Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.051
Filter
1.
BMC Vet Res ; 20(1): 300, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971814

ABSTRACT

BACKGROUND: Clostridium perfringens (C. perfringens) is an important zoonotic microorganism that can cause animal and human infections, however information about the prevalence status in wild birds of this pathogenic bacterium is currently limited. RESULT: In this study, 57 strains of C. perfringens were isolated from 328 fecal samples of wild birds. All the isolates were identified as type A and 70.18% of the isolates carried the cpb2 gene. Antimicrobial susceptibility testing showed that and 22.80% of the isolates were classified as multidrug-resistant strains. The MLST analysis of the 57 isolates from wild birds was categorized into 55 different sequence types (STs) and clustered into eight clonal complexes (CCs) with an average of 20.1 alleles and the Simpson Diversity index (Ds) of 0.9812, and revealed a high level of genetic diversity within the C. perfringens populations. Interestingly, the isolates from swan goose were clustered in the same CC while isolates from other bird species were more scattered suggesting that a potential difference in genetic diversity among the C. perfringens populations associated with different bird species. CONCLUSION: C. perfringens exhibits a wide range of host adaptations, varying degrees of antimicrobial resistance, and a high degree of genetic diversity in wild birds. Understanding the prevalence, toxin type, antimicrobial resistance, and genetic diversity of C. perfringens in wildlife populations is essential for developing effective strategies for disease control and management.


Subject(s)
Animals, Wild , Birds , Clostridium Infections , Clostridium perfringens , Drug Resistance, Multiple, Bacterial , Genetic Variation , Clostridium perfringens/genetics , Clostridium perfringens/isolation & purification , Clostridium perfringens/drug effects , Animals , Birds/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Clostridium Infections/veterinary , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Animals, Wild/microbiology , Feces/microbiology , Multilocus Sequence Typing/veterinary , Anti-Bacterial Agents/pharmacology , Bird Diseases/microbiology , Bird Diseases/epidemiology , Microbial Sensitivity Tests/veterinary
2.
Vet Med Sci ; 10(4): e1530, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979670

ABSTRACT

AIM: This study aimed to summarize the frequency and the antimicrobial susceptibility profiles of the Salmonella serotypes identified from the specimens of companion animals, livestock, avian, wildlife and exotic species within Atlantic Canada. MATERIALS AND METHODS: The retrospective electronic laboratory data of microbiological analyses of a selected subset of samples from 03 January 2012 to 29 December 2021 submitted from various animal species were retrieved. The frequency of Salmonella serotypes identified, and their antimicrobial susceptibility results obtained using the disk diffusion or broth method were analysed. The test results were interpreted according to the Clinical and Laboratory Standards Institute standard. The Salmonella serotypes were identified by slide agglutination (Kauffman-White-Le-Minor Scheme) and/or the Whole Genome Sequencing for the Salmonella in silico Serovar Typing Resource-based identification. RESULTS: Of the cases included in this study, 4.6% (n = 154) had at least one Salmonella isolate, corresponding to 55 different serovars. Salmonella isolation was highest from exotic animal species (n = 40, 1.20%), followed by porcine (n = 26, 0.78%), and canine (n = 23, 0.69%). Salmonella subsp. enterica serovar Typhimurium was predominant among exotic mammals, porcine and caprine samples, whereas S. Enteritidis was mostly identified in bovine and canine samples. S. Typhimurium of porcine origin was frequently resistant (>70.0%) to ampicillin. In contrast, S. Typhimurium isolates from porcine and caprine samples were susceptible (>70.0%) to florfenicol. S. Oranienburg from equine samples was susceptible to chloramphenicol, but frequently resistant (>90.0%) to azithromycin. In avian samples, S. Copenhagen was susceptible (>90.0%) to florfenicol, whereas Muenchen was frequently resistant (>90.0%) to florfenicol. S. subsp. diarizonae serovar IIIb:61:k:1,5 of ovine origin was resistant (50.0% isolates) to sulfadimethoxine. No significant changes were observed in the antibiotic resistance profiles across the study years. CONCLUSIONS: This report provides data for surveillance studies, distribution of Salmonella serotypes and their antimicrobial resistance among veterinary specimens of Atlantic Canada.


Subject(s)
Salmonella Infections, Animal , Salmonella , Serogroup , Animals , Retrospective Studies , Salmonella/drug effects , Salmonella/isolation & purification , Salmonella/genetics , Salmonella/classification , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Animals, Wild/microbiology , Canada/epidemiology , Livestock/microbiology , Anti-Bacterial Agents/pharmacology , Pets/microbiology , Birds/microbiology , Microbial Sensitivity Tests/veterinary
3.
BMC Vet Res ; 20(1): 274, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918815

ABSTRACT

BACKGROUND: Acinetobacter lwoffii (A. lwoffii) is a Gram-negative bacteria common in the environment, and it is the normal flora in human respiratory and digestive tracts. The bacteria is a zoonotic and opportunistic pathogen that causes various infections, including nosocomial infections. The aim of this study was to identify A. lwoffii strains isolated from bovine milk with subclinical mastitis in China and get a better understanding of its antimicrobial susceptibility and resistance profile. This is the first study to analyze the drug resistance spectrum and corresponding mechanisms of A. lwoffii isolated in raw milk. RESULTS: Four A. lwoffii strains were isolated by PCR method. Genetic evolution analysis using the neighbor-joining method showed that the four strains had a high homology with Acinetobacter lwoffii. The strains were resistant to several antibiotics and carried 17 drug-resistance genes across them. Specifically, among 23 antibiotics, the strains were completely susceptible to 6 antibiotics, including doxycycline, erythromycin, polymyxin, clindamycin, imipenem, and meropenem. In addition, the strains showed variable resistance patterns. A total of 17 resistance genes, including plasmid-mediated resistance genes, were detected across the four strains. These genes mediated resistance to 5 classes of antimicrobials, including beta-lactam, aminoglycosides, fluoroquinolones, tetracycline, sulfonamides, and chloramphenicol. CONCLUSION: These findings indicated that multi-drug resistant Acinetobacter lwoffii strains exist in raw milk of bovine with subclinical mastitis. Acinetobacter lwoffii are widespread in natural environmental samples, including water, soil, bathtub, soap box, skin, pharynx, conjunctiva, saliva, gastrointestinal tract, and vaginal secretions. The strains carry resistance genes in mobile genetic elements to enhance the spread of these genes. Therefore, more attention should be paid to epidemiological surveillance and drug resistant A. lwoffii.


Subject(s)
Acinetobacter , Anti-Bacterial Agents , Mastitis, Bovine , Milk , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , Female , Acinetobacter/isolation & purification , Acinetobacter/genetics , Acinetobacter/drug effects , Milk/microbiology , China/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/veterinary , Acinetobacter Infections/veterinary , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics
4.
Open Vet J ; 14(5): 1117-1129, 2024 May.
Article in English | MEDLINE | ID: mdl-38938436

ABSTRACT

Background: Salmonella infections are considered the most common foodborne pathogens responsible for zoonotic infections and food poisoning in humans and animal species such as birds. Antimicrobial resistance is considered a global anxiety because it causes human public health repercussions, as well as leads to an increase in animal morbidity and death. Aim: The aims of this study are the isolation and identification of Salmonella enterica, as well as to investigate the antimicrobial susceptibility test (AST) and the molecular characteristics using polymerase chain reaction (PCR) and sequences for isolates from chicken products (eggs, livers, and minced meat) and human in the Wasit Governorate of Iraq. Methods: A total of 300 samples (150 chicken product samples including eggs, livers, and minced meat, and 150 human fecal samples) were collected from the Wasit governorate of Iraq from January to December 2022. The bacterial isolation was done according to recommendations of ISO 6579 standard and the Global Foodborne Infections Network laboratory protocol. Serotyping test and AST were done by using 19 antibiotic agents according to the recommendations of the Clinical and Laboratory Standards Institute, 2022 by using disc diffusion susceptibility test and Vitik 2 test. Finally, the suspected isolates were confirmed using the conventional PCR method and sequencing for a unique rRNA gene. Results: The results showed that the isolation percentage of S. enterica in chicken products was 8.66% (12% eggs, 6% livers, and 8% minced meat), while in humans it was 4.6%. Also, showed 100% of Salmonella typhi in humans. While, in chicken eggs S. typhi, Salmonella typhimurium, and Salmonella enteritidis were 50%, 33.33%, and 16.66%, respectively. Also, showed 100% of S. typhimurium in both livers and minced meat. The AST in human isolates showed resistance to Ampicillin, Cefotaxime, Ceftazidime, Cefepime, Amikacin, Gentamicin, Ciprofloxacin, Norfloxacin, and Ceftriaxone, while no resistance to Amoxicillin, Pipracillin, Ertapenem, Imipenem, Meropenem, Fosfomycin, Nitrofurantoin, Trimethoprim, Azithromycin, and Tetracycline. In chicken products, isolates were resistant with different percentages to Amikacin, Gentamicin, Tetracycline, Ciprofloxacin, Norfloxacin, Nitrofurantoin, Ampicillin, Cefotaxime, Ceftazidime, Cefepime, and Trimethoprim; while no resistance to Amoxicillin, Pipracillin, Ertapenem, Imipenem, Meropenem, Fosfomycin, Azithromycin, and Ceftriaxone. Sequencing by using rRNA gene was done for four PCR products. Conclusion: This study showed the presence of genetic mutations for S. enterica which led to variations in the molecular characteristics, and antimicrobial drug resistance of S. enterica isolated from chicken products and humans.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Bacterial , Salmonella enterica , Animals , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Salmonella enterica/genetics , Humans , Chickens/microbiology , Iraq/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/veterinary , Meat/microbiology , Feces/microbiology , Poultry Products/microbiology , Salmonella Infections/microbiology , Salmonella Infections/epidemiology
5.
Vet J ; 305: 106153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821205

ABSTRACT

Staphylococcus spp. are growing pathogens in humans and companion animals. The emergence of multidrug-resistant bacterial infections, such as methicillin-resistant Staphylococcus-associated infections, due to zoonotic transmission, is a major public health concern. Domestic animals, such as dogs and cats, are possible reservoirs of multi-resistant bacterial species, which makes it relevant to monitor them due to their proximity to humans. However, there is a lack of information on the real scenario in Europe, especially in Portugal, particularly for animal infections caused by Staphylococcus spp. Therefore, this study aimed to investigate the antimicrobial resistance profile of Staphylococcus spp. isolated from cats and dogs diagnosed with infection in Northern Portugal. During 2021-2023, 96 Staphylococcus isolates from dogs and cats with symptoms of bacterial infection, including animals being treated in veterinary clinics/hospitals and cadavers submitted for necropsy at INIAV were included in the study collection. Of the 96 isolates, 63 were from dogs and 33 were Staphylococcus spp. from cats, most of which were isolated from ear (57% and 18%, respectively), skin (19 % and 27 %, respectively) and respiratory tract infections (6 % and 27 %, respectively). Among all the isolates, 12 different Staphylococcus spp. were identified, with Staphylococcus pseudintermedius being the most identified (61 % from dogs and 30 % from cats). It is noteworthy that 36 % of the isolates were multi-drug resistant and 25 % of the isolates showed a methicillin-resistant phenotype, with the mecA gene having been identified in all these isolates. This study highlights a high occurrence of multidrug-resistant Staphylococcus spp. in companion animals in Northern Portugal. This underlines the potential for cats and dogs to act as reservoirs of antimicrobial resistance, that can be transmitted to humans, posing a serious threat to public health.


Subject(s)
Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Pets , Staphylococcal Infections , Staphylococcus , Animals , Cats , Dogs , Portugal/epidemiology , Staphylococcus/drug effects , Staphylococcus/genetics , Staphylococcus/isolation & purification , Cat Diseases/microbiology , Cat Diseases/epidemiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Pets/microbiology , Microbial Sensitivity Tests/veterinary , Drug Resistance, Multiple, Bacterial , Drug Resistance, Bacterial
6.
Reprod Domest Anim ; 59(5): e14615, 2024 May.
Article in English | MEDLINE | ID: mdl-38798181

ABSTRACT

Present study was designed to evaluate the role of virulence factor genes (papG, cnf1 and hylA) in the pathogenesis of canine pyometra. Antimicrobial susceptibility test and detection of virulence genes were performed Escherichia coli (E. coli) detected in uterine swab samples. Animals were divided into two groups based on the presence (VF+, n:14) or absence (VF-, n:7) of the virulence factor genes papG, cnf1 and hylA. Blood and tissue glutathione peroxidase activity, uterine histopathologic analysis and AQP3, ESR1, PGR, OXTR gene expressions were determined in both groups. Statistical analyses were performed using Stata version 15.1. All E. coli isolates were susceptible to amikacin, whereas resistant to ampicillin, amoxicillin/clavulanic acid and lincomycin. None of the isolates were susceptible to cefotaxime. E. coli isolates had at least one virulence gene. The most prevalent gene was fimH (100%), followed by fyuA (95.8%), usp (83.3%), sfa (75%), cnf1 and hlyA (70.8%) genes. Blood GPx activity was greater in VF+ animals. On the other hand, uterine tissue GPx activity was lower in VF+ group compared to the control group. Expression levels of AQP3 were upregulated more than fivefold in VF-dogs compared to the control group. In addition, AQP3 expression levels were found approximately threefold higher in VF (-) than VF (+) group (p < .05). Varying degree of inflammation noted for all animals with pyometra, but the presence of bacteria noted only in VF+ animals. In conclusion, the presence of virulence factor genes does not play a role in the histopathological degree of inflammation, the presence of bacteria was found to vary. Serum GPx activity increased in VF+ animals. While the hormone receptor expressions were similar, AQP expression was upregulated in the absence of virulence factor genes.


Subject(s)
Aquaporin 3 , Dog Diseases , Escherichia coli , Glutathione Peroxidase , Pyometra , Uterus , Virulence Factors , Animals , Female , Virulence Factors/genetics , Virulence Factors/metabolism , Aquaporin 3/genetics , Aquaporin 3/metabolism , Dogs , Pyometra/veterinary , Pyometra/microbiology , Pyometra/pathology , Dog Diseases/microbiology , Uterus/pathology , Uterus/microbiology , Uterus/metabolism , Escherichia coli/genetics , Escherichia coli/pathogenicity , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Down-Regulation , Microbial Sensitivity Tests/veterinary
7.
Trop Anim Health Prod ; 56(5): 165, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753181

ABSTRACT

In herds of dairy goats, mastitis represents a major health and economic problem due to the multiresistance of some microorganisms. In this context, the study aimed to determine the potential of antimicrobial action and antibiofilm of the crude ethanolic extract (CEE) of Hymenaea martiana (jatobá) leaves, as well its fractions, on Staphylococcus sp isolated from bacterial cultures of goat milk. In vitro assays were performed to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), as well as tests of the effect of CEE on biofilm formation and quantification and the consolidated biofilm. The experimental infection was performed in two groups, each consisting of five goat. Experimental Group 1 (G1) consisted of five females treated with an intramammary ointment based on the CEE, at a concentration of 5%. Experimental Group 2 (G2) consisted of five females treated with a commercial intramammary ointment based on gentamicin, once a day, for six consecutive days. The diagnosis of mastitis was performed using a bacterial culture. The dichloromethane fraction of CEE was the one with the lowest concentrations of MBC, ranging from 195.3 to 781 µg / ml. Concerning to the biofilm, interference of the tested extract was observed for two isolates. In the present study, the ointment prepared from H. martiana extract (jatobá) was able to reduce bacterial infection in mammary glands experimentally infected with S. aureus. Antibacterial activity may be related to the classes of secondary metabolites found.


Subject(s)
Anti-Bacterial Agents , Biofilms , Goat Diseases , Goats , Mastitis , Microbial Sensitivity Tests , Plant Extracts , Staphylococcal Infections , Staphylococcus aureus , Animals , Female , Goat Diseases/drug therapy , Goat Diseases/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Mastitis/veterinary , Mastitis/drug therapy , Mastitis/microbiology , Microbial Sensitivity Tests/veterinary , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Biofilms/drug effects , Milk/microbiology , Plant Leaves/chemistry
8.
BMC Vet Res ; 20(1): 230, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802876

ABSTRACT

BACKGROUND: Piggery production is highly constrained by diseases, with diarrhoea in piglets being a major cause of economic losses to smallholder farmers in Uganda. Enterotoxigenic Escherichia coli (ETEC) is thought to be one of the major etiologies of this diarrhoea. A cross-sectional study was carried out in two high pig-producing districts of Uganda with the aim of determining the significance of piglet diarrhoea and the pathogenic determinants of causative E. coli. METHODOLOGY: A total of 40 households with piglets were visited in each district for a questionnaire survey and faecal sample collection. The questionnaire-based data collected included; demographic data and pig management practices. E. coli were isolated from diarrheic (43) and non-diarrheic (172) piglets and were subjected to antimicrobial susceptibility testing against nine commonly used antimicrobial agents. The E. coli isolates were further screened for the presence of 11 enterotoxin and fimbrial virulence gene markers using multiplex polymerase chain reaction. Data entry, cleaning, verification and descriptive statistics were performed using Microsoft Excel. Statistical analysis to determine any association between the presence of virulence markers and diarrhea in piglets was done using SPSS software (Version 23), with a p value of less than 0.05 taken as a statistically significant association. RESULTS: Escherichia coli were recovered from 81.4% (175/215) of the faecal samples. All the isolates were resistant to erythromycin, and most showed high resistance to tetracycline (71%), ampicillin (49%), and trimethoprim sulfamethoxazole (45%). More than half of the isolates (58.3%) carried at least one of the 11 virulence gene markers tested. EAST1 was the most prevalent virulence marker detected (35.4%), followed by STb (14.8%). Expression of more than one virulence gene marker was observed in 6.2% of the isolates, with the EAST1/STa combination being the most prevalent. Three adhesins; F17 (0.6%), F18 (6.3%) and AIDA-I (0.6%) were detected, with F18 being the most encountered. There was a statistically significant association between the occurrence of piglet diarrhoea and the presence of the AIDA-1 (p value = 0.037) or EAST1 (p value = 0.011) gene marker among the isolates. CONCLUSION AND RECOMMENDATION: The level of antimicrobial resistance among E. coli isolates expressing virulence markers were high in the sampled districts. The study established a significant association between presence of EAST1 and AIDA-I virulence markers and piglet diarrhea. Further studies should be carried out to elucidate the main adhesins borne by these organisms in Uganda and the actual role played by EAST1 in the pathogenesis of the infection since most isolates expressed this gene.


Subject(s)
Diarrhea , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Swine Diseases , Animals , Uganda/epidemiology , Swine , Swine Diseases/microbiology , Swine Diseases/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Diarrhea/veterinary , Diarrhea/microbiology , Cross-Sectional Studies , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/isolation & purification , Virulence/genetics , Feces/microbiology , Animals, Newborn , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Weaning , Microbial Sensitivity Tests/veterinary
9.
Open Vet J ; 14(4): 973-979, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38808290

ABSTRACT

Background: Escherichia coli infection is one of the major diarrheal diseases resulting in the loss of pigs at a young age. Aim: This research investigated the antimicrobial activity of Caesalpinia sappan wood extract against E. coli infection as an antibiotic replacement. Methods: E. coli was cultured from diarrheal piglets and then used to find the minimal inhibition concentration (MIC). Caesalpinia sappan wood extract (500 mg/kg) was used for the treatment of diarrheal piglets compared to antibiotics (enrofloxacin 5 mg/kg) by oral administration. Another three groups of diarrheal piglets were used supplemented feed with 1% and 2% extract compared with commercial feed. Subsequently, E. coli enumeration, fecal shape, fecal color, and growth rate were recorded from day 1 to 7. Results: Based on the results, C. sappan wood extract could inhibit E. coli growth at a MIC of 16-34 mg/ml. The number of colonies did not significantly differ between C. sappan wood extract and enrofloxacin treatment groups. A supplemented feed with 1% and 2% C. sappan wood extract could improve the fecal shape and fecal score compared to the control group, albeit only in suckling pigs. There were significant differences from the control group on days 4, 5, 6, and 7 (p < 0.05). However, the average daily gain did not significantly differ among the three groups. Conclusion: The results indicate that C. sappan wood extract could improve diarrheal signs in suckling pigs and can be used as a replacement for antibiotics for organic pig production.


Subject(s)
Anti-Bacterial Agents , Caesalpinia , Escherichia coli Infections , Escherichia coli , Plant Extracts , Swine Diseases , Animals , Caesalpinia/chemistry , Swine Diseases/drug therapy , Swine Diseases/microbiology , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Swine , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Escherichia coli/drug effects , Microbial Sensitivity Tests/veterinary , Diarrhea/veterinary , Diarrhea/drug therapy , Diarrhea/microbiology , Wood/chemistry , Feces/microbiology
10.
J Vet Diagn Invest ; 36(3): 393-399, 2024 May.
Article in English | MEDLINE | ID: mdl-38566327

ABSTRACT

Antimicrobial resistance (AMR) in pathogens important to aquatic animal health is of increasing concern but vastly understudied. Antimicrobial therapy is used to both treat and prevent bacterial disease in fish and is critical for a viable aquaculture industry and for maintenance of wild fish populations. Unfortunately, phenotypic antimicrobial susceptibility testing is technically difficult for bacteria recovered from aquatic animal hosts resulting in challenges in resistance monitoring using traditional methods. Whole-genome sequencing provides an appealing methodology for investigation of putative resistance. As part of the ongoing efforts of the FDA CVM Vet-LIRN to monitor AMR, source laboratories cultured and preliminarily identified pathogenic bacteria isolated from various fish species collected in 2019 from across the United States. Sixty-one bacterial isolates were evaluated using whole-genome sequencing. We present here the assembled draft genomes, AMR genes, predicted resistance phenotypes, and virulence factors of the 61 isolates and discuss concurrence of the identifications made by source laboratories using matrix-assisted laser desorption/time-of-flight mass spectrometry.


Subject(s)
Anti-Bacterial Agents , Bacteria , Drug Resistance, Bacterial , Fish Diseases , Genome, Bacterial , Animals , Drug Resistance, Bacterial/genetics , Fish Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Fishes/microbiology , Whole Genome Sequencing , Microbial Sensitivity Tests/veterinary
11.
J Vet Diagn Invest ; 36(4): 529-537, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38571400

ABSTRACT

The spread of antimicrobial-resistant bacteria is a significant concern, as it can lead to increased morbidity and mortality in both humans and animals. Whole-genome sequencing (WGS) is a powerful tool that can be used to conduct a comprehensive analysis of the genetic basis of antimicrobial resistance (AMR). We compared the phenotypic and genotypic AMR profiles of 97 Salmonella isolates derived from chicken and turkey diagnostic samples. We focused AMR analysis on 5 antimicrobial classes: aminoglycoside, beta-lactam, phenicol, tetracycline, and trimethoprim. The overall sensitivity and specificity of WGS in predicting phenotypic antimicrobial resistance in the Salmonella isolates were 93.4% and 99.8%, respectively. There were 16 disagreement instances, including 15 that were phenotypically resistant but genotypically susceptible; the other instance involved phenotypic susceptibility but genotypic resistance. Of the isolates examined, 67 of 97 (69%) carried at least 1 resistance gene, with 1 isolate carrying as many as 12 resistance genes. Of the 31 AMR genes analyzed, 16 were identified as aminoglycoside-resistance genes, followed by 4 beta-lactam-resistance, 3 tetracycline-resistance, 2 sulfonamide-resistance, and 1 each of fosfomycin-, quinolone-, phenicol-, trimethoprim-, bleomycin-, and colistin-resistance genes. Most of the resistance genes found were located on plasmids.


Subject(s)
Anti-Bacterial Agents , Chickens , Genotype , Poultry Diseases , Salmonella Infections, Animal , Salmonella enterica , Turkeys , Animals , Poultry Diseases/microbiology , Poultry Diseases/diagnosis , Anti-Bacterial Agents/pharmacology , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/diagnosis , Turkeys/microbiology , Chickens/microbiology , Drug Resistance, Bacterial/genetics , Whole Genome Sequencing/veterinary , Microbial Sensitivity Tests/veterinary , Phenotype
12.
Acta Vet Hung ; 72(1): 11-20, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38578700

ABSTRACT

Proteus mirabilis is a common enteric bacterium in livestock and humans. The increase and spread of the antimicrobial resistant P. mirabilis is considered alarming worldwide. Transmission mainly occurs through consumption of contaminated poultry products. We investigated antimicrobial resistance (AMR) and virulence markers in broiler chicken-originated P. mirabilis isolates from 380 fecal samples. Phenotypic AMR test was performed against seventeen different antimicrobials. Genotypic AMR test was performed to detect sixteen different AMR genes. The samples were also tested for the presence of eight different virulence genes and biofilm formation. P. mirabilis was isolated in 11% of the samples, with significantly high multidrug-resistant (MDR) prevalence (63%). All isolates were resistant to tetracycline (100%). The combined disc method indicated that all isolates were of extended-spectrum beta-lactamase (ESBL) producers, which was compatible with the high blaTEM prevalence (95%). This was associated with blaTEM being responsible for more than 80% of ampicillin resistance in enteric pathogens. The absence of phenotypically carbapenem-resistant isolates was compatible with the very low prevalences of blaOXA (2%) and blaNDM (0%). All isolates were positive for pmfA, atfA, hpmA, and zapA (100%) virulence genes, while biofilm formation rate (85%) indicated high adherence abilities of the isolates.


Subject(s)
Anti-Bacterial Agents , Proteus mirabilis , Humans , Animals , Anti-Bacterial Agents/pharmacology , Virulence , Proteus mirabilis/genetics , Chickens , beta-Lactamases/genetics , Drug Resistance, Bacterial , Microbial Sensitivity Tests/veterinary
13.
Aust Vet J ; 102(7): 362-368, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38654674

ABSTRACT

Urinary tract infections are a common diagnosis in dogs presenting to veterinary practice. Veterinarians often treat suspected infections empirically, either in the absence of culture and susceptibility testing results or whilst waiting for them. This study aimed to identify the bacteria most frequently isolated from canine urinary samples and their antimicrobial susceptibility patterns in South East Queensland (SEQ) to help guide responsible empirical antimicrobial prescription by the veterinary community in this geographical location. Cumulative antibiograms were generated from the results of 1284 culture-positive urinary samples in SEQ, obtained from a commercial veterinary laboratory over a 5-year period. Escherichia coli was the most commonly isolated bacterial species (43%), followed by Staphylococcus spp. (23%), Proteus spp. (21%) and Enterococcus spp. (10%). Of the six most common isolates, 97% had susceptibility to at least one low-importance antimicrobial. Susceptibility to the low-importance and first-line antimicrobial recommendation, amoxicillin, was 81% for E. coli and 24% for Staphylococcus spp. Susceptibility of both E. coli and Staphylococcus spp. to medium-importance and commonly recommended empirical antimicrobials, trimethoprim sulphonamides and amoxicillin-clavulanic acid was ≥85% and >92% for high-importance antimicrobials enrofloxacin and ceftiofur. Of the E. coli and Staphylococcus spp. isolates, 8.8% and 4%, respectively, were considered multidrug resistant. There was no increase in resistance to antimicrobials detected over the study period. Susceptibilities suggest low- and medium-importance antimicrobials remain acceptable first-line empirical treatments. However, this should be continually assessed and updated using local surveillance data.


Subject(s)
Anti-Bacterial Agents , Bacteria, Aerobic , Dog Diseases , Microbial Sensitivity Tests , Urinary Tract Infections , Animals , Dogs , Queensland/epidemiology , Dog Diseases/microbiology , Dog Diseases/urine , Dog Diseases/drug therapy , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/veterinary , Urinary Tract Infections/veterinary , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/urine , Bacteria, Aerobic/drug effects , Bacteria, Aerobic/isolation & purification , Drug Resistance, Bacterial
14.
J Avian Med Surg ; 38(1): 15-20, 2024 04.
Article in English | MEDLINE | ID: mdl-38686884

ABSTRACT

Veterinary hospitals house patient populations with diverse infectious statuses, microbiota, and histories of prior antibiotic therapy. Choanal swabs are commonly used for assessing the upper respiratory tract of birds for bacterial disease, with the samples submitted for cytologic testing and/or culture and antimicrobial sensitivity testing. The aim of this retrospective study was to identify and quantify bacteria isolated from choanal swabs collected from psittacine patients at a veterinary teaching hospital in Mexico City, Mexico. Data regarding bacterial isolates from choanal swabs were obtained from the medical records of companion psittacines suspected of upper respiratory bacterial disease that presented between November 2015 and December 2022. A total of 47.8% (175 of 366) of the bacterial isolates were from specimens obtained from red-lored Amazons (Amazona autumnalis). Gram-negative bacteria predominated, with 27 different genera identified. Klebsiella, Staphylococcus, and Escherichia were the most frequently isolated genera. A total of 90.4% (331 of 366) of the isolates were resistant to at least 1 antibiotic tested in the sensitivity panel, and a single Klebsiella isolate was resistant to 13 different antibiotics. Gentamicin had a high percentage of efficacy (79.5%; 182 of 229) against the bacterial isolates, whereas isolates tested against sulfonamide-trimethoprim (46.7%, 98 of 210), streptomycin (43.8%; 88 of 201), and clindamycin (12.9%; 15 of 116) had susceptibilities <50%. This is the first study to report common bacterial isolates and their antimicrobial susceptibility patterns from choanal swab samples collected from companion psittacines suspected of upper respiratory disease in Mexico. Clinicians can use the information presented in this study as a guide for therapeutic decision-making when managing upper respiratory bacterial infections in companion psittacine patients.


Subject(s)
Anti-Bacterial Agents , Bird Diseases , Hospitals, Animal , Microbial Sensitivity Tests , Psittaciformes , Retrospective Studies , Animals , Anti-Bacterial Agents/pharmacology , Bird Diseases/microbiology , Bird Diseases/drug therapy , Microbial Sensitivity Tests/veterinary , Drug Resistance, Bacterial , Mexico , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification
15.
Vet Res ; 55(1): 50, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594755

ABSTRACT

Proteus mirabilis is a commensal bacterium dwelling in the gastrointestinal (GI) tract of humans and animals. Although New Delhi metallo-ß-lactamase 1 (NDM-1) producing P. mirabilis is emerging as a threat, its epidemiology in our society remains largely unknown. LHPm1, the first P. mirabilis isolate harboring NDM-1, was detected from a companion dog that resides with a human owner. The whole-genome study revealed 20 different antimicrobial resistance (AMR) genes against various classes of antimicrobial agents, which corresponded to the MIC results. Genomic regions, including MDR genes, were identified with multiple variations and visualized in a comparative manner. In the whole-genome epidemiological analysis, multiple phylogroups were identified, revealing the genetic relationship of LHPm1 with other P. mirabilis strains carrying various AMR genes. These genetic findings offer comprehensive insights into NDM-1-producing P. mirabilis, underscoring the need for urgent control measures and surveillance programs using a "one health approach".


Subject(s)
Dog Diseases , Proteus Infections , Dogs , Humans , Animals , Anti-Bacterial Agents/pharmacology , Proteus mirabilis/genetics , Pets/genetics , Proteus Infections/veterinary , Proteus Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Republic of Korea , Microbial Sensitivity Tests/veterinary , Plasmids , Dog Diseases/genetics
16.
Prev Vet Med ; 227: 106205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678816

ABSTRACT

Mastitis is the most common disease of dairy cattle and can be manifested in clinical and subclinical forms. The overuse of antimicrobials in the treatment and prevention of mastitis favours antimicrobial resistance and milk can be a potential route of dissemination. This study aimed to evaluate the biological quality of bulk tank milk (BTM) and the microbiological quality and signs of mastitis of freshly milked raw milk. In addition, to evaluate antimicrobial resistance in Enterobacteriaceae and Staphylococcus spp. isolated from freshly milked raw milk. None of the farms were within the official Brazilian biological quality limits for BTM. Freshly milked raw milk with signs of clinical (CMM), subclinical (SCMM) and no signs (MFM) of mastitis were detected in 6.67%, 27.62% and 65.71% samples, respectively. Most samples of freshly milked raw milk showed acceptable microbiological quality, when evaluating the indicators total coliforms (78.10%), Escherichia coli (88.57%) and Staphylococcus aureus (100%). Klebsiella oxytoca and S. aureus were the most prevalent microorganisms in SCMM and MFM samples. Antimicrobial resistance and multidrug resistance (MDR) were observed in 65.12% and 13.95% of Enterobacteriaceae and 84.31% and 5.88% of Staphylococcus spp., respectively, isolated from both SCMM and MFM samples. Enterobacteriaceae resistant to third-generation cephalosporin (3GCR) (6.98%) and carbapenems (CRE) (6.98%) and methicillin-resistant S. aureus (MRSA) (4.88%) were observed. Antimicrobial-resistant bacteria can spread resistance genes to previously susceptible bacteria. This is a problem that affects animal, human and environmental health and should be evaluated within the one-health concept.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterobacteriaceae , Mastitis, Bovine , Milk , Staphylococcus , Animals , Cattle , Milk/microbiology , Mastitis, Bovine/microbiology , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Female , Staphylococcus/drug effects , Brazil , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Asymptomatic Infections , Microbial Sensitivity Tests/veterinary
17.
Open Vet J ; 14(1): 284-291, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633165

ABSTRACT

Background: Bacterial Omphalitis has been reported as a significant cause of mortalities in newly hatched broiler chicks. Aim: This study aimed to assess the occurrence of omphalitis among broiler chickens in Gharbia governorate in Egypt. In addition, the bacteria associated with the occurrence of omphalitis in broiler chickens were also investigated and characterized. Methods: For this purpose, 43 farms in that area were surveyed. The comparative levels of omphalitis caused by Escherichia coli (E. coli), Salmonella spp., and Staphylococcus aureus (S. aureus) were screened in 129 chicks. The drug resistance to eight commonly used antimicrobials in Egyptian poultry farms was screened using the disk diffusion method. Results: The overall incidence rate of omphalitis was 37.21%. In birds with omphalitis, the co-prevalence of S. aureus, Salmonella spp., and E. coli was 87.5%. When compared to healthy flocks, broiler chicks with omphalitis caused by Salmonella spp., E. coli, and S. aureus had a greater mortality rate in the first week of life. However, there were no significant differences in the mortality cases caused by these pathogens. Eighty-seven percent of the cases of omphalitis were linked to E. coli and 75% to Salmonella spp. and S. aureus. From the yolk sac of broiler chicks with omphalitis, E. coli, Salmonella spp., and S. aureus were isolated at rates of 87.5%, 62.5%, and 45.8%, respectively. The isolates of E. coli and Salmonella spp. exhibited great sensitivity to gentamycin and Tetracycline; however, the strongest drug resistance was observed toward cefpodoxime, sulphamethoxazole and trimethoprim, ampicillin, and amoxycillin and clavulanic acid. The recovered isolates of S. aureus showed susceptibility to chloramphenicol (72.37%), oxytetracycline (81.82%), and erythromycin (81.82%). However, every S. aureus isolate that was found resistant to amoxycillin and clavulanic acid, penicillin G and oxacillin. of blaTEM, blaSHV, and blaCTX-M genes has been proposed as the genetic cause of ß-lactam antibiotic resistance in Salmonella spp. and E. coli. MecA and blaZ; however, were found in every strain of S. aureus. Conclusion: The frequency of omphalitis and its associated mortalities was comparatively high in Gharbia governorate. More efforts should be made to adopt strict hygienic standards for controlling and preventing such disease and this will consequently lead to minimizing the use of antimicrobials in poultry farms.


Subject(s)
Anti-Bacterial Agents , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Escherichia coli , Staphylococcus aureus , Chickens , Egypt , Prevalence , Drug Resistance, Bacterial , Microbial Sensitivity Tests/veterinary , Staphylococcal Infections/veterinary , Poultry , Salmonella , Amoxicillin , Clavulanic Acid
18.
Open Vet J ; 14(1): 571-576, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633183

ABSTRACT

Background: Camels are important animals in Egypt and other Arab countries on the basis of their economic value and ethnic culture. Escherichia coli is implicated in several gastrointestinal infections and outbreaks worldwide, especially in developing countries. It causes infections that might lead to death. Numerous biological activities, such as antioxidative, antibacterial, anti-diabetic, anti-mutagenic, anti-inflammatory, neuroprotective, and diuretic, are associated with coriander and coriander essential oils. Aim: This work targeted investigation of the prevalence, antibiogram, and occurrence of virulence genes of E. coli in camel meat liver and kidney. Besides, the anti-E. coli activity of coriander oil was further examined. Methods: Camel meat, liver, and kidneys were collected from local markets in Egypt. Isolation and identification of E. coli were performed. The antimicrobial susceptibility of the obtained E. coli isolates was screened using the disk diffusion assay. To detect the presence of virulence-associated genes (stx1, stx2, eaeA, and hylA gens), polymerase chain reaction was used. An experimental trial was done to investigate the anti-E. coli activity of coriander oil. Results: The obtained results revealed isolation of the following E. coli pathotypes: O17:H18, O128:H2, O119:H6, O103:H4, O145:H-, and O121:H7. The recovered E. coli isolates practiced multidrug resistance profiling with higher resistance toward Erythromycin, Nalidixic Acid, Clindamycin, and Ampicillin. However, the isolates were sensitive to Meropenem and cefoxitin. The recovered isolates had expressed different virulence attributes. Coriander oil of 2% could significantly reduce E. coli O128 count in camel meat by 65%. Conclusion: Therefore, strict hygienic measures are highly recommended during the processing of camel meat. The use of coriander oil during camel meat processing is highly recommended to reduce E. coli count.


Subject(s)
Camelus , Shiga-Toxigenic Escherichia coli , Animals , Shiga-Toxigenic Escherichia coli/genetics , Prevalence , Meat/microbiology , Microbial Sensitivity Tests/veterinary
19.
Vet Res ; 55(1): 48, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594744

ABSTRACT

Actinobacillus pleuropneumoniae (APP) is a bacterium frequently associated with porcine pleuropneumonia. The acute form of the disease is highly contagious and often fatal, resulting in significant economic losses for pig farmers. Serotype diversity and antimicrobial resistance (AMR) of APP strains circulating in north Italian farms from 2015 to 2022 were evaluated retrospectively to investigate APP epidemiology in the area. A total of 572 strains isolated from outbreaks occurring in 337 different swine farms were analysed. The majority of isolates belonged to serotypes 9/11 (39.2%) and 2 (28.1%) and serotype diversity increased during the study period, up to nine different serotypes isolated in 2022. The most common resistances were against tetracycline (53% of isolates) and ampicillin (33%), followed by enrofloxacin, florfenicol and trimethoprim/sulfamethoxazole (23% each). Multidrug resistance (MDR) was common, with a third of isolates showing resistance to more than three antimicrobial classes. Resistance to the different classes and MDR varied significantly depending on the serotype. In particular, the widespread serotype 9/11 was strongly associated with florfenicol and enrofloxacin resistance and showed the highest proportion of MDR isolates. Serotype 5, although less common, showed instead a concerning proportion of trimethoprim/sulfamethoxazole resistance. Our results highlight how the typing of circulating serotypes and the analysis of their antimicrobial susceptibility profile are crucial to effectively manage APP infection and improve antimicrobial stewardship.


Subject(s)
Actinobacillus Infections , Actinobacillus pleuropneumoniae , Pleuropneumonia , Swine Diseases , Thiamphenicol/analogs & derivatives , Swine , Animals , Serogroup , Microbial Sensitivity Tests/veterinary , Enrofloxacin , Farms , Retrospective Studies , Pleuropneumonia/epidemiology , Pleuropneumonia/veterinary , Pleuropneumonia/microbiology , Anti-Bacterial Agents/pharmacology , Sulfamethoxazole/pharmacology , Trimethoprim/pharmacology , Italy/epidemiology , Swine Diseases/epidemiology , Swine Diseases/microbiology , Actinobacillus Infections/epidemiology , Actinobacillus Infections/veterinary , Actinobacillus Infections/microbiology , Serotyping/veterinary
20.
Open Vet J ; 14(1): 176-185, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633196

ABSTRACT

Background: Food safety is a serious challenge in the face of increasing population and diminishing resources. Staphylococcus aureus is a critical foodborne pathogen characterized by its capability to secret a diverse range of heat-resistant enterotoxins. Antibiotic usage in dairy herds resulted in the occurrence of antimicrobial resistance (AMR) patterns among bacterial species, which were consequently transmitted to humans via dairy products. Lactic acid bacteria (LAB) produce bacteriocins, which provide an excellent source of natural antimicrobials with the further advantage of being environmentally friendly and safe. Aim: Detection of multidrug resistance (MDR) S. aureus isolates in concerned samples, molecular characteristics, biofilm production, and the inhibitory role of LAB against it. Methods: Random samples of raw milk and other dairy products were analyzed for S. aureus isolation. Phenotypic and genotypic assessment of AMR was performed, in addition to detection of classical enterotoxin genes of S. aureus. Finally, evaluation of the antimicrobial action of some Lactobacillus strains against S. aureus. Results: Incidence rates of presumptive S. aureus in raw milk, Kariesh cheese, and yogurt samples were 50%, 40%, and 60%, respectively. The highest resistance of S. aureus was to Kanamycin (100%) and Nalidixic acid (89.3%), respectively. (78.66%) of S. aureus were MDR. 11.1% of S. aureus carried mecA gene. In concern with enterotoxins genes, PCR showed that examined isolates harbored sea with a percentage of (22.2%), while sed was found in (11.1%) of isolates. Regarding biofilm production, (88.88%) of S. aureus were biofilm producers. Finally, agar well diffusion showed that Lactobacillus acidophilus had the strongest antimicrobial action against S. aureus with inhibition zone diameter ranging from 18 to 22 mm. Conclusion: There is a widespread prevalence of MDR S. aureus in raw milk and dairy products. Production of staphylococcal enterotoxins, as well as biofilm production are responsible for public health risks. Therefore, installing proper hygienic routines and harsh food safety policies at food chain levels is substantial.


Subject(s)
Anti-Infective Agents , Probiotics , Staphylococcal Infections , Humans , Animals , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Milk , Enterotoxins/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Microbial Sensitivity Tests/veterinary , Biofilms
SELECTION OF CITATIONS
SEARCH DETAIL