Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.603
Filter
1.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126096

ABSTRACT

With-no-lysine kinase (WNK) is a unique serine/threonine kinase family member. WNK differs from other protein kinases by not having a standard lysine in subdomain II of the universally preserved kinase catalytic region. Conversely, the amino acid lysine located in subdomain I plays a crucial role in its phosphorylation. The WNK family has been reported to regulate Arabidopsis flowering, circadian rhythm, and abiotic stress. Eighteen members of the WNK gene family were discovered in apples in this research, and they were primarily grouped into five categories on the phylogenetic tree. Conserved domains and motifs also confirmed their identity as members of the WNK family. Promoter cis-acting element analysis indicated their potential role in responses to both abiotic stress and phytohormones. Furthermore, qRT-PCR analysis showed that the expression of MdWNK family genes was stimulated to different extents by Colletotrichum siamense, NaCl, mannitol, ABA, JA, and SA, with Colletotrichum siamense being the most prominent stimulant. MdWNK family genes were expressed across all apple tissues, with young fruits showing the greatest expression and roots showing the least expression. The research offered detailed insights into the MdWNK gene family, serving as a crucial basis for investigating the biological roles of MdWNK genes.


Subject(s)
Colletotrichum , Gene Expression Regulation, Plant , Malus , Multigene Family , Phylogeny , Plant Proteins , Protein Serine-Threonine Kinases , Stress, Physiological , Malus/genetics , Malus/microbiology , Stress, Physiological/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Growth Regulators/metabolism , Promoter Regions, Genetic , Genome, Plant
2.
Physiol Plant ; 176(4): e14465, 2024.
Article in English | MEDLINE | ID: mdl-39126176

ABSTRACT

Sugar is vital for plant growth and determines fruit quality via its content and composition. This study explores the differential sugar accumulation in two plum varieties, 'Fengtangli (FTL)' and 'Siyueli (SYL)'. The result showed that 'FTL' fruit displayed higher soluble solids and sugar content at various development stages. Metabolomic analysis indicated increased sorbitol in 'FTL', linked to elevated sorbitol-6-phosphate-dehydrogenase (S6PDH) activity. Transcriptome analysis identified a key gene for sorbitol synthesis, PsS6PDH4, which was significantly higher expressed in 'FTL' than in 'SYL'. The function of the PsS6PDH4 gene was verified in strawberry, apple, and plum fruits using transient overexpression and virus-induced gene silencing techniques. The results showed that overexpression of the PsS6PDH4 gene in strawberry, apple, and plum fruits promoted the accumulation of soluble solids content and sorbitol, while inhibition of the gene reduced soluble solids content and sorbitol content. Meanwhile, analysis of the relationship between PsS6PDH4 gene expression, sorbitol, and soluble solids content in four different plum varieties revealed a significant correlation between PsS6PDH4 gene expression and soluble solids content as well as sorbitol content. This research discovered PsS6PDH4 as a crucial regulator of sugar metabolism in plum, with potential applications in improving fruit sweetness and nutritional value in various fruit species. Understanding these molecular pathways can lead to innovative approaches for enhancing fruit quality, benefiting sustainable agriculture and consumer preferences in the global fruit industry.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Plant Proteins , Prunus domestica , Sorbitol , Sorbitol/metabolism , Prunus domestica/genetics , Prunus domestica/metabolism , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Fragaria/genetics , Fragaria/metabolism , Sugars/metabolism , Malus/genetics , Malus/metabolism
3.
Plant Cell Rep ; 43(9): 212, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39127969

ABSTRACT

KEY MESSAGE: Auxin (AUX) promotion of apple fruit ripening is ethylene-dependent, and AUX-MdARF17-MdERF003 plays a role in AUX-promoted ethylene synthesis in apple. Phytohormones play important roles in plant growth and fleshy fruit ripening, and the phytohormone auxin (AUX) can either promote or inhibit the ripening of fleshy fruits. Although AUX can influence ethylene (ETH) synthesis in apple (Malus domestica) fruits by affecting ETH system II, this mechanism remains to be explored. Here, we identified an ETH response factor (ERF) family transcription factor, MdERF003, whose expression could be activated by naphthalene acetic acid. The transient silencing of MdERF003 inhibited ETH synthesis in fruits, and MdERF003 could bind to the MdACS1 promoter. To explore the upstream target genes of MdERF003, we screened the MdARF family members by yeast one-hybrid assays of the MdERF003 promoter, and found that the transcription factor MdARF17, which showed AUX-promoted expression, could bind to the MdERF003 promoter and promote its expression. Finally, we silenced MdERF003 in apple fruits overexpressing MdARF17 and found that MdERF003 plays a role in MdARF17-promoted ETH synthesis in apple. Thus, AUX-MdARF17-MdERF003 promotes ETH synthesis in apple fruits.


Subject(s)
Ethylenes , Fruit , Gene Expression Regulation, Plant , Indoleacetic Acids , Malus , Plant Proteins , Transcription Factors , Malus/genetics , Malus/metabolism , Ethylenes/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Indoleacetic Acids/metabolism , Promoter Regions, Genetic/genetics , Plant Growth Regulators/metabolism , Plants, Genetically Modified
4.
Braz J Biol ; 84: e285493, 2024.
Article in English | MEDLINE | ID: mdl-39109731

ABSTRACT

The paper presents data on phytosanitary monitoring of garden cenoses for fire blight in the Turkestan, Zhambyl, and Almaty regions of Kazakhstan. The purpose of this study is to assess the phytosanitary situation in various regions of Kazakhstan, determine the extent of fire blight spread, and isolate and identify the fire blight pathogen. During the study, methods such as hypersensitivity, pathogenicity, and fluorescent simplification-based specific hybridization polymerase chain reaction (FLASH-PCR) were used. It was found that in all the surveyed areas, disease foci were identified. For the first time, the fire blight pathogen was detected on fruit crops such as plum, peach, cherry plum, and quince, as well as on wild apricots. 274 plant samples were collected from which microorganisms were isolated. Isolates related to the fire blight pathogen Erwinia amylovora were identified by methods of hypersensitivity, pathogenicity, and FLASH-PCR diagnostics. Of the 156 isolates of microorganisms isolated from apple tree plant samples, 21 inhibited the in vitro growth of E. amylovora to varying degrees. Isolates 16.2 and 19.2 with maximum antagonistic activity were selected, where the pathogen growth inhibition zones were 52.2 ± 2.58 mm and 45.6 ± 0.55 mm, respectively. Based on the obtained sequence of nucleotides of the 16SpRNA gene site, it was found that the selected isolates with high antagonistic activity belonged to the Pseudomonas genus. In the future, based on these isolates, a new biological product for fire blight control can be created and adapted to the natural and climatic conditions of Kazakhstan.


Subject(s)
Erwinia amylovora , Plant Diseases , Kazakhstan , Plant Diseases/microbiology , Erwinia amylovora/isolation & purification , Polymerase Chain Reaction , Malus/microbiology
5.
BMC Ecol Evol ; 24(1): 104, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095704

ABSTRACT

BACKGROUND: Understanding connections between biodiversity and ecosystem services can be enhanced by shifting focus from species richness to functional trait-based approaches, that when paired with comparative phylogenetic methods can provide even deeper insights. We investigated the functional ecology and phylogenetic diversity of pollination services provided by hymenopteran insects visiting apple flowers in orchards surrounded by either 'natural' or 'disturbed' landscapes in New South Wales, Australia. We assessed whether morphological and behavioural traits (hairiness, body size, glossa length, pollen load purity, and probability of loose pollen) exhibited non-random phylogenetic patterns. Then, explored whether bees, the primary pollinators in this system, filled unique or overlapping functional entities (FEs). For each landscape, we calculated phylogenetic diversity and used FEs to assess functional richness, evenness, and diversion. RESULTS: A phylogenomic matrix based on ultraconserved elements (UCEs; 1,382,620 bp from 1,969 loci) was used to infer a fully-resolved and well-supported maximum likelihood phylogeny for 48 hymenopteran morphospecies. There was no significant difference in species richness between landscape categories. Pollinator communities at natural sites had higher phylogenetic complexity (X = 2.37) and functional divergence (x̄ = 0.74 ± 0.02 s.e.) than disturbed sites (X = 1.65 and x̄ = 0.6 ± 0.01 s.e.). Hairiness showed significant phylogenetic clustering (K = 0.94), whereas body size, glossa length, and loose pollen showed weaker non-random phylogenetic patterns (K between 0.3-0.5). Pollen load purity showed no association with phylogeny. The assemblage of 17 bee morphospecies comprised nine FEs: eight FEs consisted of native bees with three containing 65% of all native bee taxa. The introduced honey bee (Apis mellifera) occupied a unique FE, likely due to its different evolutionary history. Both landscape types supported six FEs each with three overlapping: two native bee FEs and the honey bee FE. CONCLUSIONS: Bee hairiness was the only functional trait to exhibit demonstrable phylogenetic signal. Despite differences in species richness, and functional and phylogenetic diversity between orchard landscape types, both maintained equal bee FE numbers. While no native bee taxon was analogous to the honey bee FE, four native bee FEs shared the same hairiness level as honey bees. Health threats to honey bee populations in Australia will likely disrupt pollination services to apple, and other pollination-dependent food crops, given the low level of functional redundancy within the investigated pollinator assemblages.


Subject(s)
Phylogeny , Pollination , Animals , Bees/physiology , Bees/classification , Malus/genetics , Crops, Agricultural/genetics , Biodiversity , New South Wales , Fruit
6.
Arch Virol ; 169(9): 174, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107506

ABSTRACT

In this study, a novel mitovirus, tentatively designated as "Alternaria alternata mitovirus 2" (AaMV2), was isolated from the fungus Alternaria alternata f. sp. mali causing apple leaf blotch disease. The complete genome of AaMV2 is 3,157 nucleotides in length, with an A+U content of 68.10%. The genome has a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) protein with a molecular mass of 98.10 kDa. BLAST analysis revealed that AaMV2 has the highest sequence identity to Leptosphaeria biglobosa mitovirus 6, with 79.76% and 82.86% identity at the amino acid and nucleotide level, respectively. Phylogenetic analysis suggested that AaMV2 is a new member of the genus Duamitovirus within the family Mitoviridae. This is the first report of the complete genome sequence analysis of a mitovirus in A. alternata.


Subject(s)
Alternaria , Fungal Viruses , Genome, Viral , Malus , Open Reading Frames , Phylogeny , Plant Diseases , RNA Viruses , Whole Genome Sequencing , Alternaria/virology , Alternaria/genetics , Plant Diseases/microbiology , Malus/microbiology , Malus/virology , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , Viral Proteins/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Base Composition , Plant Leaves/microbiology , Plant Leaves/virology , Base Sequence
7.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062752

ABSTRACT

Apple (Malus domestica Borkh.) stands out as a globally significant fruit tree with considerable economic importance. Nonetheless, the orchard production of 'Fuji' apples faces significant challenges, including delayed flowering in young trees and inconsistent annual yields in mature trees, ultimately resulting in suboptimal fruit yield due to insufficient flower bud formation. Flower development represents a pivotal process influencing plant adaptation to environmental conditions and is a crucial determinant of successful plant reproduction. The three gene or transcription factor (TF) families, C2H2, DELLA, and FKF1, have emerged as key regulators in plant flowering regulation; however, understanding their roles during apple flowering remains limited. Consequently, this study identified 24 MdC2H2, 6 MdDELLA, and 6 MdFKF1 genes in the apple genome with high confidence. Through phylogenetic analyses, the genes within each family were categorized into three distinct subgroups, with all facets of protein physicochemical properties and conserved motifs contingent upon subgroup classification. Repetitive events between these three gene families within the apple genome were elucidated via collinearity analysis. qRT-PCR analysis was conducted and revealed significant expression differences among MdC2H2-18, MdDELLA1, and MdFKF1-4 during apple bud development. Furthermore, yeast two-hybrid analysis unveiled an interaction between MdC2H2-18 and MdDELLA1. The genome-wide identification of the C2H2, DELLA, and FKF1 gene families in apples has shed light on the molecular mechanisms underlying apple flower bud development.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Malus , Phylogeny , Plant Proteins , Malus/genetics , Malus/growth & development , Malus/metabolism , Flowers/genetics , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Developmental
8.
Nutrients ; 16(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39064681

ABSTRACT

BACKGROUND: Alkaloid- and polyphenol-rich white mulberry leaf and apple peel extracts have been shown to have potential glucose-lowering effects, benefitting the control of postprandial blood glucose levels. This study aimed to determine the effect of the combination of Malus domestica peel and Morus alba leaf extracts (GLUBLOCTM) on postprandial blood glucose and insulin-lowering effects in healthy adults after a carbohydrate-rich meal or sucrose drink intake. METHODS: This study was designed as a randomized, crossover, single-blinded clinical trial. Out of 116 healthy participants, 85 subjects (aged 18-60 years) completed the day 1 and 5 crossover study. On day 1, subjects were supplemented with a placebo or GLUBLOCTM tablet 10 min before the carbohydrate-rich meal (300 g of tomato rice) or sucrose drink intake (75 g of sucrose dissolved in 300 mL water). On day 5, the treatments were crossed over, and the same diet was followed. Postprandial blood glucose and insulin levels were measured on days 1 and 5 (baseline 0, post-meal 30, 60, 90, and 120 min). Differences in iAUC, Cmax, and Tmax were determined between the placebo and GLUBLOCTM-treated cohorts. RESULTS: Significant changes in total iAUC (0-120 min), Cmax, and Tmax of postprandial blood glucose and insulin levels were noticed upon GLUBLOCTM supplementation. The percentage reduction in the iAUC of blood glucose levels was 49.78% (iAUC0-60min) and 43.36% (iAUC0-120min), respectively, compared with the placebo in the sucrose drink intake study. Similarly, there was a 41.13% (iAUC0-60min) and 20.26% (iAUC0-120min) glucose-lowering effect compared with the placebo in the carbohydrate-rich meal intake study. CONCLUSIONS: Premeal supplementation with GLUBLOCTM significantly reduced the postprandial surge in blood glucose and insulin levels after a carbohydrate-rich meal or sucrose drink intake over 120 min in healthy individuals. This study proves that GLUBLOCTM can manage steady postprandial blood glucose levels.


Subject(s)
Blood Glucose , Cross-Over Studies , Dietary Carbohydrates , Dietary Supplements , Insulin , Morus , Plant Extracts , Postprandial Period , Humans , Adult , Insulin/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Male , Female , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Young Adult , Morus/chemistry , Middle Aged , Dietary Carbohydrates/administration & dosage , Single-Blind Method , Adolescent , Malus/chemistry , Sucrose , Plant Leaves/chemistry , Healthy Volunteers , Meals , Beverages
9.
Plant Physiol Biochem ; 214: 108934, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39003974

ABSTRACT

Apple (Malus domestica Borkh.) is among the most widely planted and economically valuable horticultural crops globally. Over time, the apple fruit's cut surface undergoes browning, and the degree of browning varies among different apple varieties. Browning not only affects the appearance of fruits but also adversely affects their taste and flavor. In the present study, we observed browning in different apple varieties over time and analyzed the expression of genes in the polyphenol oxidase gene family. The results indicated a strong correlation between the browning degree of the fruit and the relative expression of the polyphenol oxidase gene MdPPO2. With the MdPPO2 promoter as bait, the basic leucine zipper (bZIP) transcription factor MdbZIP44 was identified using the yeast single-hybrid screening method. Further investigation revealed that the overexpression of MdbZIP44 in 'Orin' callus could enhance the expression of MdPPO2 and promote browning of the callus. However, knocking out MdbZIP44 resulted in a callus with no apparent browning phenotype. In addition, our results confirmed the interaction between MdbZIP44 and MdbZIP11. In conclusion, the results indicated that MdbZIP44 can induce apple fruit browning by activating the MdPPO2 promoter. The results provide a theoretical basis for further clarifying the browning mechanism of apple fruit.


Subject(s)
Fruit , Malus , Plant Proteins , Promoter Regions, Genetic , Malus/genetics , Malus/metabolism , Promoter Regions, Genetic/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics
10.
J Texture Stud ; 55(4): e12852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952166

ABSTRACT

The development of thickening powders for the management of dysphagia is imperative due to the rapid growth of aging population and prevalence of the dysphagia. One promising thickening agent that can be used to formulate dysphagia diets is basil seed mucilage (BSM). This work investigates the effects of dispersing media, including water, milk, skim milk, and apple juice, on the rheological and tribological properties of the BSM-thickened liquids. Shear rheology results revealed that the thickening ability of BSM in these media in ascending order is milk < skim milk ≈ apple juice < water. On the other hand, extensional rheology demonstrated that the longest filament breakup time was observed when BSM was dissolved in milk, followed by skim milk, water, and apple juice. Furthermore, tribological measurements showed varying lubrication behavior, depending on the BSM concentration and dispersing media. Dissolution of BSM in apple juice resulted in the most superior lubrication property compared with that in other dispersing media. Overall, this study provides insights on BSM's application as a novel gum-based thickening powder in a range of beverages and emphasizes how important it is for consumers to have clear guidance for the use of BSM in dysphagia management.


Subject(s)
Ocimum basilicum , Plant Mucilage , Rheology , Seeds , Ocimum basilicum/chemistry , Seeds/chemistry , Plant Mucilage/chemistry , Animals , Milk/chemistry , Viscosity , Deglutition Disorders , Malus/chemistry , Fruit and Vegetable Juices/analysis , Humans , Water , Powders , Lubrication
11.
Georgian Med News ; (349): 126-136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38963216

ABSTRACT

The present study was dealing with a Polyphenolic compound known as Phloretin. Phloretin (Ph), a dihydrochalcone, was determined qualitatively and quantitatively in different aerial parts for Iraqi Malus domestica (apple), cv." Ibrahimi" included leaves, petioles, stems, fruit pulp, and peels extracts. Leaves represented a rich source of Ph, which was separated and purified by preparative HPLC. The chemical structure of the isolated Phloretin (Ph2) was confirmed using various analytical characterization techniques: TLC, HPLC, FTIR, Melting point, CHN elemental analyses, 1H-NMR, and 13C-NMR). The scavenging efficacy of Ph2 by DPPH assay was employed. Cytotoxic effect was assessed by MTT assay against cancer cell lines including (Hep G2/ human hepatocyte carcinoma, A549/ human lung adenocarcinoma, SW480 / human colon cancer cell, and AGS /adenocarcinoma of the stomach), beside the non-cancerous cell line (HEK 293). About 1.404 g Ph2 was obtained from 18.146 g apple leaves (7.7%). The DPPH and MTT assay results demonstrated that the purified Ph2 possessed potent antioxidant activity with significant anticancer effects on all cancer cell lines. Data suggested that purified Ph2 from Iraqi apple leaves has potential antioxidant, cytotoxicity, which may benefit in human health.


Subject(s)
Malus , Phloretin , Plant Leaves , Humans , Malus/chemistry , Plant Leaves/chemistry , Phloretin/pharmacology , Phloretin/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , HEK293 Cells , A549 Cells , Cell Line, Tumor , Hep G2 Cells , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Iraq
12.
Article in English | MEDLINE | ID: mdl-38981203

ABSTRACT

Considering comprehensive utilization of natural products, isolation and activity determination processes of bioactive compounds are essential. In this study, a combined high-speed countercurrent chromatography (HSCCC) with preparative HPLC method was developed to isolate the five antioxidant polyphenols from 75% ethanol extract of Malus pumila Mill. leaves. The HSCCC conditions were optimized by response surface methodology (RSM) considering two response indexes including retention of stationary phase and analysis time. The optimal HSCCC conditions were flow rate of 2.11 mL/min, revolution speed of 717 rpm, and temperature of 25℃, with a solvent system of ethyl acetate/methanol/water (10:1:10, v/v/v). The unseparated fractions obtained from HSCCC were subjected to preparative HPLC for further isolation. As a result, phloridzin (15.3 mg), isoquercitrin (2.1 mg), quercetin 3-O-xyloside (1.9 mg), quercetin-3-O-arabinoside (4.0 mg), and quercitrin (2.0 mg) were isolated from 200.0 mg extracts. The purities of these compounds were all above 92%. Their chemical structures were identified by mass spectrometer and nuclear magnetic resonance. The five isolated compounds were further investigated for their rat hippocampal neuroprotective effects against hydrogen peroxide-induced oxidative stress. No cytotoxicity was observed in all tested concentrations. While all five compounds except phloridzin showed significantly neurogenic activities and neuroprotective effects, especially at the concentration of 0.5 mg/L. These results demonstrate that RSM is a suitable technique for optimisation of HSCCC and the isolated polyphenols can be used as antioxidants in pharmaceutical and food products.


Subject(s)
Countercurrent Distribution , Malus , Plant Extracts , Plant Leaves , Polyphenols , Countercurrent Distribution/methods , Polyphenols/isolation & purification , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/analysis , Plant Leaves/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Animals , Rats , Chromatography, High Pressure Liquid/methods , Malus/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification
13.
Food Microbiol ; 123: 104583, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038889

ABSTRACT

Gray mold, caused by Botrytis cinerea, is a prevalent postharvest disease of apple that limits their shelf life, resulting in significant economic losses. The use of antagonistic microorganisms has been shown to be an effective approach for managing postharvest diseases of fruit. In the present study, an endophytic yeast strain PGY-2 was isolated from apples and evaluated for its biocontrol efficacy against gray mold and its mechanisms of action. Results indicated that strain PGY-2, identified as Bullera alba, reduced the occurrence of gray mold on apples and significantly inhibited lesion development in pathogen-inoculated wounds. Gray mold control increased with the use of increasing concentrations of PGY-2, with the best disease control observed at 108 cells/mL. Notably, Bullera alba PGY-2 did not inhibit the growth of Botrytis cinerea in vitro indicating that the yeast antagonist did not produce antimicrobial compounds. The rapid colonization and stable population of PGY-2 in apple wounds at 4 °C and 25 °C confirmed its ability to compete with pathogens for nutrients and space. PGY-2 also had a strong ability to form a biofilm and enhanced the activity of multiple defense-related enzymes (POD, PPO, APX, SOD, PAL) in host tissues. Our study is the first time to report the use of Bullera alba PGY-2 as a biocontrol agent for postharvest diseases of apple and provide evidence that Bullera alba PGY-2 represents an endophytic antagonistic yeast with promising biocontrol potential and alternative to the use of synthetic, chemical fungicides for the control of postharvest gray mold in apples.


Subject(s)
Antibiosis , Botrytis , Endophytes , Fruit , Malus , Plant Diseases , Malus/microbiology , Botrytis/growth & development , Botrytis/physiology , Botrytis/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Endophytes/physiology , Endophytes/isolation & purification , Fruit/microbiology , Yeasts/physiology , Yeasts/isolation & purification , Biofilms/growth & development
14.
Food Microbiol ; 123: 104590, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038895

ABSTRACT

Apple ring rot, one of the most common apple postharvest diseases during storage, is caused by Botryosphaeria dothidea. Presently, the disease management is primarily dependent on chemical fungicide application. Here we demonstrated an endophyte bacterium Bacillus tequilensis QNF2, isolated from Chinese leek (Allium tuberosum) roots considerably suppressed B. dothidea mycelial growth, with the highest suppression of 73.56 % and 99.5 % in the PDA and PDB medium, respectively in vitro confront experiments. In in vivo experiments, B. tequilensis QNF2 exhibited a control efficacy of 88.52 % and 100 % on ring rot disease on postharvest apple fruits inoculated with B. dothidea disc and dipped into B. dothidea culture, respectively. In addition, B. tequilensis QNF2 volatile organic compounds (VOCs) also manifested markedly inhibition against B. dothidea mycelial growth and the ring rot on postharvest apple fruits. Moreover, B. tequilensis QNF2 severely damaged the mycelial morphology of B. dothidea. Finally, B. tequilensis QNF2 significantly repressed the expression of six pathogenicity-related genes, such as adh, aldh, aldh3, galm, pdc1, pdc2, involved in glycolysis/gluconeogenesis of B. dothidea. The findings of the study proved that B. tequilensis QNF2 was a promising alternative for controlling apple ring rot of postharvest apple fruit.


Subject(s)
Ascomycota , Bacillus , Endophytes , Fruit , Malus , Plant Diseases , Malus/microbiology , Plant Diseases/microbiology , Ascomycota/growth & development , Ascomycota/drug effects , Ascomycota/genetics , Ascomycota/physiology , Bacillus/genetics , Bacillus/physiology , Bacillus/isolation & purification , Endophytes/genetics , Endophytes/metabolism , Endophytes/isolation & purification , Endophytes/classification , Endophytes/physiology , Fruit/microbiology , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Antibiosis , Mycelium/growth & development , Mycelium/drug effects
15.
Food Res Int ; 191: 114614, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059894

ABSTRACT

The aim of the present study was to assess the performance and complementarity of methods capable of both quantifying furan, 2-Methylfuran (2-MF) and 3-Methylfuran (3-MF) in infant foods, but also to comprehensively explore other furan derivatives. It is more particularly a question of validating and comparing the couplings of the two headspace extraction methods most used for the analysis of furan compounds - Headspace Solid Phase Microextraction (HS-SPME) and Static HeadSpace (SHS) - with gas chromatography hyphenated to a high-resolution mass detector (Q Exactive-Orbitrap MS) which allows both targeted quantification and suspect screening. Firstly, the accuracy profile approach was implemented to assess, validate and compare HS-SPME- and SHS-GC-Q Exactive-Orbitrap MS for the quantification of furan in two model infant foods, apple puree and first infant formula. SHS-GC-Q Exactive-Orbitrap MS, showed better accuracy (uncertainty < 17.2 % vs 22.5 % for HS-SPME GC-Q Exactive-Orbitrap MS) and better sensitivity (LOQ < 2.8 vs LOQ < 4.0 µg/kg) over a broader validation range (2-100 µg/kg vs 5-100 µg/kg in apple puree). Secondly, SHS-GC-Q Exactive-Orbitrap MS was assessed and validated by accuracy profile for the quantification of 2-MF and 3-MF, with performance close to those for furan except for 3-MF in apple puree. Thirdly, SHS-GC-Q Exactive-Orbitrap MS was used to quantify the levels of these compounds in 20 commercial samples (n = 3) belonging to the four main categories of infant food (infant formulae, fruit purees, infant cereals, vegetable/fish baby meals). Furan was quantified in 75 % of the samples, with maximum levels in the vegetable/fish-based infant foods (up to 127 µg/kg) while 2-MF and 3-MF were quantified in 45 % and 15 % of products respectively, with maximum levels of 14.1 µg/kg in follow-on formula 3rd age and 9.2 µg/kg in apple puree. Finally, SHS- and HS-SPME-GC-Q Exactive-Orbitrap MS data of the 20 infant products were processed in suspect screening mode using Compound DiscovererTM software. Coupling with HS-SPME, it made it possible to identify 13 additional furan derivatives, i.e. 5 more than with SHS. The relevance and safety status of the compounds identified are discussed.


Subject(s)
Furans , Gas Chromatography-Mass Spectrometry , Infant Food , Solid Phase Microextraction , Furans/analysis , Gas Chromatography-Mass Spectrometry/methods , Infant Food/analysis , Solid Phase Microextraction/methods , Humans , Infant , Food Contamination/analysis , Reproducibility of Results , Infant Formula/chemistry , Malus/chemistry
16.
Plant Cell Rep ; 43(7): 187, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958739

ABSTRACT

KEY MESSAGE: MdERF023 is a transcription factor that can reduce salt tolerance by inhibiting ABA signaling and Na+/H+ homeostasis. Salt stress is one of the principal environmental stresses limiting the growth and productivity of apple (Malus × domestica). The APETALA2/ethylene response factor (AP2/ERF) family plays key roles in plant growth and various stress responses; however, the regulatory mechanism involved has not been fully elucidated. In the present study, we identified an AP2/ERF transcription factor (TF), MdERF023, which plays a negative role in apple salt tolerance. Stable overexpression of MdERF023 in apple plants and calli significantly decreased salt tolerance. Biochemical and molecular analyses revealed that MdERF023 directly binds to the promoter of MdMYB44-like, a positive modulator of ABA signaling-mediated salt tolerance, and suppresses its transcription. In addition, MdERF023 downregulated the transcription of MdSOS2 and MdAKT1, thereby reducing the Na+ expulsion, K+ absorption, and salt tolerance of apple plants. Taken together, these results suggest that MdERF023 reduces apple salt tolerance by inhibiting ABA signaling and ion transport, and that it could be used as a potential target for breeding new varieties of salt-tolerant apple plants via genetic engineering.


Subject(s)
Gene Expression Regulation, Plant , Malus , Plant Proteins , Salt Tolerance , Signal Transduction , Transcription Factors , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Malus/genetics , Malus/metabolism , Malus/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Salt Tolerance/genetics , Sodium/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
17.
J Agric Food Chem ; 72(29): 16191-16203, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38990326

ABSTRACT

Interactions between phenolic compounds and the allergen Mal d 1 are discussed to be the reason for better tolerance of apple cultivars, which are rich in polyphenols. Because Mal d 1 is susceptible to proteolytic digestion and allergenic symptoms are usually restricted to the mouth and throat area, the release of native Mal d 1 during the oral phase is of particular interest. Therefore, we studied the release of Mal d 1 under different in vitro oral digestion conditions and revealed that only 6-15% of the total Mal d 1 present in apples is released. To investigate proposed polyphenol-Mal d 1 interactions, various analytical methods, e.g., isothermal titration calorimetry, 1H-15N-HSQC NMR, and untargeted mass spectrometry, were applied. For monomeric polyphenols, only limited noncovalent interactions were observed, whereas oligomeric polyphenols and browning products caused aggregation. While covalent modifications were not detectable in apple samples, a Michael addition of epicatechin at cysteine 107 in r-Mal d 1.01 was observed.


Subject(s)
Allergens , Malus , Polyphenols , Malus/chemistry , Malus/immunology , Polyphenols/chemistry , Allergens/immunology , Allergens/chemistry , Plant Proteins/chemistry , Plant Proteins/immunology , Magnetic Resonance Spectroscopy , Fruit/chemistry , Fruit/immunology , Humans , Mass Spectrometry , Digestion , Antigens, Plant
18.
J Agric Food Chem ; 72(29): 16221-16236, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38996349

ABSTRACT

A hundred million tons of young apples are thinned and discarded in the orchard per year, aiming to increase the yield and quality of apples. We fermented thinned young apples using a potential probiotic fungus, Eurotium cristatum, which notably disrupted the microstructure of raw samples, as characterized by the scanning electron microscope. Fermentation substantially altered the metabolite profiles of samples, which are predicted to alleviate colitis via regulating inflammatory response and response to lipopolysaccharide by using network pharmacology analysis. In vivo, oral gavage of water extracts of E. cristatum fermented young apples (E.YAP) effectively alleviated DSS-induced colitis, restored the histopathology damage, reduced the levels of inflammatory cytokines, and promoted colonic expressions of tight junction proteins. Moreover, E.YAP ameliorated gut dysbacteriosis by increasing abundances of Lactobacillus,Blautia, Muribaculaceae, and Prevotellaceae_UCG-001 while inhibiting Turicibacter, Alistipes, and Desulfovibrio. Importantly, E.YAP increased colonic bile acids, such as CA, TCA, DCA, TUDCA, and LCA, thereby alleviating colitis via PXR/NF-κB signaling. Furthermore, a synbiotic combination with Limosilactobacillus reuteri WX-94, a probiotic strain isolated from feces of healthy individuals with anti-inflammatory properties, augmented anticolitis capacities of E.YAP. Our findings demonstrate that E.YAP could be a novel, potent, food-based anti-inflammatory prebiotic for relieving inflammatory injuries.


Subject(s)
Bacteria , Colitis , Eurotium , Fermentation , Malus , Mice, Inbred C57BL , Animals , Malus/chemistry , Mice , Colitis/microbiology , Colitis/metabolism , Colitis/chemically induced , Humans , Male , Eurotium/metabolism , Eurotium/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Gastrointestinal Microbiome/drug effects , Probiotics/administration & dosage , Probiotics/pharmacology , Fruit/chemistry , Fruit/microbiology , Colon/microbiology , Colon/metabolism , Colon/immunology
19.
MMWR Morb Mortal Wkly Rep ; 73(28): 622-627, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39024176

ABSTRACT

Lead exposure is toxic even at low levels, resulting in impairments that can affect a child's lifelong success. In North Carolina, testing for lead is encouraged for all children at ages 1 and 2 years and required for children covered by Medicaid; investigations are performed to identify potential exposure sources for children with blood lead levels (BLLs) ≥5 µg/dL. During June-August 2023, routine lead testing identified four asymptomatic North Carolina children with BLLs ≥5 µg/dL. Home investigations identified only WanaBana brand apple cinnamon fruit puree pouches as a potential exposure source; product samples contained 1.9-3.0 ppm of lead. An expanded nationwide investigation led to identification of approximately 500 cases of childhood lead exposure believed to be linked to consumption of apple cinnamon purees, including 22 cases in North Carolina. Fewer than one half (45%) of the 22 North Carolina cases were among children covered by Medicaid. A coordinated multiagency communication strategy was implemented in North Carolina to notify consumers of the hazard and provide recommendations for preventing further exposure. The Food and Drug Administration issued a nationwide public health advisory on October 28, 2023; 2 days later, the manufacturer issued a voluntary recall. Routine testing of young children for lead exposure, combined with thorough environmental investigations, can identify emerging sources of lead exposure and limit further harm.


Subject(s)
Lead Poisoning , Lead , Humans , North Carolina/epidemiology , Lead/blood , Lead/analysis , Infant , Child, Preschool , Lead Poisoning/epidemiology , Malus , Fruit/chemistry , Cinnamomum zeylanicum/chemistry , Food Contamination , Female , Food Packaging , Environmental Exposure/analysis , Male
20.
J Food Prot ; 87(8): 100324, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960322

ABSTRACT

Controlling Listeria in produce packinghouses can be challenging due to the large number of potential contamination routes. For example, repeated isolation of the same Listeria subtype in a packinghouse could indicate persistence in the packinghouse or reintroduction of the same Listeria from an upstream source. To improve understanding of Listeria transmission patterns in packinghouses, we performed a longitudinal study in four apple packinghouses, including testing of 1,339 environmental sponges and whole genome sequencing (WGS)-based characterization of 280 isolates. Root cause analysis and subsequent intervention implementation were also performed and assessed for effectiveness. Listeria prevalence among environmental sponges collected from the four packinghouses was 20% (range of 5-31% for individual packinghouses). Sites that showed high Listeria prevalence included drains, forklift tires and forks, forklift stops, and waxing area equipment frames. A total of 240/280 WGS-characterized isolates were represented in 41 clusters, each containing two or more isolates that differed by ≤50 high-quality single nucleotide polymorphisms (hqSNPs); 21 clusters were isolated from one packinghouse over ≥2 samplings (suggesting persistence or possibly reintroduction), while 11 clusters included isolates from >2 packinghouses, suggesting common upstream sources. Some interventions successfully (i) reduced Listeria detection on forklift tires and forks (across packinghouses) and (ii) mitigated packinghouse-specific Listeria issues (e.g., in catch pans). However, interventions that lacked enhanced equipment disassembly when persistence was suspected typically appeared to be unsuccessful. Overall, while our data suggest a combination of intensive environmental sampling with subtyping and root cause analysis can help identify effective interventions, implementation of effective interventions continues to be a challenge in packinghouses.


Subject(s)
Environmental Monitoring , Food Contamination , Food Microbiology , Listeria , Malus , Malus/microbiology , Food Contamination/analysis , Food Contamination/prevention & control , Humans
SELECTION OF CITATIONS
SEARCH DETAIL