Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 930
Filter
1.
Commun Biol ; 7(1): 1292, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39384967

ABSTRACT

Dominant X-linked diseases are uncommon due to female X chromosome inactivation (XCI). While random XCI usually protects females against X-linked mutations, Rett syndrome (RTT) is a female neurodevelopmental disorder caused by heterozygous MECP2 mutation. After 6-18 months of typical neurodevelopment, RTT girls undergo a poorly understood regression. We performed longitudinal snRNA-seq on cerebral cortex in a construct-relevant Mecp2e1 mutant mouse model of RTT, revealing transcriptional effects of cell type, mosaicism, and sex on progressive disease phenotypes. Across cell types, we observed sex differences in the number of differentially expressed genes (DEGs) with 6x more DEGs in mutant females than males. Unlike males, female DEGs emerged prior to symptoms, were enriched for homeostatic gene pathways in distinct cell types over time and correlated with disease phenotypes and human RTT cortical cell transcriptomes. Non-cell-autonomous effects were prominent and dynamic across disease progression of Mecp2e1 mutant females, indicating that wild-type-expressing cells normalize transcriptional homeostasis. These results advance our understanding of RTT progression and treatment.


Subject(s)
Disease Progression , Methyl-CpG-Binding Protein 2 , Rett Syndrome , Transcriptome , Rett Syndrome/genetics , Rett Syndrome/metabolism , Animals , Female , Male , Mice , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Disease Models, Animal , Humans , Mutation , Single-Cell Analysis
2.
Cell Mol Life Sci ; 81(1): 410, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305343

ABSTRACT

Rett syndrome (RTT) is a neurodevelopmental disorder caused by de novo mutations in the MECP2 gene. Although miRNAs in extracellular vesicles (EVs) have been suggested to play an essential role in several neurological conditions, no prior study has utilized brain organoids to profile EV-derived miRNAs during normal and RTT-affected neuronal development. Here we report the spatiotemporal expression pattern of EV-derived miRNAs in region-specific forebrain organoids generated from female hiPSCs with a MeCP2:R255X mutation and the corresponding isogenic control. EV miRNA and protein expression profiles were characterized at day 0, day 13, day 40, and day 75. Several members of the hsa-miR-302/367 cluster were identified as having a time-dependent expression profile with RTT-specific alterations at the latest developmental stage. Moreover, the miRNA species of the chromosome 14 miRNA cluster (C14MC) exhibited strong upregulation in RTT forebrain organoids irrespective of their spatiotemporal location. Together, our results suggest essential roles of the C14MC and hsa-miR-302/367 clusters in EVs during normal and RTT-associated neurodevelopment, displaying promising prospects as biomarkers for monitoring RTT progression.


Subject(s)
Brain , Extracellular Vesicles , Methyl-CpG-Binding Protein 2 , MicroRNAs , Organoids , Rett Syndrome , Rett Syndrome/genetics , Rett Syndrome/metabolism , Rett Syndrome/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Humans , Organoids/metabolism , Organoids/pathology , Female , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Brain/metabolism , Brain/pathology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Mutation , Prosencephalon/metabolism
3.
Mol Autism ; 15(1): 39, 2024 09 19.
Article in English | MEDLINE | ID: mdl-39300547

ABSTRACT

BACKGROUND: Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT. METHODS: Rimonabant (0.3 mg/kg/day, intraperitoneal injections) was administered daily to symptomatic female mice carrying a truncating mutation of the Mecp2 gene and its effects on brain mitochondria functionality, systemic oxidative status, and memory function were assessed. RESULTS: mtCB1R is overexpressed in the RTT mouse brain. Subchronic treatment with rimonabant normalizes mtCB1R expression in RTT mouse brains, boosts mtPKA signaling, and restores the defective brain mitochondrial bioenergetics, abnormal peripheral redox homeostasis, and impaired cognitive abilities in RTT mice. LIMITATIONS: The lack of selectivity of the rimonabant treatment towards mtCB1R does not allow us to exclude that the beneficial effects exerted by the treatment in the RTT mouse model may be ascribed more broadly to the modulation of CB1R activity and distribution among intracellular compartments, rather than to a selective effect on mtCB1R-mediated signaling. The low sample size of few experiments is a further limitation that has been addressed replicating the main findings under different experimental conditions. CONCLUSIONS: The present data identify mtCB1R overexpression as a novel molecular alteration in the RTT mouse brain that may underlie defective brain mitochondrial bioenergetics and cognitive dysfunction.


Subject(s)
Brain , Disease Models, Animal , Energy Metabolism , Mitochondria , Receptor, Cannabinoid, CB1 , Rett Syndrome , Rimonabant , Animals , Female , Mice , Brain/metabolism , Brain/drug effects , Energy Metabolism/drug effects , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Rett Syndrome/metabolism , Rett Syndrome/drug therapy , Rett Syndrome/genetics , Rimonabant/pharmacology
4.
Protein Sci ; 33(10): e5170, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39276009

ABSTRACT

The intrinsically disordered protein MeCP2 is a global transcriptional regulator encoded by the MECP2 gene. Although the structured domains of MeCP2 have been the subject of multiple studies, its unstructured regions have not been that extensively characterized. In this work, we show that MeCP2 possesses properties akin to those of supercharged proteins. By utilizing its unstructured portions, MeCP2 can successfully transduce across cell membranes and localize to heterochromatic foci in the nuclei, displaying uptake levels a third lower than a MeCP2 construct fused to the cell-penetrating peptide TAT. MeCP2 uptake can further be enhanced by the addition of compounds that promote endosomal escape following cellular trafficking by means of macropinocytosis. Using a combination of in silico prediction algorithms and live-cell imaging experiments, we mapped the sequence in MeCP2 responsible for its cellular incorporation, which bears a striking resemblance to TAT itself. Transduced MeCP2 was shown to interact with HDAC3. These findings provide valuable insight into the properties of MeCP2 and may be beneficial for devising future protein-based treatment strategies.


Subject(s)
Cell Membrane , Histone Deacetylases , Methyl-CpG-Binding Protein 2 , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/chemistry , Humans , Cell Membrane/metabolism , Cell Membrane/chemistry , Histone Deacetylases/metabolism , Histone Deacetylases/chemistry , Histone Deacetylases/genetics , HEK293 Cells , Protein Transport , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/genetics
5.
Sci Rep ; 14(1): 20565, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232000

ABSTRACT

Studies on MECP2 function and its implications in Rett Syndrome (RTT) have traditionally centered on neurons. Here, using human embryonic stem cell (hESC) lines, we modeled MECP2 loss-of-function to explore its effects on astrocyte (AST) development and dysfunction in the brain. Ultrastructural analysis of RTT hESC-derived cerebral organoids revealed significantly smaller mitochondria compared to controls (CTRs), particularly pronounced in glia versus neurons. Employing a multiomics approach, we observed increased gene expression and accessibility of a subset of nuclear-encoded mitochondrial genes upon mutation of MECP2 in ASTs compared to neurons. Analysis of hESC-derived ASTs showed reduced mitochondrial respiration and altered key proteins in the tricarboxylic acid cycle and electron transport chain in RTT versus CTRs. Additionally, RTT ASTs exhibited increased cytosolic amino acids under basal conditions, which were depleted upon increased energy demands. Notably, mitochondria isolated from RTT ASTs exhibited increased reactive oxygen species and influenced neuronal activity when transferred to cortical neurons. These findings underscore MECP2 mutation's differential impact on mitochondrial and metabolic pathways in ASTs versus neurons, suggesting that dysfunctional AST mitochondria may contribute to RTT pathophysiology by affecting neuronal health.


Subject(s)
Astrocytes , Methyl-CpG-Binding Protein 2 , Mitochondria , Mutation , Neurons , Reactive Oxygen Species , Rett Syndrome , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Mitochondria/metabolism , Astrocytes/metabolism , Reactive Oxygen Species/metabolism , Humans , Neurons/metabolism , Rett Syndrome/genetics , Rett Syndrome/metabolism , Rett Syndrome/pathology , Human Embryonic Stem Cells/metabolism , Cell Line
6.
Mol Biol Rep ; 51(1): 979, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269588

ABSTRACT

BACKGROUND: Rett syndrome (RTT) is a rare neurodevelopmental disorder that primarily affects females and is characterized by a period of normal development followed by severe cognitive, motor, and communication impairment. The syndrome is predominantly caused by mutations in the MECP2. This study aimed to use comprehensive multi-omic analysis to identify the molecular and metabolic alterations associated with Rett syndrome. METHODS AND RESULTS: Transcriptomic and metabolomic profiling was performed using neuron-like cells derived from the fibroblasts of 3 Rett syndrome patients with different MECP2 mutations (R168X, P152R, and R133C) and 1 healthy control. Differential gene expression, alternative splicing events, and metabolite changes were analyzed to identify the key pathways and processes affected in patients with Rett syndrome. Transcriptomic analysis showed there was significant down-regulation of genes associated with the extracellular matrix (ECM) and cytoskeletal components, which was particularly notable in patient P3 (R133C mutation), who had non-random X chromosome inactivation. Additionally, significant changes in microtubule-related gene expression and alternative splicing events were observed, especially in patient P2 (P152R mutation). Metabolomic profiling showed that there were alterations in metabolic pathways, particularly up-regulation of ketone body synthesis and degradation pathways, in addition to an increase in free fatty acid levels. Integrated analysis highlighted the interplay between structural gene down-regulation and metabolic shifts, underscoring the adaptive responses to cellular stress in Rett neurons. CONCLUSION: The present findings provide valuable insights into the molecular and metabolic landscape of Rett syndrome, emphasizing the importance of combining omic data to enlighten the molecular pathophysiology of this syndrome.


Subject(s)
Methyl-CpG-Binding Protein 2 , Mutation , Neurons , Rett Syndrome , Transcriptome , Rett Syndrome/genetics , Rett Syndrome/metabolism , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Transcriptome/genetics , Female , Neurons/metabolism , Mutation/genetics , Fibroblasts/metabolism , Gene Expression Profiling/methods , Metabolomics/methods , Metabolome
7.
Cell Commun Signal ; 22(1): 416, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192337

ABSTRACT

Bone cancer pain (BCP) represents a prevalent symptom among cancer patients with bone metastases, yet its underlying mechanisms remain elusive. This study investigated the transcriptional regulation mechanism of Kv7(KCNQ)/M potassium channels in DRG neurons and its involvement in the development of BCP in rats. We show that HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes, which encode Kv7(KCNQ)/M potassium channels in dorsal root ganglion (DRG), contributes to the sensitization of DRG neurons and the pathogenesis of BCP in rats. Also, HDAC2 requires the formation of a corepressor complex with MeCP2 and Sin3A to execute transcriptional regulation of kcnq2/kcnq3 genes. Moreover, EREG is identified as an upstream signal molecule for HDAC2-mediated kcnq2/kcnq3 genes transcription repression. Activation of EREG/EGFR-ERK-Runx1 signaling, followed by the induction of HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes in DRG neurons, leads to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. Consequently, the activation of EREG/EGFR-ERK-Runx1 signaling, along with the subsequent transcriptional repression of kcnq2/kcnq3 genes by HDAC2 in DRG neurons, underlies the sensitization of DRG neurons and the pathogenesis of BCP in rats. These findings uncover a potentially targetable mechanism contributing to bone metastasis-associated pain in cancer patients.


Subject(s)
Bone Neoplasms , Cancer Pain , ErbB Receptors , Ganglia, Spinal , Histone Deacetylase 2 , KCNQ2 Potassium Channel , Animals , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Bone Neoplasms/pathology , Rats , Cancer Pain/genetics , Cancer Pain/metabolism , Cancer Pain/pathology , ErbB Receptors/metabolism , ErbB Receptors/genetics , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism , Transcription, Genetic , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Signal Transduction/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Female , Extracellular Signal-Regulated MAP Kinases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Rats, Sprague-Dawley , MAP Kinase Signaling System/genetics
9.
Nat Commun ; 15(1): 7259, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179542

ABSTRACT

Safely and efficiently controlling gene expression is a long-standing goal of biomedical research, and CRISPR/Cas system can be harnessed to create powerful tools for epigenetic editing. Adeno-associated-viruses (AAVs) represent the delivery vehicle of choice for therapeutic platform. However, their small packaging capacity isn't suitable for large constructs including most CRISPR/dCas9-effector vectors. Thus, AAV-based CRISPR/Cas systems have been delivered via two separate viral vectors. Here we develop a compact CRISPR/dCas9-based repressor system packaged in AAV as a single optimized vector. The system comprises the small Staphylococcus aureus (Sa)dCas9 and an engineered repressor molecule, a fusion of MeCP2's transcription repression domain (TRD) and KRAB. The dSaCas9-KRAB-MeCP2(TRD) vector platform repressed robustly and sustainably the expression of multiple genes-of-interest, in vitro and in vivo, including ApoE, the strongest genetic risk factor for late onset Alzheimer's disease (LOAD). Our platform broadens the CRISPR/dCas9 toolset available for transcriptional manipulation of gene expression in research and therapeutic settings.


Subject(s)
CRISPR-Cas Systems , Dependovirus , Gene Editing , Genetic Vectors , Gene Editing/methods , Dependovirus/genetics , CRISPR-Cas Systems/genetics , Humans , Animals , Genetic Vectors/genetics , Mice , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Genetic Therapy/methods , Epigenome , HEK293 Cells , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Epigenesis, Genetic , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Apolipoproteins E/genetics , Staphylococcus aureus/genetics
10.
Theranostics ; 14(11): 4256-4277, 2024.
Article in English | MEDLINE | ID: mdl-39113793

ABSTRACT

Rationale: Posttranslational modifications of proteins have not been addressed in studies aimed at elucidating the cardioprotective effect of exercise in atherosclerotic cardiovascular disease (ASCVD). In this study, we reveal a novel mechanism by which exercise ameliorates atherosclerosis via lactylation. Methods: Using ApoE-/- mice in an exercise model, proteomics analysis was used to identify exercise-induced specific lactylation of MeCP2 at lysine 271 (K271). Mutation of the MeCP2 K271 lactylation site in aortic plaque macrophages was achieved by recombinant adenoviral transfection. Explore the molecular mechanisms by which motility drives MeCP2 K271 lactylation to improve plaque stability using ATAC-Seq, CUT &Tag and molecular biology. Validation of the potential target RUNX1 for exercise therapy using Ro5-3335 pharmacological inhibition. Results: we showed that in ApoE-/- mice, methyl-CpG-binding protein 2 (MeCP2) K271 lactylation was observed in aortic root plaque macrophages, promoting pro-repair M2 macrophage polarization, reducing the plaque area, shrinking necrotic cores, reducing plaque lipid deposition, and increasing collagen content. Adenoviral transfection, by introducing a mutant at lysine 271, overexpressed MeCP2 K271 lactylation, which enhanced exercise-induced M2 macrophage polarization and increased plaque stability. Mechanistically, the exercise-induced atheroprotective effect requires an interaction between MeCP2 K271 lactylation and H3K36me3, leading to increased chromatin accessibility and transcriptional repression of RUNX1. In addition, the pharmacological inhibition of the transcription factor RUNX1 exerts atheroprotective effects by promoting the polarization of plaque macrophages towards the pro-repair M2 phenotype. Conclusions: These findings reveal a novel mechanism by which exercise ameliorates atherosclerosis via MeCP2 K271 lactylation-H3K36me3/RUNX1. Interventions that enhance MeCP2 K271 lactylation have been shown to increase pro-repair M2 macrophage infiltration, thereby promoting plaque stabilization and reducing the risk of atherosclerotic cardiovascular disease. We also established RUNX1 as a potential drug target for exercise therapy, thereby providing guidance for the discovery of new targets.


Subject(s)
Apolipoproteins E , Atherosclerosis , Macrophages , Methyl-CpG-Binding Protein 2 , Animals , Humans , Male , Mice , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Disease Models, Animal , Macrophages/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Mice, Inbred C57BL , Physical Conditioning, Animal , Plaque, Atherosclerotic/metabolism , Protein Processing, Post-Translational
11.
Nat Microbiol ; 9(8): 2051-2072, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39075233

ABSTRACT

Delivering macromolecules across biological barriers such as the blood-brain barrier limits their application in vivo. Previous work has demonstrated that Toxoplasma gondii, a parasite that naturally travels from the human gut to the central nervous system (CNS), can deliver proteins to host cells. Here we engineered T. gondii's endogenous secretion systems, the rhoptries and dense granules, to deliver multiple large (>100 kDa) therapeutic proteins into neurons via translational fusions to toxofilin and GRA16. We demonstrate delivery in cultured cells, brain organoids and in vivo, and probe protein activity using imaging, pull-down assays, scRNA-seq and fluorescent reporters. We demonstrate robust delivery after intraperitoneal administration in mice and characterize 3D distribution throughout the brain. As proof of concept, we demonstrate GRA16-mediated brain delivery of the MeCP2 protein, a putative therapeutic target for Rett syndrome. By characterizing the potential and current limitations of the system, we aim to guide future improvements that will be required for broader application.


Subject(s)
Brain , Neurons , Protozoan Proteins , Toxoplasma , Toxoplasma/genetics , Toxoplasma/metabolism , Animals , Neurons/metabolism , Neurons/parasitology , Mice , Humans , Brain/metabolism , Brain/parasitology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Drug Delivery Systems
12.
J Cell Mol Med ; 28(13): e18510, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953409

ABSTRACT

In recent years, inflammatory disorders have emerged as a significant concern for human health. Through ongoing research on anti-inflammatory agents, alpinetin has shown promising anti-inflammatory properties, including involvement in epigenetic modification pathways. As a crucial regulator of epigenetic modifications, Mecp2 may play a role in modulating the epigenetic effects of alpinetin, potentially impacting its anti-inflammatory properties. To test this hypothesis, two key components, p65 (a member of NF-KB family) and p300 (a type of co-activator), were screened by the expression profiling microarray, which exhibited a strong correlation with the intensity of LPS stimulation in mouse macrophages. Meanwhile, alpinetin demonstrates the anti-inflammatory properties through its ability to disrupt the synthesis of p65 and its interaction with promoters of inflammatory genes, yet it did not exhibit similar effects on p300. Additionally, Mecp2 can inhibit the binding of p300 by attaching to the methylated inflammatory gene promoter induced by alpinetin, leading to obstacles in promoter acetylation and subsequently impacting the binding of p65, ultimately enhancing the anti-inflammatory capabilities of alpinetin. Similarly, in a sepsis mouse model, it was observed that homozygotes overexpressing Mecp2 showed a greater reduction in organ damage and improved survival rates compared to heterozygotes when administered by alpinetin. However, blocking the expression of DNA methyltransferase 3A (DNMT3A) resulted in the loss of Mecp2's anti-inflammatory assistance. In conclusion, Mecp2 may augment the anti-inflammatory effects of alpinetin through epigenetic 'crosstalk', highlighting the potential efficacy of a combined therapeutic strategy involving Mecp2 and alpinetin for anti-inflammatory intervention.


Subject(s)
Anti-Inflammatory Agents , Epigenesis, Genetic , Flavanones , Methyl-CpG-Binding Protein 2 , Promoter Regions, Genetic , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Animals , Flavanones/pharmacology , Epigenesis, Genetic/drug effects , Mice , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , DNA Methylation/drug effects , Lipopolysaccharides/pharmacology , Transcription Factor RelA/metabolism , Sepsis/drug therapy , Sepsis/genetics , Sepsis/metabolism , Macrophages/metabolism , Macrophages/drug effects , Inflammation/drug therapy , Inflammation/pathology , Inflammation/genetics , Inflammation/metabolism , DNA Methyltransferase 3A/metabolism , Male , E1A-Associated p300 Protein/metabolism , Disease Models, Animal , Mice, Inbred C57BL , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics
13.
Stem Cell Reports ; 19(8): 1074-1091, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39059378

ABSTRACT

Although microglia are macrophages of the central nervous system, their involvement is not limited to immune functions. The roles of microglia during development in humans remain poorly understood due to limited access to fetal tissue. To understand how microglia can impact human neurodevelopment, the methyl-CpG binding protein 2 (MECP2) gene was knocked out in human microglia-like cells (MGLs). Disruption of the MECP2 in MGLs led to transcriptional and functional perturbations, including impaired phagocytosis. The co-culture of healthy MGLs with MECP2-knockout (KO) neurons rescued synaptogenesis defects, suggesting a microglial role in synapse formation. A targeted drug screening identified ADH-503, a CD11b agonist, restored phagocytosis and synapse formation in spheroid-MGL co-cultures, significantly improved disease progression, and increased survival in MeCP2-null mice. These results unveil a MECP2-specific regulation of human microglial phagocytosis and identify a novel therapeutic treatment for MECP2-related conditions.


Subject(s)
Methyl-CpG-Binding Protein 2 , Microglia , Neurodevelopmental Disorders , Phagocytosis , Microglia/metabolism , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Animals , Mice , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Coculture Techniques , Disease Models, Animal , Mice, Knockout , Synapses/metabolism , Neurons/metabolism
14.
Medicina (Kaunas) ; 60(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929606

ABSTRACT

Background and Objectives: This study aimed to investigate the relationship between neuropathic pain and CREB-binding protein (CBP) and methyl-CpG-binding protein 2 (MeCP2) expression levels in a rat model with spared nerve injury (SNI). Materials and Methods: Rat (male Sprague-Dawley white rats) models with surgical SNI (n = 6) were prepared, and naive rats (n = 5) were used as controls. The expression levels of CBP and MeCP2 in the spinal cord and dorsal root ganglion (DRG) were compared through immunohistochemistry at 7 and 14 days after surgery. The relationship between neuropathic pain and CBP/MeCP2 was also analyzed through intrathecal siRNA administration. Results: SNI induced a significant increase in the number of CBPs in L4 compared with contralateral DRG as well as with naive rats. The number of MeCP2 cells in the dorsal horn on the ipsilateral side decreased significantly compared with the contralateral dorsal horn and the control group. SNI induced a significant decrease in the number of MeCP2 neurons in the L4 ipsilateral DRG compared with the contralateral DRG and naive rats. The intrathecal injection of CBP siRNA significantly inhibited mechanical allodynia induced by SNI compared with non-targeting siRNA treatment. MeCP2 siRNA injection showed no significant effect on mechanical allodynia. Conclusions: The results suggest that CBP and MeCP2 may play an important role in the generation of neuropathic pain following peripheral nerve injury.


Subject(s)
CREB-Binding Protein , Disease Models, Animal , Methyl-CpG-Binding Protein 2 , Neuralgia , Rats, Sprague-Dawley , Animals , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Neuralgia/metabolism , Neuralgia/etiology , Male , Rats , CREB-Binding Protein/metabolism , Ganglia, Spinal/metabolism , RNA, Small Interfering , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/metabolism , Spinal Cord/metabolism , Immunohistochemistry
15.
J Neurol Sci ; 462: 123077, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850769

ABSTRACT

Nodding syndrome is an epileptic encephalopathy associated with neuroinflammation and tauopathy. This initially pediatric brain disease, which has some clinical overlap with Methyl-CpG-binding protein 2 (MECP2) Duplication Syndrome, has impacted certain impoverished East African communities coincident with local civil conflict and internal displacement, conditions that forced dependence on contaminated food and water. A potential role in Nodding syndrome for certain biotoxins (freshwater cyanotoxins plus/minus mycotoxins) with neuroinflammatory, excitotoxic, tauopathic, and MECP2-dysregulating properties, is considered here for the first time.


Subject(s)
Methyl-CpG-Binding Protein 2 , Nodding Syndrome , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Nodding Syndrome/genetics
16.
Dis Model Mech ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38881329

ABSTRACT

MECP2 duplication syndrome (MDS) is a neurodevelopmental disorder caused by tandem duplication of the MECP2 locus and its surrounding genes, including IRAK1. Current MDS mouse models involve transgenic expression of MECP2 only, limiting their applicability to the study of the disease. Herein, we show that an efficient and precise CRISPR/Cas9 fusion proximity-based approach can be utilized to generate an Irak1-Mecp2 tandem duplication mouse model ('Mecp2 Dup'). The Mecp2 Dup mouse model recapitulates the genomic landscape of human MDS by harboring a 160 kb tandem duplication encompassing Mecp2 and Irak1, representing the minimal disease-causing duplication, and the neighboring genes Opn1mw and Tex28. The Mecp2 Dup model exhibits neuro-behavioral abnormalities, and an abnormal immune response to infection not previously observed in other mouse models, possibly owing to Irak1 overexpression. The Mecp2 Dup model thus provides a tool to investigate MDS disease mechanisms and develop potential therapies applicable to patients.


Subject(s)
Disease Models, Animal , Gene Duplication , Interleukin-1 Receptor-Associated Kinases , Mental Retardation, X-Linked , Methyl-CpG-Binding Protein 2 , Animals , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/pathology , Humans , Mice, Inbred C57BL , Mice , CRISPR-Cas Systems/genetics , Behavior, Animal , Male
17.
Cells ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891120

ABSTRACT

Methyl-CpG-binding protein 2 (Mecp2) is an epigenetic modulator and numerous studies have explored its impact on the central nervous system manifestations. However, little attention has been given to its potential contributions to the peripheral nervous system (PNS). To investigate the regulation of Mecp2 in the PNS on specific central regions, we generated Mecp2fl/flAdvillincre mice with the sensory-neuron-specific deletion of the Mecp2 gene and found the mutant mice had a heightened sensitivity to temperature, which, however, did not affect the sense of motion, social behaviors, and anxiety-like behavior. Notably, in comparison to Mecp2fl/fl mice, Mecp2fl/flAdvillincre mice exhibited improved learning and memory abilities. The levels of hippocampal synaptophysin and PSD95 proteins were higher in Mecp2fl/flAdvillincre mice than in Mecp2fl/fl mice. Golgi staining revealed a significant increase in total spine density, and dendritic arborization in the hippocampal pyramidal neurons of Mecp2fl/flAdvillincre mice compared to Mecp2fl/fl mice. In addition, the activation of the BDNF-TrkB-CREB1 pathway was observed in the hippocampus and spinal cord of Mecp2fl/flAdvillincre mice. Intriguingly, the hippocampal BDNF/CREB1 signaling pathway in mutant mice was initiated within 5 days after birth. Our findings suggest a potential therapeutic strategy targeting the BDNF-TrkB-CREB1 signaling pathway and peripheral somasensory neurons to treat learning and cognitive deficits associated with Mecp2 disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognition , Dendritic Spines , Hippocampus , Methyl-CpG-Binding Protein 2 , Animals , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/deficiency , Hippocampus/metabolism , Hippocampus/pathology , Dendritic Spines/metabolism , Mice , Brain-Derived Neurotrophic Factor/metabolism , Sensory Receptor Cells/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Male , Signal Transduction , Mice, Inbred C57BL , Receptor, trkB/metabolism , Receptor, trkB/genetics
18.
Neurotherapeutics ; 21(5): e00376, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38876822

ABSTRACT

The neurodevelopmental disorder Pitt Hopkins syndrome (PTHS) causes clinical symptoms similar to Rett syndrome (RTT) patients. However, RTT is caused by MECP2 mutations whereas mutations in the TCF4 gene lead to PTHS. The mechanistic commonalities underling these two disorders are unknown, but their shared symptomology suggest that convergent pathway-level disruption likely exists. We reprogrammed patient skin derived fibroblasts into induced neuronal progenitor cells. Interestingly, we discovered that MeCP2 levels were decreased in PTHS patient iNPCs relative to healthy controls and that both iNPCs and iAstrocytes displayed defects in function and differentiation in a mutation-specific manner. When Tcf4+/- mice were genetically crossed with mice overexpressing MeCP2, molecular and phenotypic defects were significantly ameliorated, underlining and important role of MeCP2 in PTHS pathology. Importantly, post-natal intracerebroventricular gene replacement therapy with adeno-associated viral vector serotype 9 (AAV9)-expressing MeCP2 (AAV9.P546.MeCP2) significantly improved iNPC and iAstrocyte function and effectively ameliorated histological and behavioral defects in Tcf4+/- mice. Combined, our data suggest a previously unknown role of MeCP2 in PTHS pathology and common pathways that might be affected in multiple neurodevelopmental disorders. Our work highlights potential novel therapeutic targets for PTHS, including upregulation of MeCP2 expression or its downstream targets or, potentially, MeCP2-based gene therapy.


Subject(s)
Disease Models, Animal , Genetic Therapy , Methyl-CpG-Binding Protein 2 , Phenotype , Transcription Factor 4 , Animals , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Genetic Therapy/methods , Mice , Humans , Transcription Factor 4/genetics , Intellectual Disability/genetics , Intellectual Disability/therapy , Male , Mice, Transgenic , Female , Fibroblasts/metabolism , Neural Stem Cells/metabolism , Mice, Inbred C57BL , Hyperventilation , Facies
19.
Nat Commun ; 15(1): 5136, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879605

ABSTRACT

Coordination of neuronal differentiation with expansion of the neuroepithelial/neural progenitor cell (NEPC/NPC) pool is essential in early brain development. Our in vitro and in vivo studies identify independent and opposing roles for two neural-specific and differentially expressed non-coding RNAs derived from the same locus: the evolutionarily conserved lncRNA Rncr3 and the embedded microRNA miR124a-1. Rncr3 regulates NEPC/NPC proliferation and controls the biogenesis of miR124a, which determines neuronal differentiation. Rncr3 conserved exons 2/3 are cytosine methylated and bound by methyl-CpG binding protein MeCP2, which restricts expression of miR124a embedded in exon 4 to prevent premature neuronal differentiation, and to orchestrate proper brain growth. MeCP2 directly binds cytosine-methylated Rncr3 through previously unrecognized lysine residues and suppresses miR124a processing by recruiting PTBP1 to block access of DROSHA-DGCR8. Thus, miRNA processing is controlled by lncRNA m5C methylation along with the defined m5C epitranscriptomic RNA reader protein MeCP2 to coordinate brain development.


Subject(s)
Methyl-CpG-Binding Protein 2 , MicroRNAs , Neural Stem Cells , Neurogenesis , RNA, Long Noncoding , MicroRNAs/metabolism , MicroRNAs/genetics , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Neurogenesis/genetics , Animals , Mice , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Brain/metabolism , Brain/embryology , Humans , Cell Differentiation , DNA Methylation , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Cell Proliferation , Mice, Inbred C57BL , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , Male , Exons/genetics , Neurons/metabolism , Ribonuclease III
20.
Mol Hum Reprod ; 30(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38704863

ABSTRACT

Persistent and intense uterine contraction is a risk factor for preterm labor. We previously found that methyl-CpG-binding protein 2 (MeCP2), as a target of infection-related microRNA miR-212-3p, may play an inhibitory role in regulating myometrium contraction. However, the molecular mechanisms by which MeCP2 regulates myometrial contraction are still unknown. In this study, we found that MeCP2 protein expression was lower in myometrial specimens obtained from preterm labor cases, compared to those obtained from term labor cases. Herein, using RNA sequence analysis of global gene expression in human uterine smooth muscle cells (HUSMCs) following siMeCP2, we show that MeCP2 silencing caused dysregulation of the cholesterol metabolism pathway. Notably, MeCP2 silencing resulted in the upregulation of CYP27A1, the key enzyme involved in regulating cholesterol homeostasis, in HUSMCs. Methylation-specific PCR, chromatin immunoprecipitation, and dual luciferase reporter gene technology indicated that MeCP2 could bind to the methylated CYP27A1 promoter region and repress its transcription. Administration of siCYP27A1 in a lipopolysaccharide (LPS)-induced preterm labor mouse model delayed the onset of preterm labor. Human preterm myometrium and the LPS-induced preterm labor mouse model both showed lower expression of MeCP2 and increased expression of CYP27A1. These results demonstrated that aberrant upregulation of CYP27A1 induced by MeCP2 silencing is one of the mechanisms facilitating inappropriate myometrial contraction. CYP27A1 could be exploited as a novel therapeutic target for preterm birth.


Subject(s)
Methyl-CpG-Binding Protein 2 , Myometrium , Obstetric Labor, Premature , Uterine Contraction , Adult , Animals , Female , Humans , Mice , Pregnancy , Cholestanetriol 26-Monooxygenase/genetics , Cholestanetriol 26-Monooxygenase/metabolism , Cholesterol/metabolism , Lipopolysaccharides/pharmacology , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Myocytes, Smooth Muscle/metabolism , Myometrium/metabolism , Obstetric Labor, Premature/metabolism , Obstetric Labor, Premature/genetics , Promoter Regions, Genetic , Uterine Contraction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL