Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 770
Filter
1.
Proc Natl Acad Sci U S A ; 121(33): e2405836121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39116128

ABSTRACT

The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic Methylobacterium extorquens AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La3+ ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca2+-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.46-Å resolution by X-ray diffraction. This crystal structure reveals a Lys residue hydrogen-bonded to PQQ at the site analogously occupied by a Lewis acidic cation in ADH. Accordingly, we prepared K142A- and K142D-PqqT variants to assess the relevance of this site toward metal binding. Isothermal titration calorimetry experiments and titrations monitored by UV-Vis absorption and emission spectroscopies support that K142D-PqqT binds tightly (Kd = 0.6 ± 0.2 µM) to La3+ in the presence of bound PQQ and produces spectral signatures consistent with those of ADH enzymes. These spectral signatures are not observed for WT- or K142A-variants or upon addition of Ca2+ to PQQ ⸦ K142D-PqqT. Addition of benzyl alcohol to La3+-bound PQQ ⸦ K142D-PqqT (but not Ca2+-bound PQQ ⸦ K142D-PqqT, or La3+-bound PQQ ⸦ WT-PqqT) produces spectroscopic changes associated with PQQ reduction, and chemical trapping experiments reveal the production of benzaldehyde, supporting ADH activity. By creating a metal binding site that mimics native ADH enzymes, we present a rare earth-dependent artificial metalloenzyme primed for future mechanistic, biocatalytic, and biosensing applications.


Subject(s)
Methylobacterium extorquens , Methylobacterium extorquens/enzymology , Methylobacterium extorquens/metabolism , Metalloproteins/chemistry , Metalloproteins/metabolism , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry , Crystallography, X-Ray , PQQ Cofactor/metabolism , PQQ Cofactor/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Metals, Rare Earth/chemistry , Metals, Rare Earth/metabolism , Models, Molecular , Lanthanum/chemistry , Lanthanum/metabolism
2.
Environ Sci Technol ; 58(32): 14565-14574, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39077826

ABSTRACT

Transitioning to a low-carbon economy, necessary to mitigate the impacts of anthropogenic climate change, will lead to a significant increase in demand for critical minerals such as rare earth elements (REE). Meeting these raw materials requirements will be challenging, so there is increasing interest in new sources of REE including coal combustion byproducts (CCBs). Extraction of REE from CCBs can be advantageous as it involves reusing a waste product, thereby contributing to the circular economy. While a growing body of literature reports on the abundance of REE in CCBs globally, studies examining the key factors which control their recovery, including speciation and mode of occurrence, are lacking. This study employed synchrotron-based X-ray absorption spectroscopy to probe the speciation and local bonding environment of yttrium in coals and their associated CCBs. Linear Combination Fitting identified silicate and phosphate minerals as the dominant REE-bearing phases. Taken together with the results of extended X-ray absorption fine structure (EXAFS) curve fitting, we find there is minimal transformation in the REE host phase during combustion, indicating it is transferred in bulk from the coals to the CCBs. Accordingly, these findings can be incorporated into the development of an efficient, environmentally conscious recovery process.


Subject(s)
Coal , Metals, Rare Earth , X-Ray Absorption Spectroscopy , Metals, Rare Earth/chemistry
3.
Inorg Chem ; 63(29): 13223-13230, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38986039

ABSTRACT

The Block V of the RTX domain of the adenylate cyclase protein from Bordetella pertussis is disordered, and upon binding eight calcium ions, it folds into a beta roll domain with a C-terminal capping group. Due to their similar ionic radii and coordination geometries, trivalent lanthanide ions have been used to probe and identify calcium-binding sites in many proteins. Here, we report using a FRET-based assay that the RTX domain can bind rare earth elements (REEs) with higher affinities than calcium. The apparent disassociation constants for lanthanide ions ranged from 20 to 75 µM, which are an order of magnitude higher than the affinity for calcium, with a higher selectivity toward heavy REEs over light REEs. Most proteins release bound ions at mildly acidic conditions (pH 5-6), and the high affinity REE-binding lanmodulin protein can bind 3-4 REE ions at pH as low as ∼2.5. Circular dichroism (CD) spectra of the RTX domain demonstrate pH-induced folding of the beta roll domain in the absence of ions, indicating that protonation of key amino acids enables structure formation in low pH solutions. The beta roll domain coordinates up to four ions in extreme pH conditions (pH < 1), as determined by equilibrium ultrafiltration experiments. Finally, to demonstrate a potential application of the RTX domain, REE ions (Nd3+ and Dy3+) were recovered from other non-REEs (Fe2+ and Co2+) in a NdFeB magnet simulant solution (at pH 6).


Subject(s)
Metals, Rare Earth , Metals, Rare Earth/chemistry , Hydrogen-Ion Concentration , Lanthanoid Series Elements/chemistry , Bordetella pertussis/enzymology , Bordetella pertussis/chemistry , Binding Sites , Protein Binding , Protein Domains , Calcium/chemistry , Calcium/metabolism
4.
J Chromatogr A ; 1731: 465205, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39067231

ABSTRACT

Rare earth elements with unique magnetic properties and optical properties, known as the 'industrial vitamin', has a very high commercial value. As a secondary resource of rare earth elements, low-concentration solution includes mixed rare earth ions, which need to realize efficient separation and recovery urgently. High speed countercurrent chromatography is suitable for the separation and purification of rare earth element ions due to its advantages of large loading, good tolerance to samples, and simple pretreatment. In this study, a carbon dots assisted high speed countercurrent chromatography method was designed and established, the carbon dots were applied to the mobile phase of high speed countercurrent chromatography for the first time. The low concentration of REEs solution was enriched, and the effective separation of La (III), Ce (III), Gd (III) and Er (III) was successfully achieved. The complete separation of La (III), Ce (III), Gd (III) and Er (III) was achieved with a solvent system of 0.05 mol L-1 P507 (PE), 0.05 mol L-1 HNO3, and 0.1 mol L-1 CDs2 carbon dots (1:1:0.01, v/v/v), the upper phase as stationary phase, the lower phase as mobile phase. Density functional theory result showed that the binding energy of REEs (III)-CDs2 was larger than that of REEs (III)-P507, so the affinity of CDs2 to REEs (III) was stronger than that of P507. Therefore, with the addition of CDs2, the ability of mobile phase to elute REEs from the stationary phase was enhanced, and the separation effect was improved.


Subject(s)
Carbon , Countercurrent Distribution , Metals, Rare Earth , Metals, Rare Earth/isolation & purification , Metals, Rare Earth/chemistry , Carbon/chemistry , Countercurrent Distribution/methods , Quantum Dots/chemistry
5.
Environ Sci Technol ; 58(31): 14013-14021, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39041953

ABSTRACT

Large amounts of wastewater containing low-concentration (<10 ppm) rare-earth ions (REIs) are discharged annually in China's rare-earth mining and processing industry, resulting in severe environmental pollution and economic losses. Hence, achieving efficient selective recovery of low-concentration REIs from REIs-containing wastewater is essential for environmental protection and resource recovery. In this study, a pseudocapacitance system was designed for highly efficient capacitive selective recovery of REIs from wastewater using the titanium dioxide/P/C (TiO2/P/C) composite electrode, which exhibited over 99% recovery efficiency for REIs, such as Eu3+, Dy3+, Tb3+, and Lu3+ in mixed solution. This system maintained high efficiency and more than 90 times the enrichment concentration of REIs even after 100 cycles. Ti4+ of TiO2 was reduced to Ti3+ of Ti3O5 under forward voltage in the system, which trapped the electrons of phosphorus site and caused it to be oxidized to phosphate with a strong affinity for REIs, thus improving the selectivity of REIs. Under reverse voltage, Ti3O5 was oxidized to TiO2, which transferred electrons to phosphate and transformed to the phosphorus site, resulting in the desorption and enrichment of REIs and the regeneration of the electrode. This study provides a promising method for the efficient recovery of REIs from wastewater.


Subject(s)
Electrodes , Metals, Rare Earth , Phosphorus , Titanium , Wastewater , Wastewater/chemistry , Metals, Rare Earth/chemistry , Phosphorus/chemistry , Adsorption , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Ions
6.
J Environ Manage ; 366: 121708, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38996598

ABSTRACT

The utilization of rare earth polishing powder waste (RPW) to prepare antibacterial ceramics can effectively avoid problems of pollution in the recycling process and waste of rare earth resources. Herein, a novel RPW-based antibacterial ceramics was developed, which possesses the core-shell structure with ceramics as the cores and the CeO2/BiOCl as the superficial coating. The antibacterial ceramics display notable antibacterial activity, and the inactivation rates of 3.3 log under visible light irradiation in 30 min and 2.4 log under darkness in 1 h were achieved, and the zone of inhibition values was found to be 16.6 mm for E.coil. The hardness of antibacterial ceramics was measured to be 897 (±38) HV, higher than commercial porcelain's hardness (600 HV). The antibacterial mechanism was verified by the Ce ion release, reactive species, and fluorescence-based live/dead cells. This study presents a novel antibacterial ceramic structure and green economic reuse method of rare earth waste.


Subject(s)
Anti-Bacterial Agents , Ceramics , Metals, Rare Earth , Ceramics/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metals, Rare Earth/chemistry , Recycling
7.
J Chromatogr A ; 1730: 465120, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38944984

ABSTRACT

The effectiveness of commonly used extractants for chromatographic separation of rare earth elements (REEs) was compared. Columns loaded with similar molar concentrations of tributyl phosphate (TBP), di-(2-ethylhexyl) phosphoric acid (HDEHP), and N-Methyl-N, N, N-tri-octyl-ammonium chloride (Aliquat-336), with mineral acid as eluent were evaluated. Retention factors were determined, and separation efficiency was assessed based on the resolution data of the REEs acquired under the same elution conditions for each column. HDEHP demonstrated the best separation efficiency for the entire REE series (mean Rs = 2.76), followed by TBP (mean Rs = 1.52), while Aliquat-336 exhibited the lowest performance (mean Rs = 1.42). The HDEHP-coated column was then used to optimize the extraction chromatographic separation of the REEs. The primary challenge was to completely elute the heavy REEs (Tb - Lu) while maintaining adequate separation of the light REEs (La - Gd) within a reasonably short time. The stepwise gradient elution procedure improved the resolution between adjacent REEs, allowing the complete separation of the entire REE series within 25 minutes. Better separation efficiency for light REEs was achieved at higher column temperatures and a mobile phase flow rate of 1.5 mL/min in the tested domain of 20-60 °C, and 0.5-2.0 mL/min, respectively, resulting in plate heights (H) ranging from 0.011 to 0.027 mm.


Subject(s)
Metals, Rare Earth , Metals, Rare Earth/isolation & purification , Metals, Rare Earth/chemistry , Metals, Rare Earth/analysis , Chromatography, High Pressure Liquid/methods , Quaternary Ammonium Compounds/chemistry , Organophosphates/isolation & purification , Organophosphates/analysis , Organophosphates/chemistry
8.
J Environ Manage ; 365: 121609, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943744

ABSTRACT

Sustainable management of critical raw materials is of paramount importance to ensure a steady supply and reduce environmental impact. The application of newly synthesized and environmentally friendly ALG@CS material as a bio-adsorbent for the effective rare earth elements removal from aqueous solution has been presented. The synthesized material underwent FTIR, XPS, EDX, and SEM analysis to determine its suitability for metal uptake. To evaluate the adsorption capacity of ALG@CS for rare earth elements several factors were taken into consideration. These factors included alginate:chitosan ratios, bead size, pH level, composite mass, interaction time, metal ion concentration, and temperature, being all varied during the batch mode evaluation process. Under the optimal conditions, the maximum adsorption capacities were found to be 145.90 mg La(III)/g, 168.44 mg Ce(III)/g, 132.51 mg Pr(III)/g, 128.40 mg Nd(III)/g, 154.36 mg Sm(III)/g, and 165.10 mg Ho(III)/g. The equilibrium data fits well with non-linear three-parameter Sips and Redlich-Peterson isotherm models. The PSO model finds the highest process suitability. The synthesized ALG@CS bio-adsorbent showed excellent regenerative capacity in ten cycles, making it a suitable adsorbent for rare earth elements uptake. The unique bio-adsorbents combination allows for efficient critical raw materials adsorption providing a promising solution for their recovery and recycling.


Subject(s)
Alginates , Chitosan , Metals, Rare Earth , Chitosan/chemistry , Adsorption , Alginates/chemistry , Metals, Rare Earth/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared , Water Purification/methods
9.
Macromol Rapid Commun ; 45(15): e2400122, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38831565

ABSTRACT

Polymers with well-defined structures, synthesized through metal-catalyzed processes, and having end groups exhibiting different polarity and reactivity than the backbone, are gaining considerable attention in both scientific and industrial communities. These polymers show potential applications as fundamental building blocks and additives in the creation of innovative functional materials. Investigations are directed toward identifying the most optimal and uncomplicated synthetic approach by employing a combination of living coordination polymerization mediated by rare-earth metal complexes and C-H bond activation reaction by σ-bond metathesis. This combination directly yields catalysts with diverse functional groups from a single precursor, enabling the production of terminal-functionalized polymers without the need for sequential reactions, such as termination reactions. The utilization of this innovative methodology allows for precise control over end-group functionalities, providing a versatile approach to tailor the properties and applications of the resulting polymers. This perspective discusses the principles, challenges, and potential advancements associated with this synthetic strategy, highlighting its significance in advancing the interface of metalorganic chemistry, polymer chemistry, and materials science.


Subject(s)
Coordination Complexes , Metals, Rare Earth , Polymerization , Polymers , Catalysis , Metals, Rare Earth/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Molecular Structure
10.
Environ Geochem Health ; 46(7): 237, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849684

ABSTRACT

This study presents the first data on REY (Rare Earth Elements plus Yttrium) in the aquifer of Mount Etna (Sicily, Italy). Patterns normalized to chondrites indicate strong water-rock interaction, facilitated by a slightly acidic pH resulting from the dissolution of magma-derived CO2. REY patterns provide insights into the processes of both mineral dissolution and the formation of secondary phases. The relative abundance of light to heavy rare earth elements is compatible with the prevailing dissolution of ferromagnesian minerals (e.g., olivine or clinopyroxenes), reinforced by its strong correlation with other proxies of mineral dissolution (e.g., Mg contents). Pronounced negative Ce anomalies and positive Y anomalies demonstrate an oxidizing environment with continuous formation of secondary iron and/or manganese oxides and hydroxides. The Y/Ho fractionation is strongly influenced by metal complexation with bicarbonate complexes, a common process in C-rich waters. In the studied system, the measured REY contents are always below the limits proposed by Sneller et al. (2000, RIVM report, Issue 601,501, p. 66) for surface water and ensure a very low daily intake from drinking water.


Subject(s)
Groundwater , Metals, Rare Earth , Metals, Rare Earth/analysis , Metals, Rare Earth/chemistry , Groundwater/chemistry , Sicily , Environmental Monitoring , Volcanic Eruptions , Yttrium/chemistry , Water Pollutants, Chemical/analysis
11.
J Environ Manage ; 362: 121303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824885

ABSTRACT

Spent phosphor is an important secondary resource for extracting rare earth elements. Microwave absorption properties and enhanced extraction of Eu from blue phosphor by microwave alkali roasting were studied. Dielectric properties of alkali roasting system were measured by resonator perturbation method. Dielectric constant increases linearly from 250 °C until it reaches a peak at 400 °C. The dielectric loss reaches a higher value at 400-550 °C, due to the strong microwave absorption properties of molten alkali and roasted products. Effects of roasting temperature, roasting time and alkali addition amount on Eu leaching were investigated. The phosphor was completely decomposed into Eu2O3, BaCO3 and MgO at 400 °C. The alkaline decomposition process of phosphor is more consistent with diffusion control model with Eα being 28.9 kJ/mol. Effects of the main leaching conditions on Eu leaching were investigated. The leaching kinetic of Eu was in line with diffusion control model with Eα being 5.74 kJ/mol. The leaching rules of rare earths in the mixed phosphor were studied. The results showed that the presence of red and green phosphor affected the recovery of blue phosphor. The optimum process parameters of rare earth recovery in single blue phosphor and mixed phosphor were obtained, and the recovery of Eu were 97.81% and 94.80%, respectively. Microwave alkali roasting promoted the dissociation of phosphor and leaching of rare earths. The results can provide reference for the efficient and selective recovery of rare earths in phosphors.


Subject(s)
Alkalies , Metals, Rare Earth , Microwaves , Metals, Rare Earth/chemistry , Alkalies/chemistry , Europium/chemistry , Recycling , Phosphorus/chemistry
12.
Microb Biotechnol ; 17(6): e14503, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829373

ABSTRACT

Rare earth elements (REEs) are critical for our modern lifestyles and the transition to a low-carbon economy. Recent advances in our understanding of the role of REEs in biology, particularly methylotrophy, have provided opportunities to explore biotechnological innovations to improve REE mining and recycling. In addition to bacterial accumulation and concentration of REEs, biological REE binders, including proteins (lanmodulin, lanpepsy) and small molecules (metallophores and cofactors) have been identified that enable REE concentration and separation. REE-binding proteins have also been used in several mechanistically distinct REE biosensors, which have potential application in mining and medicine. Notably, the role of REEs in biology has only been known for a decade, suggesting their considerable scope for developing new understanding and novel applications.


Subject(s)
Bacteria , Metals, Rare Earth , Metals, Rare Earth/metabolism , Metals, Rare Earth/chemistry , Bacteria/metabolism , Bacteria/genetics , Bacteria/chemistry , Biotechnology/methods
13.
World J Microbiol Biotechnol ; 40(7): 232, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834810

ABSTRACT

Microbially induced carbonate precipitation (MICP) has been used to cure rare earth slags (RES) containing radionuclides (e.g. Th and U) and heavy metals with favorable results. However, the role of microbial extracellular polymeric substances (EPS) in MICP curing RES remains unclear. In this study, the EPS of Lysinibacillus sphaericus K-1 was extracted for the experiments of adsorption, inducing calcium carbonate (CaCO3) precipitation and curing of RES. The role of EPS in in MICP curing RES and stabilizing radionuclides and heavy metals was analyzed by evaluating the concentration and morphological distribution of radionuclides and heavy metals, and the compressive strength of the cured body. The results indicate that the adsorption efficiencies of EPS for Th (IV), U (VI), Cu2+, Pb2+, Zn2+, and Cd2+ were 44.83%, 45.83%, 53.7%, 61.3%, 42.1%, and 77.85%, respectively. The addition of EPS solution resulted in the formation of nanoscale spherical particles on the microorganism surface, which could act as an accumulating skeleton to facilitate the formation of CaCO3. After adding 20 mL of EPS solution during the curing process (Treat group), the maximum unconfined compressive strength (UCS) of the cured body reached 1.922 MPa, which was 12.13% higher than the CK group. The contents of exchangeable Th (IV) and U (VI) in the cured bodies of the Treat group decreased by 3.35% and 4.93%, respectively, compared with the CK group. Therefore, EPS enhances the effect of MICP curing RES and reduces the potential environmental problems that may be caused by radionuclides and heavy metals during the long-term sequestration of RES.


Subject(s)
Bacillaceae , Calcium Carbonate , Extracellular Polymeric Substance Matrix , Metals, Heavy , Thorium , Uranium , Uranium/chemistry , Uranium/metabolism , Calcium Carbonate/chemistry , Thorium/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Bacillaceae/metabolism , Metals, Rare Earth/chemistry , Adsorption , Chemical Precipitation
14.
Adv Sci (Weinh) ; 11(29): e2309992, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38774946

ABSTRACT

Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.


Subject(s)
Nanoparticles , Radioimmunotherapy , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/radiotherapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Animals , Mice , Female , Radioimmunotherapy/methods , Nanoparticles/chemistry , Humans , Disease Models, Animal , Metals, Rare Earth/chemistry , Cell Line, Tumor
15.
Biomed Mater ; 19(4)2024 May 28.
Article in English | MEDLINE | ID: mdl-38740038

ABSTRACT

Bacterial infections pose a serious threat to human health, with emerging antibiotic resistance, necessitating the development of new antibacterial agents. Cu2+and Ag+are widely recognized antibacterial agents with a low propensity for inducing bacterial resistance; however, their considerable cytotoxicity constrains their clinical applications. Rare-earth ions, owing to their unique electronic layer structure, hold promise as promising alternatives. However, their antibacterial efficacy and biocompatibility relative to conventional antibacterial agents remain underexplored, and the variations in activity across different rare-earth ions remain unclear. Here, we systematically evaluate the antibacterial activity of five rare-earth ions (Yb3+, Gd3+, Sm3+, Tb3+, and La3+) againstStaphylococcus aureusandPseudomonas aeruginosa, benchmarked against well-established antibacterial agents (Cu2+, Ag+) and the antibiotic norfloxacin. Cytotoxicity is also assessed via live/dead staining of fibroblasts after 24 h rare-earth ion exposure. Our findings reveal that rare-earth ions require higher concentrations to match the antibacterial effects of traditional agents but offer the advantage of significantly lower cytotoxicity. In particular, Gd3+demonstrates potent bactericidal efficacy against both planktonic and biofilm bacteria, while maintaining the lowest cytotoxicity toward mammalian cells. Moreover, the tested rare-earth ions also exhibited excellent antifungal activity againstCandida albicans. This study provides a critical empirical framework to guide the selection of rare-earth ions for biomedical applications, offering a strategic direction for the development of novel antimicrobial agents.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ions , Metals, Rare Earth , Microbial Sensitivity Tests , Plankton , Pseudomonas aeruginosa , Metals, Rare Earth/chemistry , Metals, Rare Earth/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Plankton/drug effects , Pseudomonas aeruginosa/drug effects , Humans , Staphylococcus aureus/drug effects , Animals , Norfloxacin/pharmacology , Norfloxacin/chemistry
16.
Colloids Surf B Biointerfaces ; 239: 113934, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729020

ABSTRACT

Today, diabetes mellitus is one of the most common diseases that affects the population on a worldwide scale. Patients suffering from this disease are required to control their blood-glucose levels several times a day through invasive methods such as piercing their fingers. Our NaGdF4: 5% Er3+, 3% Nd3+ nanoparticles demonstrate a remarkable ability to detect D-glucose levels by analysing alterations in their red-to-green ratio, since this sensitivity arises from the interaction between the nanoparticles and the OH groups present in the D-glucose molecules, resulting in discernible changes in the emission of the green and red bands. These luminescent sensors were implemented and tested on paper substrates, offering a portable, low-cost and enzyme-free solution for D-glucose detection in aqueous solutions with a limit of detection of 22 mg/dL. With this, our study contributes to the development of non-invasive D-glucose sensors, holding promising implications for managing diabetes and improving overall patient well-being with possible future applications in D-glucose sensing through tear fluid.


Subject(s)
Glucose , Metals, Rare Earth , Nanoparticles , Paper , Metals, Rare Earth/chemistry , Glucose/analysis , Glucose/chemistry , Nanoparticles/chemistry , Biosensing Techniques/methods , Humans , Blood Glucose/analysis , Limit of Detection
17.
J Nanobiotechnology ; 22(1): 185, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627717

ABSTRACT

Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Metals, Rare Earth , Nanostructures , Osteogenesis , Osteogenesis/drug effects , Metals, Rare Earth/pharmacology , Metals, Rare Earth/chemistry , Humans , Animals , Nanostructures/chemistry , Cell Differentiation/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Cell Proliferation/drug effects , Bone Regeneration/drug effects , Cell Adhesion/drug effects , Cell Movement/drug effects , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/cytology
18.
Chemosphere ; 356: 141897, 2024 May.
Article in English | MEDLINE | ID: mdl-38582156

ABSTRACT

Global water pollution and scarcity of water resources are turning increasingly into serious threats to the survival of all living organisms on Earth. This study offers an influent strategy for the electrosynthesis of reduced graphene oxide/polyaniline/ß-cyclodextrin (rGO/PAni/ßCD) nanocomposite and its application to the removal/recovery of heavy elements (HEs) and rare-earth elements (REEs). Besides physicochemical and electrochemical studies, the surface morphological and statistical properties of fabricated nanocomposite electrode were examined. The textural and morphological characteristics of nanocomposite electrode were investigated via AFM data based on statistical, stereometric, and fractal theory. The cohesive, porous, and well-developed morphology of fabricated nanocomposite electrode has enabled the electrodeposition technique to achieve significant simultaneous removal/recovery efficiency of HE and REE ions such as Pb(II), Cu(II), Cd(II), Hg(II), Ce(IV), and Nb(V). Therefore, using rGO/PAni/ßCD, considerable removal of HEs and REEs was achieved under optimized pH, 0.1 M KNO3, and 35 mg L-1 metal ion initial concentration during 20 min. Removal capacity of the nanocomposite electrode is preserved subsequent to 10 cycles of electrodeposition/desorption, according to the desorption investigation through eluted adsorbent at time intervals in deionized water and adjusted acidic pH values. Then, using rGO/PAni/CD nanocomposite, simulated seawater remediation was accomplished successfully. This interdisciplinary approach reveals that the removal/recovery efficiency enhance linearly along with the improvement of well-developed morphology for electrosynthesized composites. Thus, these results suggest how the morphological features of the polymer composites could improve remediation of water resources.


Subject(s)
Aniline Compounds , Electrodes , Gold , Graphite , Metals, Rare Earth , Nanocomposites , Seawater , Water Pollutants, Chemical , beta-Cyclodextrins , Aniline Compounds/chemistry , Graphite/chemistry , beta-Cyclodextrins/chemistry , Seawater/chemistry , Water Pollutants, Chemical/chemistry , Nanocomposites/chemistry , Gold/chemistry , Metals, Rare Earth/chemistry , Metals, Heavy/chemistry , Adsorption
19.
Environ Sci Technol ; 58(16): 7217-7227, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38588505

ABSTRACT

The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.


Subject(s)
Clay , Metals, Rare Earth , Minerals , Adsorption , Metals, Rare Earth/chemistry , Clay/chemistry , Minerals/chemistry , Hydrogen-Ion Concentration , Aluminum Silicates/chemistry
20.
Chemosphere ; 357: 142090, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648983

ABSTRACT

The growing utilization of rare earth elements (REEs) in industrial and technological applications has captured global interest, leading to the development of high-performance technologies in medical diagnosis, agriculture, and other electronic industries. This accelerated utilization has also raised human exposure levels, resulting in both favourable and unfavourable impacts. However, the effects of REEs are dependent on their concentration and molecular species. Therefore, scientific interest has increased in investigating the molecular interactions of REEs with biomolecules. In this current review, particular attention was paid to the molecular mechanism of interactions of Lanthanum (La), Cerium (Ce), and Gadolinium (Gd) with biomolecules, and the biological consequences were broadly interpreted. The review involved gathering and evaluating a vast scientific collection which primarily focused on the impact associated with REEs, ranging from earlier reports to recent discoveries, including studies in human and animal models. Thus, understanding the molecular interactions of each element with biomolecules will be highly beneficial in elucidating the consequences of REEs accumulation in the living organisms.


Subject(s)
Lanthanum , Metals, Rare Earth , Metals, Rare Earth/chemistry , Humans , Lanthanum/chemistry , Animals , Cerium/chemistry , Gadolinium/chemistry , Macromolecular Substances/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL