndrome (LQTS), the risk of ventricular arrhythmia is correlated with the duration of the corrected QT interval and the changes in the ST-T wave pattern on the 12-lead surface electrocardiogram (12L-ECG). Remote monitoring of these variables could be useful. AIM: To evaluate the abilities of two wearable electrocardiogram devices (Apple Watch and KardiaMobile 6L) to provide reliable electrocardiograms in terms of corrected QT interval and ST-T wave patterns in patients with LQTS. METHODS: In a prospective multicentre study (ClinicalTrials.gov identifier: NCT04728100), a 12L-ECG, a 6-lead KardiaMobile 6L electrocardiogram and two single-lead Apple Watch electrocardiograms were recorded in patients with LQTS. The corrected QT interval and ST-T wave patterns were evaluated manually. RESULTS: Overall, 98 patients with LQTS were included; 12.2% were children and 92.8% had a pathogenic variant in an LQTS gene. The main genotypes were LQTS type 1 (40.8%), LQTS type 2 (36.7%) and LQTS type 3 (7.1%); rarer genotypes were also represented. When comparing the ST-T wave patterns obtained with the 12L-ECG, the level of agreement was moderate with the Apple Watch (k=0.593) and substantial with the KardiaMobile 6L (k=0.651). Regarding the corrected QT interval, the correlation with 12L-ECG was strong for the Apple Watch (r=0.703 in lead II) and moderate for the KardiaMobile 6L (r=0.593). There was a slight overestimation of corrected QT interval with the Apple Watch and a subtle underestimation with the KardiaMobile 6L. CONCLUSIONS: In patients with LQTS, the corrected QT interval and ST-T wave patterns obtained with the Apple Watch and the KardiaMobile 6L correlated with the 12L-ECG. Although wearable electrocardiogram devices cannot replace the 12L-ECG for the follow-up of these patients, they could be interesting additional monitoring tools.


Subject(s)
Heart Rate , Long QT Syndrome , Predictive Value of Tests , Wearable Electronic Devices , Humans , Long QT Syndrome/physiopathology , Long QT Syndrome/diagnosis , Long QT Syndrome/congenital , Long QT Syndrome/genetics , Female , Male , Prospective Studies , Child , Adolescent , Adult , Reproducibility of Results , Young Adult , Electrocardiography, Ambulatory/instrumentation , Action Potentials , Child, Preschool , Equipment Design , Time Factors , Middle Aged , Electrocardiography/instrumentation , Heart Conduction System/physiopathology
14.
Clin Toxicol (Phila) ; 62(4): 269-271, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766906

ABSTRACT

INTRODUCTION: Guanfacine is a central α2-adrenergic receptor agonist that produces drowsiness, bradycardia, hypotension, and occasionally QT interval prolongation. We discuss giant T waves associated with guanfacine toxicity. CASE SUMMARIES: Three patients presented to the hospital with histories and physical findings compatible with guanfacine toxicity. Supratherapeutic concentrations were confirmed in two of them. All three developed QT interval prolongation and giant T waves on the electrocardiogram. Giant T waves occur commonly in patients with acute myocardial infarct and hyperkalemia, as well as rarely with a number of other cardiac and non-cardiac causes. CONCLUSION: Guanfacine toxicity may cause the novel electrocardiographic finding of 'giant T wave with QT interval prolongation'. Further studies are warranted to investigate the association between the novel electrocardiographic finding and guanfacine toxicity, as well as its diagnostic utility in such cases.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Electrocardiography , Guanfacine , Long QT Syndrome , Humans , Electrocardiography/drug effects , Adrenergic alpha-2 Receptor Agonists/poisoning , Male , Long QT Syndrome/chemically induced , Long QT Syndrome/physiopathology , Female , Middle Aged , Adult
15.
JACC Clin Electrophysiol ; 10(5): 956-966, 2024 May.
Article in English | MEDLINE | ID: mdl-38703162

ABSTRACT

BACKGROUND: Prediction of drug-induced long QT syndrome (diLQTS) is of critical importance given its association with torsades de pointes. There is no reliable method for the outpatient prediction of diLQTS. OBJECTIVES: This study sought to evaluate the use of a convolutional neural network (CNN) applied to electrocardiograms (ECGs) to predict diLQTS in an outpatient population. METHODS: We identified all adult outpatients newly prescribed a QT-prolonging medication between January 1, 2003, and March 31, 2022, who had a 12-lead sinus ECG in the preceding 6 months. Using risk factor data and the ECG signal as inputs, the CNN QTNet was implemented in TensorFlow to predict diLQTS. RESULTS: Models were evaluated in a held-out test dataset of 44,386 patients (57% female) with a median age of 62 years. Compared with 3 other models relying on risk factors or ECG signal or baseline QTc alone, QTNet achieved the best (P < 0.001) performance with a mean area under the curve of 0.802 (95% CI: 0.786-0.818). In a survival analysis, QTNet also had the highest inverse probability of censorship-weighted area under the receiver-operating characteristic curve at day 2 (0.875; 95% CI: 0.848-0.904) and up to 6 months. In a subgroup analysis, QTNet performed best among males and patients ≤50 years or with baseline QTc <450 ms. In an external validation cohort of solely suburban outpatient practices, QTNet similarly maintained the highest predictive performance. CONCLUSIONS: An ECG-based CNN can accurately predict diLQTS in the outpatient setting while maintaining its predictive performance over time. In the outpatient setting, our model could identify higher-risk individuals who would benefit from closer monitoring.


Subject(s)
Artificial Intelligence , Electrocardiography , Long QT Syndrome , Neural Networks, Computer , Humans , Female , Male , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Middle Aged , Aged , Adult , Risk Factors
16.
BMC Med Genomics ; 17(1): 126, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715010

ABSTRACT

BACKGROUND: Long QT syndrome (LQTS) is a cardiac channelopathy characterized by impaired myocardial repolarization that predisposes to life-threatening arrhythmias. This study aimed to elucidate the genetic basis of LQTS in an affected Iranian family using whole exome sequencing (WES). METHODS: A 37-year-old woman with a personal and family history of sudden cardiac arrest and LQTS was referred for genetic study after losing her teenage daughter due to sudden cardiac death (SCD). WES was performed and variants were filtered and prioritized based on quality, allele frequency, pathogenicity predictions, and conservation scores. Sanger sequencing confirmed segregation in the family. RESULTS: WES identified a novel heterozygous frameshift variant (NM_000238.4:c.3257_3258insG; pGly1087Trpfs*32) in the KCNH2 encoding the α-subunit of the rapid delayed rectifier potassium channel responsible for cardiac repolarization. This variant, predicted to cause a truncated protein, is located in the C-terminal region of the channel and was classified as likely pathogenic based on ACMG guidelines. The variant was absent in population databases and unaffected family members. CONCLUSION: This study reports a novel KCNH2 frameshift variant in an Iranian family with LQTS, expanding the spectrum of disease-causing variants in this gene. Our findings highlight the importance of the C-terminal region in KCNH2 for proper channel function and the utility of WES in identifying rare variants in genetically heterogeneous disorders like LQTS. Functional characterization of this variant is warranted to fully elucidate its pathogenic mechanisms and inform personalized management strategies.


Subject(s)
ERG1 Potassium Channel , Exome Sequencing , Long QT Syndrome , Pedigree , Humans , Long QT Syndrome/genetics , ERG1 Potassium Channel/genetics , Female , Adult , Frameshift Mutation
18.
Card Electrophysiol Clin ; 16(2): 195-202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749641

ABSTRACT

The case series reviews differential diagnosis of a genetic arrhythmia syndrome when evaluating a patient with prolonged QTc. Making the correct diagnosis requires: detailed patient history, family history, and careful review of the electrocardiogram (ECG). Signs and symptoms and ECG characteristics can often help clinicians make the diagnosis before genetic testing results return. These skills can help clinicians make an accurate and timely diagnosis and prevent life-threatening events.


Subject(s)
Arrhythmias, Cardiac , Electrocardiography , Long QT Syndrome , Humans , Diagnosis, Differential , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Child , Male , Female , Adolescent , Genetic Testing
19.
Card Electrophysiol Clin ; 16(2): 211-218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749643

ABSTRACT

The following case series presents three different pediatric patients with SCN5A-related disease. In addition, family members are presented to demonstrate the variable penetrance that is commonly seen. Identifying features of this disease is important, because even in the very young, SCN5A disorders can cause lethal arrhythmias and sudden death.


Subject(s)
Arrhythmias, Cardiac , Long QT Syndrome , NAV1.5 Voltage-Gated Sodium Channel , Humans , NAV1.5 Voltage-Gated Sodium Channel/genetics , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Male , Female , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/diagnosis , Child , Electrocardiography , Child, Preschool , Adolescent , Infant
SELECTION OF CITATIONS
SEARCH DETAIL