Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.081
Filter
1.
Methods Mol Biol ; 2850: 417-434, 2025.
Article in English | MEDLINE | ID: mdl-39363085

ABSTRACT

Golden Gate Assembly (GGA) represents a versatile method for assembling multiple DNA fragments into a single molecule, which is widely used in rapid construction of complex expression cassettes for metabolic engineering. Here we describe the GGA method for facile construction and optimization of lycopene biosynthesis pathway by the combinatorial assembly of different transcriptional units (TUs). Furthermore, we report the method for characterizing and improving lycopene production in the synthetic yeast chassis.


Subject(s)
Cloning, Molecular , Lycopene , Metabolic Engineering , Saccharomyces cerevisiae , Lycopene/metabolism , Metabolic Engineering/methods , Cloning, Molecular/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Carotenoids/metabolism , Biosynthetic Pathways/genetics
2.
Microb Cell Fact ; 23(1): 261, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350198

ABSTRACT

BACKGROUND: ß-Arbutin, found in the leaves of bearberry, stands out as one of the globally acknowledged eco-friendly whitening additives in recent years. However, the natural abundance of ß-Arbutin is low, and the cost-effectiveness of using chemical synthesis or plant extraction methods is low, which cannot meet the requirements. While modifying the ß-Arbutin synthesis pathway of existing strains is a viable option, it is hindered by the limited synthesis capacity of these strains, which hinders further development and application. RESULTS: In this study, we established a biosynthetic pathway in Komagataella phaffii for ß-Arbutin production with a titer of 1.58 g/L. Through diverse metabolic strategies, including fusion protein construction, enhancing shikimate pathway flux, and augmenting precursor supplies (PEP, E4P, and UDPG), we significantly increased ß-Arbutin titer to 4.32 g/L. Further optimization of methanol concentration in shake flasks led to a titer of 6.32 g/L titer after 120 h of fermentation, representing a fourfold increase over the initial titer. In fed-batch fermentation, strain UA3-10 set a record with the highest production to date, reaching 128.6 g/L in a 5 L fermenter. CONCLUSIONS: This is the highest yield in the fermentation tank level of using microbial cell factories for de novo synthesis of ß-Arbutin. Applying combinatorial engineering strategies has significantly improved the ß-Arbutin yield in K. phaffii and is a promising approach for synthesizing functional products using a microbial cell factory. This study not only advances low-cost fermentation-based production of ß-Arbutin but also establishes K. phaffii as a promising chassis cell for synthesizing other aromatic amino acid metabolites.


Subject(s)
Arbutin , Fermentation , Metabolic Engineering , Saccharomycetales , Metabolic Engineering/methods , Arbutin/biosynthesis , Arbutin/metabolism , Saccharomycetales/metabolism , Biosynthetic Pathways
3.
Microb Biotechnol ; 17(10): e70024, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39365609

ABSTRACT

Phthalic acid esters (PAEs) are synthetic diesters derived from o-phthalic acid, commonly used as plasticizers. These compounds pose significant environmental and health risks due to their ability to leach into the environment and act as endocrine disruptors, carcinogens, and mutagens. Consequently, PAEs are now considered major emerging contaminants and priority pollutants. Microbial degradation, primarily by bacteria and fungi, offers a promising method for PAEs bioremediation. This article highlights the current state of microbial PAEs degradation, focusing on the major bottlenecks and associated challenges. These include the identification of novel and more efficient PAE hydrolases to address the complexity of PAE mixtures in the environment, understanding PAEs uptake mechanisms, characterizing novel o-phthalate degradation pathways, and studying the regulatory network that controls the expression of PAE degradation genes. Future research directions include mitigating the impact of PAEs on health and ecosystems, developing biosensors for monitoring and measuring bioavailable PAEs concentrations, and valorizing these residues into other products of industrial interest, among others.


Subject(s)
Bacteria , Biodegradation, Environmental , Esters , Phthalic Acids , Phthalic Acids/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/enzymology , Esters/metabolism , Metabolic Engineering/methods , Environmental Pollutants/metabolism , Hydrolases/metabolism , Hydrolases/genetics
4.
NPJ Syst Biol Appl ; 10(1): 109, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39353984

ABSTRACT

Engineered microorganisms have emerged as viable alternatives for limonene production. However, issues such as low enzyme abundance or activities, and regulatory feedback/forward inhibition may reduce yields. To understand the underlying metabolism, we adopted a systems biology approach for an engineered limonene-producing Escherichia coli strain K-12 MG1655. Firstly, we generated time-series metabolomics data and, secondly, developed a dynamic model based on enzyme dynamics to track the native metabolic networks and the engineered mevalonate pathway. After several iterations of model fitting with experimental profiles, which also included 13C-tracer studies, we performed in silico knockouts (KOs) of all enzymes to identify bottleneck(s) for optimal limonene yields. The simulations indicated that ALDH/ADH (aldehyde dehydrogenase/alcohol dehydrogenase) and LDH (lactate dehydrogenase) suppression, and HK (hexokinase) enhancement would increase limonene yields. Experimental confirmation was achieved, where ALDH-ADH and LDH KOs, and HK overexpression improved limonene yield by 8- to 11-fold. Our systems biology approach can guide microbial strain re-engineering for optimal target production.


Subject(s)
Escherichia coli , Limonene , Metabolic Engineering , Systems Biology , Limonene/metabolism , Systems Biology/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Metabolomics/methods , Computer Simulation , Terpenes/metabolism , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics , Models, Biological , Mevalonic Acid/metabolism
5.
Commun Biol ; 7(1): 1263, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367037

ABSTRACT

Natural secondary metabolites are medically, agriculturally, and industrially beneficial to humans. For mass production, a heterologous production system is required, and various metabolic engineering trials have been reported in Escherichia coli and Saccharomyces cerevisiae to increase their production levels. Recently, filamentous fungi, especially Aspergillus oryzae, have been expected to be excellent hosts for the heterologous production of natural products; however, large-scale metabolic engineering has hardly been reported. Here, we elucidated candidate metabolic pathways to be modified for increased model terpene production by RNA-seq and metabolome analyses in A. oryzae and selected pathways such as ethanol fermentation, cytosolic acetyl-CoA production from citrate, and the mevalonate pathway. We performed metabolic modifications targeting these pathways using CRISPR/Cas9 genome editing and demonstrated their effectiveness in heterologous terpene production. Finally, a strain containing 13 metabolic modifications was generated, which showed enhanced heterologous production of pleuromutilin (8.5-fold), aphidicolin (65.6-fold), and ophiobolin C (28.5-fold) compared to the unmodified A. oryzae strain. Therefore, the strain generated by engineering multiple metabolic pathways can be employed as a versatile highly-producing host for a wide variety of terpenes.


Subject(s)
Aspergillus oryzae , Biological Products , Gene Editing , Metabolic Engineering , Metabolic Networks and Pathways , Metabolic Engineering/methods , Gene Editing/methods , Biological Products/metabolism , Aspergillus oryzae/genetics , Aspergillus oryzae/metabolism , Metabolic Networks and Pathways/genetics , CRISPR-Cas Systems , Terpenes/metabolism
6.
Microb Cell Fact ; 23(1): 262, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367393

ABSTRACT

D-Xylitol is a naturally occurring sugar alcohol present in diverse plants that is used as an alternative sweetener based on a sweetness similar to sucrose and several health benefits compared to conventional sugar. However, current industrial methods for D-xylitol production are based on chemical hydrogenation of D-xylose, which is energy-intensive and environmentally harmful. However, efficient conversion of L-arabinose as an additional highly abundant pentose in lignocellulosic materials holds great potential to broaden the range of applicable feedstocks. Both pentoses D-xylose and L-arabinose are converted to D-xylitol as a common metabolic intermediate in the native fungal pentose catabolism.To engineer a strain capable of accumulating D-xylitol from arabinan-rich agricultural residues, pentose catabolism was stopped in the ascomycete filamentous fungus Aspergillus niger at the stage of D-xylitol by knocking out three genes encoding enzymes involved in D-xylitol degradation (ΔxdhA, ΔsdhA, ΔxkiA). Additionally, to facilitate its secretion into the medium, an aquaglyceroporin from Saccharomyces cerevisiae was tested. In S. cerevisiae, Fps1 is known to passively transport glycerol and is regulated to convey osmotic stress tolerance but also exhibits the ability to transport other polyols such as D-xylitol. Thus, a constitutively open version of this transporter was introduced into A. niger, controlled by multiple promoters with varying expression strengths. The strain expressing the transporter under control of the PtvdA promoter in the background of the pentose catabolism-deficient triple knock-out yielded the most favorable outcome, producing up to 45% D-xylitol from L-arabinose in culture supernatants, while displaying minimal side effects during osmotic stress. Due to its additional ability to extract D-xylose and L-arabinose from lignocellulosic material via the production of highly active pectinases and hemicellulases, A. niger emerges as an ideal candidate cell factory for D-xylitol production from lignocellulosic biomasses rich in both pentoses.In summary, we are showing for the first time an efficient biosynthesis of D-xylitol from L-arabinose utilizing a filamentous ascomycete fungus. This broadens the potential resources to include also arabinan-rich agricultural waste streams like sugar beet pulp and could thus help to make alternative sweetener production more environmentally friendly and cost-effective.


Subject(s)
Arabinose , Aspergillus niger , Metabolic Engineering , Xylitol , Aspergillus niger/metabolism , Aspergillus niger/genetics , Arabinose/metabolism , Xylitol/metabolism , Xylitol/biosynthesis , Metabolic Engineering/methods , Xylose/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics
7.
Microb Cell Fact ; 23(1): 264, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367476

ABSTRACT

BACKGROUND: Whey, which has high biochemical oxygen demand and chemical oxygen demand, is mass-produced as a major by-product of the dairying industry. Microbial fermentation using whey as the carbon source may convert this potential pollutant into value-added products. This study investigated the potential of using whey powder to produce α-ketoisovalerate, an important platform chemical. RESULTS: Klebsiella oxytoca VKO-9, an efficient L-valine producing strain belonging to Risk Group 1 organism, was selected for the production of α-ketoisovalerate. The leucine dehydrogenase and branched-chain α-keto acid dehydrogenase, which catalyzed the reductive amination and oxidative decarboxylation of α-ketoisovalerate, respectively, were inactivated to enhance the accumulation of α-ketoisovalerate. The production of α-ketoisovalerate was also improved through overexpressing α-acetolactate synthase responsible for pyruvate polymerization and mutant acetohydroxyacid isomeroreductase related to α-acetolactate reduction. The obtained strain K. oxytoca KIV-7 produced 37.3 g/L of α-ketoisovalerate from lactose, the major utilizable carbohydrate in whey. In addition, K. oxytoca KIV-7 also produced α-ketoisovalerate from whey powder with a concentration of 40.7 g/L and a yield of 0.418 g/g. CONCLUSION: The process introduced in this study enabled efficient α-ketoisovalerate production from low-cost substrate whey powder. Since the key genes for α-ketoisovalerate generation were integrated in genome of K. oxytoca KIV-7 and constitutively expressed, this strain is promising in stable α-ketoisovalerate fermentation and can be used as a chassis strain for α-ketoisovalerate derivatives production.


Subject(s)
Fermentation , Hemiterpenes , Klebsiella oxytoca , Metabolic Engineering , Whey , Klebsiella oxytoca/metabolism , Klebsiella oxytoca/genetics , Whey/metabolism , Metabolic Engineering/methods , Hemiterpenes/metabolism , Powders , Acetolactate Synthase/metabolism , Acetolactate Synthase/genetics , Keto Acids
8.
Biotechnol J ; 19(10): e202400237, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39380490

ABSTRACT

Squalene (C30H50) is an acyclic triterpenoid compound renowned for its myriad physiological functions, such as anticancer and antioxidative properties, rendering it invaluable in both the food and pharmaceutical sectors. Due to the natural resource constraints, microbial fermentation has emerged as a prominent trend. Schizochytrium sp., known to harbor the intact mevalonate acid (MVA) pathway, possesses the inherent capability to biosynthesize squalene. However, there is a dearth of reported key genes in both the MVA and the squalene synthesis pathways, along with the associated promoter elements for their modification. This study commenced by cloning and characterizing 13 endogenous promoters derived from transcriptome sequencing data. Subsequently, five promoters exhibiting varying expression intensities were chosen from the aforementioned pool to facilitate the overexpression of the squalene synthase gene squalene synthetase (SQS), pivotal in the MVA pathway. Ultimately, a transformed strain designated as SQS-3626, exhibiting squalene production 2.8 times greater than that of the wild-type strain, was identified. Finally, the optimization of nitrogen source concentrations and trace element contents in the fermentation medium was conducted. Following 120 h of fed-batch fermentation, the accumulated final squalene yield in the transformed strain SQS-3626 reached 2.2 g/L.


Subject(s)
Farnesyl-Diphosphate Farnesyltransferase , Fermentation , Mevalonic Acid , Promoter Regions, Genetic , Squalene , Stramenopiles , Squalene/metabolism , Stramenopiles/genetics , Stramenopiles/metabolism , Mevalonic Acid/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Metabolic Engineering/methods , Cloning, Molecular/methods
9.
Biotechnol J ; 19(10): e202400351, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39380497

ABSTRACT

Heme is a key ingredient required to mimic the color and flavor of meat in plant-based alternatives. This study aimed to develop a yeast-based microbial cell factory for efficient and sustainable production of heme. To this end, first, Hem12p (uroporphyrinogen decarboxylase) was identified as the rate-limiting enzyme in the heme biosynthetic pathway present in Saccharomyces cerevisiae D452-2. Next, we investigated the effects of disruption of the genes involved in the competition for heme biosynthesis precursors, transcriptional repression, and heme degradation (HMX1) on heme production efficiency. Of the knock-out strains constructed in this study, only the HMX1-deficient strain produced heme at a higher concentration than the background strain without gene disruption. In addition, overexpression of PUG1 encoding a plasma membrane transporter involved in protoporphyrin IX (the precursor to heme biosynthesis) uptake led to a significant increase in intracellular heme concentration. As a result, among the various engineered strains constructed in this study, the ΔHMX1/H3&12 + PUG1 strain, the HMX1-deficient strain overexpressing HEM3, HEM12, and PUG1, produced the highest concentration of heme (4.6 mg/L) in batch fermentation, which was 3.9-fold higher than that produced by the wild-type D452-2 strain. In a glucose-limited fed-batch fermentation, the ΔHMX1/H3&12 + PUG1 strain produced 28 mg/L heme in 66 h.


Subject(s)
Fermentation , Heme , Metabolic Engineering , Saccharomyces cerevisiae , Heme/metabolism , Heme/biosynthesis , Metabolic Engineering/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
10.
Microb Biotechnol ; 17(10): e70022, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39374140

ABSTRACT

In Komagataella phaffii (Pichia pastoris), formate is a recognized alternative inducer to methanol for expression systems based on the AOX1 promoter (pAOX1). By disrupting the formate dehydrogenase encoding FDH1 gene, we converted such a system into a self-induced one, as adding any inducer in the culture medium is no longer requested for pAOX1 induction. In cells, formate is generated from serine through the THF-C1 metabolism, and it cannot be converted into carbon dioxide in a FdhKO strain. Under non-repressive culture conditions, such as on sorbitol, the intracellular formate generated from the THF-C1 metabolism is sufficient to induce pAOX1 and initiate protein synthesis. This was evidenced for two model proteins, namely intracellular eGFP and secreted CalB lipase from C. antarctica. Similar protein productivities were obtained for a FdhKO strain on sorbitol and a non-disrupted strain on sorbitol-methanol. Considering a K. Phaffii FdhKO strain as a workhorse for recombinant protein synthesis paves the way for the further development of methanol-free processes in K. phaffii.


Subject(s)
Formate Dehydrogenases , Formates , Promoter Regions, Genetic , Saccharomycetales , Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , Formates/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Metabolic Engineering , Sorbitol/metabolism , Gene Expression Regulation, Fungal
11.
Appl Microbiol Biotechnol ; 108(1): 481, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377797

ABSTRACT

Diatoms are responsible for 20% of global carbon dioxide fixation and have significant potential in various biotechnological and industrial applications. Recently, the pennate diatom Phaeodactylum tricornutum has emerged as a prominent platform organism for metabolic engineering and synthetic biology. The availability of its genome sequence has facilitated the development of new bioengineering tools. In this study, we used in silico analyses to identify sequences potentially encoding thrombin-like proteins, which are involved in recognizing and cleaving the thrombin sequence LVPRGS in P. tricornutum. Protein structure prediction and docking studies indicated a similar active site and ligand positioning compared to characterized human and bovine thrombin. The evidence and efficiency of the cleavage were determined in vivo using two fusion-protein constructs that included YFP to measure expression, protein accumulation, and cleavage. Western blot analysis revealed 50-100% cleavage between YFP and N-terminal fusion proteins. Our findings suggest the existence of a novel thrombin-like protease in P. tricornutum. This study advances the application of diatoms for the synthesis and production of complex proteins and enhances our understanding of the functional role of these putative thrombin sequences in diatom physiology. KEY POINTS: • Protein structure predictions reveal thrombin-like active sites in P. tricornutum. • Validated cleavage efficiency of thrombin-like protease on fusion proteins in vivo. • Study advances bioengineering tools for diatom-based biotechnological applications.


Subject(s)
Diatoms , Thrombin , Diatoms/genetics , Diatoms/metabolism , Thrombin/metabolism , Catalytic Domain , Biotechnology , Molecular Docking Simulation , Humans , Animals , Metabolic Engineering , Protein Conformation
12.
Microb Cell Fact ; 23(1): 267, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375675

ABSTRACT

BACKGROUND: Gene expression noise (variation in gene expression among individual cells of a genetically uniform cell population) can result in heterogenous metabolite production by industrial microorganisms, with cultures containing both low- and high-producing cells. The presence of low-producing individuals may be a factor limiting the potential for high yields. This study tested the hypothesis that low-producing variants in yeast cell populations can be continuously counter-selected, to increase net production of glutathione (GSH) as an exemplar product. RESULTS: A counter-selection system was engineered in Saccharomyces cerevisiae based on the known feedback inhibition of gamma-glutamylcysteine synthetase (GSH1) gene expression, which is rate limiting for GSH synthesis: the GSH1 ORF and the counter-selectable marker GAP1 were expressed under control of the TEF1 and GSH-regulated GSH1 promoters, respectively. An 18% increase in the mean cellular GSH level was achieved in cultures of the engineered strain supplemented with D-histidine to counter-select cells with high GAP1 expression (i.e. low GSH-producing cells). The phenotype was non-heritable and did not arise from a generic response to D-histidine, unlike that with certain other test-constructs prepared with alternative markers. CONCLUSIONS: The results corroborate that the system developed here improves GSH production by targeting low-producing cells. This supports the potential for exploiting end-product/promoter interactions to enrich high-producing cells in phenotypically heterogeneous populations, in order to improve metabolite production by yeast.


Subject(s)
Glutamate-Cysteine Ligase , Glutathione , Phenotype , Saccharomyces cerevisiae , Glutathione/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Metabolic Engineering/methods , Promoter Regions, Genetic , Gene Expression Regulation, Fungal , Histidine/metabolism
13.
Microb Cell Fact ; 23(1): 271, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39385269

ABSTRACT

BACKGROUND: Currently, the synthesis of compounds based on microbial cell factories is rapidly advancing, yet it encounters several challenges. During the production process, engineered strains frequently encounter disturbances in the cultivation environment or the impact of their metabolites, such as high temperature, acid-base imbalances, hypertonicity, organic solvents, toxic byproducts, and mechanical damage. These stress factors can constrain the efficiency of microbial fermentation, resulting in slow cell growth, decreased production, significantly increased energy consumption, and other issues that severely limit the application of microbial cell factories. RESULTS: This study demonstrated that sterol engineering in Kluyveromyces marxianus, achieved by overexpressing or deleting the coding genes for the last five steps of ergosterol synthase (Erg2-Erg6), altered the composition and ratio of sterols in its cell membrane, and affected its multiple tolerance. The results suggest that the knockout of the Erg5 can enhance the thermotolerance of K. marxianus, while the overexpression of the Erg4 can improve its acid tolerance. Additionally, engineering strain overexpressed Erg6 improved its tolerance to elevated temperature, hypertonic, and acid. YZB453, obtained by overexpressing Erg6 in an engineering strain with high efficiency in synthesizing xylitol, produced 101.22 g/L xylitol at 45oC and 75.11 g/L xylitol at 46oC. Using corncob hydrolysate for simultaneous saccharification and fermentation (SSF) at 46oC that xylose released from corncob hydrolysate by saccharification with hemicellulase, YZB453 can produce 45.98 g/L of xylitol, saving 53.72% of the cost of hemicellulase compared to 42oC. CONCLUSIONS: This study elucidates the mechanism by which K. marxianus acquires resistance to various antifungal drugs, high temperatures, high osmolarity, acidity, and other stressors, through alterations in the composition and ratio of membrane sterols. By employing sterol engineering, the fermentation temperature of this unconventional thermotolerant K. marxianus was further elevated, ultimately providing an efficient platform for synthesizing high-value-added xylitol from biomass via the SSF process at temperatures exceeding 45 °C.


Subject(s)
Fermentation , Kluyveromyces , Sterols , Xylitol , Kluyveromyces/metabolism , Kluyveromyces/genetics , Xylitol/biosynthesis , Xylitol/metabolism , Sterols/metabolism , Sterols/biosynthesis , Metabolic Engineering/methods , Fungal Proteins/metabolism , Fungal Proteins/genetics
14.
Nat Commun ; 15(1): 8759, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384562

ABSTRACT

Protoberberine alkaloids and benzophenanthridine alkaloids (BZDAs) are subgroups of benzylisoquinoline alkaloids (BIAs), which represent a diverse class of plant-specialized natural metabolites with many pharmacological properties. Microbial biosynthesis has been allowed for accessibility and scalable production of high-value BIAs. Here, we engineer Saccharomyces cerevisiae to de novo produce a series of protoberberines and BZDAs, including palmatine, berberine, chelerythrine, sanguinarine and chelirubine. An ER compartmentalization strategy is developed to improve vacuole protein berberine bridge enzyme (BBE) activity, resulting in >200% increase on the production of the key intermediate (S)-scoulerine. Another promiscuous vacuole protein dihydrobenzophenanthridine oxidase (DBOX) has been identified to catalyze two-electron oxidation on various tetrahydroprotoberberines at N7-C8 position and dihydrobenzophenanthridine alkaloids. Furthermore, cytosolically expressed DBOX can alleviate the limitation on BBE. This study highlights the potential of microbial cell factories for the biosynthesis of a diverse group of BIAs through engineering of heterologous plant enzymes.


Subject(s)
Benzophenanthridines , Berberine Alkaloids , Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Benzophenanthridines/metabolism , Benzophenanthridines/biosynthesis , Metabolic Engineering/methods , Berberine Alkaloids/metabolism , Alkaloids/metabolism , Alkaloids/biosynthesis , Berberine/metabolism
15.
Nat Commun ; 15(1): 8764, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384563

ABSTRACT

As an abundant agricultural and forestry biomass resource, hemicelluloses are hard to be effectively degraded and utilized by microorganisms due to the constraints of membrane and metabolic regulations. Herein, we report a synthetic extracellular metabolic pathway with hemicellulose-degrading-enzymes controllably displayed on Escherichia coli surface as engineered bacterial consortia members for efficient utilization of xylan, the most abundant component in hemicellulose. Further, we develop a hemicellulose/O2 microbial fuel cell (MFC) configuring of enzyme-engineered bacterial consortia based bioanode and bacterial-displayed laccase based biocathode. The optimized MFC exhibited an open-circuit voltage of 0.71 V and a maximum power density (Pmax) of 174.33 ± 4.56 µW cm-2. Meanwhile, 46.6% (w/w) α-ketoglutarate was produced in this hemicellulose fed-MFC. Besides, the MFC retained over 95% of the Pmax during 6 days' operation. Therefore, this work establishes an effective and sustainable one-pot process for catalyzing renewable biomass into high-value products and electricity in an environmentally-friendly way.


Subject(s)
Bioelectric Energy Sources , Escherichia coli , Polysaccharides , Polysaccharides/metabolism , Bioelectric Energy Sources/microbiology , Escherichia coli/metabolism , Escherichia coli/genetics , Microbial Consortia/physiology , Laccase/metabolism , Laccase/genetics , Biomass , Electricity , Xylans/metabolism , Metabolic Engineering/methods , Electrodes
16.
Carbohydr Polym ; 346: 122592, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245484

ABSTRACT

Potato tubers accumulate substantial quantities of starch, which serves as their primary energy reserve. As the predominant component of potato tubers, starch strongly influences tuber yield, processing quality, and nutritional attributes. Potato starch is distinguished from other food starches by its unique granule morphology and compositional attributes. It possesses large, oval granules with amylose content ranging from 20 to 33 % and high phosphorus levels, which collectively determine the unique physicochemical characteristics. These physicochemical properties direct the utility of potato starch across diverse food and industrial applications. This review synthesizes current knowledge on the molecular factors controlling potato starch biosynthesis and structure-function relationships. Key topics covered are starch granule morphology, the roles and regulation of major biosynthetic enzymes, transcriptional and hormonal control, genetic engineering strategies, and opportunities to tailor starch functionality. Elucidating the contributions of different enzymes in starch biosynthesis has enabled targeted modification of potato starch composition and properties. However, realizing the full potential of this knowledge faces challenges in optimizing starch quality without compromising plant vigor and yield. Overall, integrating multi-omics datasets with advanced genetic and metabolic engineering tools can facilitate the development of elite cultivars with enhanced starch yield and tailored functionalities.


Subject(s)
Metabolic Engineering , Solanum tuberosum , Starch , Solanum tuberosum/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/chemistry , Starch/chemistry , Starch/metabolism , Starch/biosynthesis , Metabolic Engineering/methods , Plant Tubers/metabolism , Plant Tubers/chemistry , Amylose/biosynthesis , Amylose/metabolism , Amylose/chemistry , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics
17.
Microb Biotechnol ; 17(9): e70006, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39235453

ABSTRACT

Feedstock variability represents a challenge in lignocellulosic biorefineries, as it can influence both lignocellulose deconstruction and microbial conversion processes for biofuels and biochemicals production. The impact of feedstock variability on microbial performance remains underexplored, and predictive tools for microbial behaviour are needed to mitigate risks in biorefinery scale-up. Here, twelve batches of corn stover were deconstructed via deacetylation, mechanical refining, and enzymatic hydrolysis to generate lignin-rich and sugar streams. These batches and their derived streams were characterised to identify their chemical components, and the streams were used as substrates for producing muconate and butyrate by engineered Pseudomonas putida and wildtype Clostridium tyrobutyricum, respectively. Bacterial performance (growth, product titers, yields, and productivities) differed among the batches, but no strong correlations were identified between feedstock composition and performance. To provide metabolic insights into the origin of these differences, we evaluated the effect of twenty-three isolated chemical components on these microbes, including three components in relevant bioprocess settings in bioreactors, and we found that growth-inhibitory concentrations were outside the ranges observed in the streams. Overall, this study generates a foundational dataset on P. putida and C. tyrobutyricum performance to enable future predictive models and underscores their resilience in effectively converting fluctuating lignocellulose-derived streams into bioproducts.


Subject(s)
Clostridium tyrobutyricum , Lignin , Metabolic Engineering , Pseudomonas putida , Zea mays , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Lignin/metabolism , Zea mays/microbiology , Clostridium tyrobutyricum/metabolism , Clostridium tyrobutyricum/genetics , Biotransformation , Bioreactors/microbiology , Sugars/metabolism , Butyrates/metabolism
18.
Microb Cell Fact ; 23(1): 246, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261865

ABSTRACT

BACKGROUND: Pseudomonas putida KT2440 has emerged as a promising host for industrial bioproduction. However, its strictly aerobic nature limits the scope of applications. Remarkably, this microbe exhibits high bioconversion efficiency when cultured in an anoxic bio-electrochemical system (BES), where the anode serves as the terminal electron acceptor instead of oxygen. This environment facilitates the synthesis of commercially attractive chemicals, including 2-ketogluconate (2KG). To better understand this interesting electrogenic phenotype, we studied the BES-cultured strain on a systems level through multi-omics analysis. Inspired by our findings, we constructed novel mutants aimed at improving 2KG production. RESULTS: When incubated on glucose, P. putida KT2440 did not grow but produced significant amounts of 2KG, along with minor amounts of gluconate, acetate, pyruvate, succinate, and lactate. 13C tracer studies demonstrated that these products are partially derived from biomass carbon, involving proteins and lipids. Over time, the cells exhibited global changes on both the transcriptomic and proteomic levels, including the shutdown of translation and cell motility, likely to conserve energy. These adaptations enabled the cells to maintain significant metabolic activity for several weeks. Acetate formation was shown to contribute to energy supply. Mutants deficient in acetate production demonstrated superior 2KG production in terms of titer, yield, and productivity. The ∆aldBI ∆aldBII double deletion mutant performed best, accumulating 2KG at twice the rate of the wild type and with an increased yield (0.96 mol/mol). CONCLUSIONS: By integrating transcriptomic, proteomic, and metabolomic analyses, this work provides the first systems biology insight into the electrogenic phenotype of P. putida KT2440. Adaptation to anoxic-electrogenic conditions involved coordinated changes in energy metabolism, enabling cells to sustain metabolic activity for extended periods. The metabolically engineered mutants are promising for enhanced 2KG production under these conditions. The attenuation of acetate synthesis represents the first systems biology-informed metabolic engineering strategy for enhanced 2KG production in P. putida. This non-growth anoxic-electrogenic mode expands our understanding of the interplay between growth, glucose phosphorylation, and glucose oxidation into gluconate and 2KG in P. putida.


Subject(s)
Gluconates , Metabolic Engineering , Pseudomonas putida , Systems Biology , Pseudomonas putida/metabolism , Pseudomonas putida/genetics , Gluconates/metabolism , Metabolic Engineering/methods , Systems Biology/methods , Glucose/metabolism , Proteomics , Multiomics
19.
Int J Mol Sci ; 25(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39273688

ABSTRACT

Bilirubin (BR) is an important ingredient of a valuable Chinese medicine, Calculus bovis. Over recent decades, increasing evidence has confirmed that BR offers health benefits in cardiovascular health, stroke, diabetes, and metabolic syndrome. However, BR is mainly produced by extraction from pig bile. In this study, we assembled an efficient pathway for BR production by metabolic engineering of Escherichia coli. First, heme oxygenase (HO1) and biliverdin reductase were co-expressed in E. coli. HPLC and LC-MS confirmed the accumulation of BR in the recombinant E. coli cells. To improve BR production, the catalytic abilities of HO1 from different species were investigated. In addition, the outermembrane-bound heme receptor (ChuA) and the enzymes involved in heme biosynthesis were overexpressed among which ChuA, 5-aminolevulinic acid dehydratase (HemB), protoporphyrin oxidase (HemG), and ferrochelatase (HemH) were found to enhance BR accumulation in E. coli. In addition, expression of ferredoxin (Fd) was shown to contribute to efficient conversion of heme to BR in E. coli. To increase supply of NADPH, isocitrate dehydrogenase (IDH), NAD kinase (nadK), NADP-specific glutamate dehydrogenase (gdhA), and glucose-6-phosphate 1-dehydrogenase (ZWF) were overexpressed and were found to enhance BR accumulation when these proteins were expressed with a low-copy plasmid pACYCduet-1. Modular optimization of the committed genes led to a titer of 17.2 mg/L in strain M1BHG. Finally, fed-batch fermentation was performed for the strains M1BHG and M1, resulting in accumulation of 75.5 mg/L and 25.8 mg/L of BR, respectively. This is the first report on biosynthesis of BR through metabolic engineering in a heterologous host.


Subject(s)
Bilirubin , Escherichia coli , Metabolic Engineering , Escherichia coli/metabolism , Escherichia coli/genetics , Metabolic Engineering/methods , Bilirubin/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Heme/metabolism , Heme/biosynthesis , Animals , Swine
20.
Microb Cell Fact ; 23(1): 249, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39272067

ABSTRACT

BACKGROUND: Engineering bacteria with the purpose of optimizing the production of interesting molecules often leads to a decrease in growth due to metabolic burden or toxicity. By delaying the production in time, these negative effects on the growth can be avoided in a process called a two-stage fermentation. MAIN TEXT: During this two-stage fermentation process, the production stage is only activated once sufficient cell mass is obtained. Besides the possibility of using external triggers, such as chemical molecules or changing fermentation parameters to induce the production stage, there is a renewed interest towards autoinducible systems. These systems, such as quorum sensing, do not require the extra interference with the fermentation broth to start the induction. In this review, we discuss the different possibilities of both external and autoinduction methods to obtain a two-stage fermentation. Additionally, an overview is given of the tuning methods that can be applied to optimize the induction process. Finally, future challenges and prospects of (auto)inducible expression systems are discussed. CONCLUSION: There are numerous methods to obtain a two-stage fermentation process each with their own advantages and disadvantages. Even though chemically inducible expression systems are well-established, an increasing interest is going towards autoinducible expression systems, such as quorum sensing. Although these newer techniques cannot rely on the decades of characterization and applications as is the case for chemically inducible promoters, their advantages might lead to a shift in future inducible expression systems.


Subject(s)
Fermentation , Quorum Sensing , Bacteria/metabolism , Bacteria/genetics , Metabolic Engineering/methods , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL