Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.686
Filter
1.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731652

ABSTRACT

Bovine milk is an essential supplement due to its rich energy- and nutrient-rich qualities. Caseins constitute the vast majority of the proteins in milk. Among these, ß-casein comprises around 37% of all caseins, and it is an important type of casein with several different variants. The A1 and A2 variants of ß-casein are the most researched genotypes due to the changes in their composition. It is accepted that the A2 variant is ancestral, while a point mutation in the 67th amino acid created the A1 variant. The digestion derived of both A1 and A2 milk is BCM-7. Digestion of A2 milk in the human intestine also forms BCM-9 peptide molecule. The opioid-like characteristics of BCM-7 are highlighted for their potential triggering effect on several diseases. Most research has been focused on gastrointestinal-related diseases; however other metabolic and nervous system-based diseases are also potentially triggered. By manipulating the mechanisms of these diseases, BCM-7 can induce certain situations, such as conformational changes, reduction in protein activity, and the creation of undesired activity in the biological system. Furthermore, the genotype of casein can also play a role in bone health, such as altering fracture rates, and calcium contents can change the characteristics of dietary products. The context between opioid molecules and BCM-7 points to a potential triggering mechanism for the central nervous system and other metabolic diseases discussed.


Subject(s)
Caseins , Endorphins , Humans , Animals , Caseins/chemistry , Caseins/metabolism , Caseins/genetics , Endorphins/chemistry , Endorphins/metabolism , Milk/chemistry , Milk/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/genetics , Opioid Peptides/chemistry , Opioid Peptides/metabolism , Cattle
2.
BMC Genomics ; 25(1): 477, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745140

ABSTRACT

BACKGROUND: Since domestication, both evolutionary forces and human selection have played crucial roles in producing adaptive and economic traits, resulting in animal breeds that have been selected for specific climates and different breeding goals. Pakistani goat breeds have acquired genomic adaptations to their native climate conditions, such as tropical and hot climates. In this study, using next-generation sequencing data, we aimed to assess the signatures of positive selection in three native Pakistani goats, known as milk production breeds, that have been well adapted to their local climate. RESULTS: To explore the genomic relationship between studied goat populations and their population structure, whole genome sequence data from native goat populations in Pakistan (n = 26) was merged with available worldwide goat genomic data (n = 184), resulting in a total dataset of 210 individuals. The results showed a high genetic correlation between Pakistani goats and samples from North-East Asia. Across all populations analyzed, a higher linkage disequilibrium (LD) level (- 0.59) was found in the Pakistani goat group at a genomic distance of 1 Kb. Our findings from admixture analysis (K = 5 and K = 6) showed no evidence of shared genomic ancestry between Pakistani goats and other goat populations from Asia. The results from genomic selection analysis revealed several candidate genes related to adaptation to tropical/hot climates (such as; KITLG, HSPB9, HSP70, HSPA12B, and HSPA12B) and milk production related-traits (such as IGFBP3, LPL, LEPR, TSHR, and ACACA) in Pakistani native goat breeds. CONCLUSIONS: The results from this study shed light on the structural variation in the DNA of the three native Pakistani goat breeds. Several candidate genes were discovered for adaptation to tropical/hot climates, immune responses, and milk production traits. The identified genes could be exploited in goat breeding programs to select efficient breeds for tropical/hot climate regions.


Subject(s)
Genomics , Goats , Linkage Disequilibrium , Milk , Tropical Climate , Animals , Goats/genetics , Milk/metabolism , Genomics/methods , Adaptation, Physiological/genetics , Selection, Genetic , Polymorphism, Single Nucleotide , Pakistan , Phenotype , Breeding
3.
Front Immunol ; 15: 1385896, 2024.
Article in English | MEDLINE | ID: mdl-38715606

ABSTRACT

Introduction: Peripartal cows are susceptible to a negative energy balance due to inadequate nutrient intake and high energy requirements for lactation. Improving the energy metabolism of perinatal dairy cows is crucial in increasing production in dairy cows. Methods: In this study, we investigated the impact of rumen-protected branched-chain amino acid (RPBCAA) on the production performance, energy and lipid metabolism, oxidative stress, and immune function of primiparous dairy cows using metabolomics through a single-factor experiment. Twenty healthy primiparous Holstein cows were selected based on body condition scores and expected calving date, and were randomly divided into RPBCAA (n = 10) and control (n = 10) groups. The control group received a basal diet from calving until 21 d in milk, and the RPBCAA group received the basal diet and 44.6 g/d RPLeu, 25.14 g/d RPIle, and 25.43 g/d RPVal. Results: In comparison to the control group, the supplementation of RPBCAA had no significant effect on milk yield and milk composition of the dairy cows. Supplementation with RPBCAA significantly increased the concentrations of insulin, insulin growth factor 1, glucagon, and growth hormones, which are indicators of energy metabolism in postpartum cows. The very low density lipoprotein, fatty acid synthase, acetyl coenzyme A carboxylase, and hormone-sensitive lipase contents of the RPBCAA group were significantly greater than that of the control group; these metrics are related to lipid metabolism. In addition, RPBCAA supplementation significantly increased serum glutathione peroxidase and immunoglobulin G concentrations and decreased malondialdehyde concentrations. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed 414 serum and 430 milk metabolic features. Supplementation with RPBCAA primarily increased concentrations of amino acid and lipid metabolism pathways and upregulated the abundance of serotonin, glutamine, and phosphatidylcholines. Discussion: In summary, adding RPBCAA to the daily ration can influence endocrine function and improve energy metabolism, regulate amino acid and lipid metabolism, mitigate oxidative stress and maintain immune function on primiparous cows in early lactation.


Subject(s)
Amino Acids, Branched-Chain , Lactation , Metabolomics , Milk , Rumen , Animals , Cattle , Female , Amino Acids, Branched-Chain/metabolism , Rumen/metabolism , Metabolomics/methods , Milk/chemistry , Milk/metabolism , Energy Metabolism , Pregnancy , Dietary Supplements , Animal Feed/analysis , Parity , Oxidative Stress , Lipid Metabolism , Metabolome
4.
J Agric Food Chem ; 72(19): 11072-11079, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699886

ABSTRACT

Gouda-type cheeses were produced on a pilot-scale from raw milk (RM-G) and pasteurized milk (PM-G). Sixteen key aroma compounds previously characterized by the sensomics approach were quantitated in the unripened cheeses and at five different ripening stages (4, 7, 11, 19, and 30 weeks) by means of stable isotope dilution assays. Different trends were observed in the formation of the key aroma compounds. Short-chain free fatty acids and ethyl butanoate as well as ethyl hexanoate continuously increased during ripening but to a greater extent in RM-G. Branched-chain fatty acids such as 3-methylbutanoic acid were also continuously formed and reached a 60-fold concentration after 30 weeks, in particular in PM-G. 3-Methylbutanal and butane-2,3-dione reached a maximum concentration after 7 weeks and decreased with longer ripening. Lactones were high in the unripened cheeses and increased only slightly during ripening. Recent results have shown that free amino acids were released during ripening. The aroma compounds 3-methylbutanal, 3-methyl-1-butanol, and 3-methylbutanoic acid are suggested to be formed by microbial enzymes degrading the amino acid l-leucine following the Ehrlich pathway. To gain insight into the quantitative formation of each of the three aroma compounds, the conversion of the labeled precursors (13C6)-l-leucine and (2H3)-2-keto-4-methylpentanoic acid into the isotopically labeled aroma compounds was studied. By applying the CAMOLA approach (defined mixture of labeled and unlabeled precursor), l-leucine was confirmed as the only precursor of the three aroma compounds in the cheese with the preferential formation of 3-methylbutanoic acid.


Subject(s)
Cheese , Milk , Odorants , Pasteurization , Volatile Organic Compounds , Cheese/analysis , Animals , Milk/chemistry , Milk/metabolism , Odorants/analysis , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Cattle
5.
Nat Commun ; 15(1): 3953, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729967

ABSTRACT

Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.


Subject(s)
Lactation , Mammary Glands, Animal , Milk , Animals , Female , Mammary Glands, Animal/metabolism , Humans , Mice , Milk/metabolism , Cell Differentiation , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Epithelial Cells/metabolism , Macropodidae/metabolism , Mammals , Marsupialia
6.
J Agric Food Chem ; 72(20): 11733-11745, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38725145

ABSTRACT

Amino acids are essential for the activation of the mechanistic target of rapamycin (mTOR), but the corresponding molecular mechanism is not yet fully understood. We previously found that Met stimulated eukaryotic elongation factor α (eEF1Bα) nuclear localization in bovine mammary epithelial cells (MECs). Herein, we explored the role and molecular mechanism of eEF1Bα in methionine (Met)- and leucine (Leu)-stimulated mTOR gene transcription and milk synthesis in MECs. eEF1Bα knockdown decreased milk protein and fat synthesis, cell proliferation, and mTOR mRNA expression and phosphorylation, whereas eEF1Bα overexpression had the opposite effects. QE-MS analysis detected that eEF1Bα was phosphorylated at Ser106 in the nucleus and Met and Leu stimulated p-eEF1Bα nuclear localization. eEF1Bα knockdown abrogated the stimulation of Met and Leu by mTOR mRNA expression and phosphorylation, and this regulatory role was dependent on its phosphorylation. Akt knockdown blocked the stimulation of Met and Leu by eEF1Bα and p-eEF1Bα expression. ChIP-PCR detected that p-eEF1Bα bound only to the -548 to -793 nt site in the mTOR promoter, and ChIP-qPCR further detected that Met and Leu stimulated this binding. eEF1Bα mediated Met and Leu' stimulation on mTOR mRNA expression and phosphorylation through inducing AT-rich interaction domain 1A (ARID1A) ubiquitination degradation, and this process depended on eEF1Bα phosphorylation. p-eEF1Bα interacted with ARID1A and ubiquitin protein ligase E3 module N-recognition 5 (UBR5), and UBR5 knockdown rescued the decrease of the ARID1A protein level by eEF1Bα overexpression. Both eEF1Bα and p-eEF1Bα were highly expressed in mouse mammary gland tissues during the lactating period. In summary, we reveal that Met and Leu stimulate mTOR transcriptional activation and milk protein and fat synthesis in MECs through eEF1Bα-UBR5-ARID1A signaling.


Subject(s)
Epithelial Cells , Leucine , Mammary Glands, Animal , Methionine , Milk , Signal Transduction , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Cattle , Female , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Signal Transduction/drug effects , Methionine/metabolism , Methionine/pharmacology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Milk/chemistry , Milk/metabolism , Leucine/pharmacology , Leucine/metabolism , Mice , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism
7.
Anim Sci J ; 95(1): e13961, 2024.
Article in English | MEDLINE | ID: mdl-38769804

ABSTRACT

The objective of this study was to evaluate the effect of feeding beef cows with sodium butyrate during the late pregnancy and early post-partum periods on concentrations of glucagon-like peptide (GLP)-1 and 2 in plasma, colostrum, and transition milk. Twelve Japanese Black female cows were fed concentrate feed without (CON; n = 6) or with (BUTY; n = 6) sodium butyrate supplementation at 1.1% of dietary dry matter from -60 d relative to the expected parturition date to 4 d after parturition. Plasma total cholesterol concentration was higher for the BUTY than for the CON (P = 0.04). In addition, plasma GLP-1 concentration was higher for the BUTY than for the CON at 3 d after calving (P < 0.05). This study showed for the first time that GLP-1 is present in the colostrum of Japanese Black cows at higher concentrations as compared to in plasma (P < 0.01). On the other hand, no treatment effect was observed for concentrations of metabolite and hormone in colostrum and transition milk. In summary, feeding beef cows with sodium butyrate during the late gestation and early post-partum period likely increases plasma GLP-1 concentrations post-partum without affecting the components of colostrum and transition milk.


Subject(s)
Butyric Acid , Colostrum , Glucagon-Like Peptide 1 , Postpartum Period , Animals , Female , Colostrum/chemistry , Colostrum/metabolism , Cattle/metabolism , Pregnancy , Butyric Acid/metabolism , Glucagon-Like Peptide 1/blood , Glucagon-Like Peptide 1/metabolism , Postpartum Period/metabolism , Milk/chemistry , Milk/metabolism , Cholesterol/blood , Cholesterol/metabolism , Animal Feed , Dietary Supplements , Diet/veterinary , Animal Nutritional Physiological Phenomena
8.
Anim Sci J ; 95(1): e13965, 2024.
Article in English | MEDLINE | ID: mdl-38816230

ABSTRACT

To improve sustainability, dairy farms can reduce protein-rich concentrate in the cows' diet providing fresh herbage produced on-farm. This study aimed to quantify effects of increasing the percentage of fresh herbage (0%, 25%, 50%, and 75%, on a dry matter [DM] basis) in a partial mixed ration-based diet on cow N use efficiency and excretion. The study was performed with five lactating cows, in a 4 × 4 Latin square design for four 3 week periods. Individual DM intake, milk yield, feces and urine excretions, and their N concentrations were measured daily. Dietary crude protein concentrations varied little among treatments (127 to 134 g/kg DM). DM intake and milk yield decreased linearly by 5.2 and 3.7 kg/day, respectively, while N use efficiency increased by 4.1 percentage points from 0% to 75% DM of fresh herbage in the diet. Urinary N was not influenced by the treatments, while fecal N decreased as the percentage of fresh herbage increased. This study highlights that replacing partial mixed ration with an increasing percentage of fresh herbage with slight changes in dietary N concentration increases N use efficiency and the percentage of urinary N in excreted N.


Subject(s)
Animal Nutritional Physiological Phenomena , Diet , Feces , Glycine max , Lactation , Nitrogen , Silage , Zea mays , Animals , Cattle/metabolism , Female , Nitrogen/metabolism , Nitrogen/urine , Silage/analysis , Lactation/metabolism , Zea mays/metabolism , Glycine max/metabolism , Feces/chemistry , Diet/veterinary , Animal Nutritional Physiological Phenomena/physiology , Milk/metabolism , Milk/chemistry , Dairying , Animal Feed , Dietary Proteins/metabolism , Dietary Proteins/administration & dosage , Dietary Proteins/analysis
9.
Food Chem ; 452: 139501, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38728887

ABSTRACT

To clarify the change mechanism of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei JY025 fortified milk powder (LFMP) during storage, morphological observation, JY025 survival, storage stability, and metabolomics of LFMP were determined during the storage period in this study. The results showed that the LFMP had a higher survival rate of JY025 compared with the bacterial powder of JY025 (LBP) during storage, which suggested that milk powder matrix could reduce strain JY025 mortality under prolonged storage in the LFMP samples. The fortification of strain JY025 also affected the stability of milk powder during the storage period. There was lower water activity and higher glass transition temperature in LFMP samples compared with blank control milk powder (BCMP) during storage. Moreover, the metabolomics results of LFMP indicated that vitamin degradation, Maillard reaction, lipid oxidation, tricarboxylic acid cycle, and lactobacilli metabolism are interrelated and influence each other to create complicated metabolism networks.


Subject(s)
Food Storage , Lacticaseibacillus paracasei , Milk , Powders , Animals , Milk/chemistry , Milk/metabolism , Lacticaseibacillus paracasei/metabolism , Lacticaseibacillus paracasei/growth & development , Lacticaseibacillus paracasei/chemistry , Powders/chemistry , Food, Fortified/analysis
10.
Trop Anim Health Prod ; 56(5): 173, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780716

ABSTRACT

This study investigated the effect of co-ensiled rice straw (RS) with whole sugar beet (SB) on lactating cows' performance. Ensiled rice straw (ERS) as control (CGS) was incorporated with immersed corn grains (CG) for 24 h, while the 2nd and 3rd ensiled RS (LSB and HSB) contained SB substituted of 50 and 100% of CG on an energy basis (total digestible nutrients, TDN), respectively. In the experimental diets, D1, D2, and D3, which include CGS, LSB, and HSB provided ad-libitum, respectively, while a concentrated feed mixture (2% of body weight) was offered. The population of lactic acid bacteria was slightly higher with fed HSB, relative to LSB and CGS. The OM, CP, EE, NFC, and TCH contents of CGS were slightly higher than LSB and HSB, while the opposite happened with the aNDFom, and ADFom contents. The digestibility of DM, OM, aNDFom, and ADFom of the D3 group was higher (P < 0.05) than in D1 and D2. The D3 recorded the highest values (P < 0.05) of silage consumption, and palatability. Milk production, fat-corrected milk (FCM), and energy-corrected milk (ECM) were (P < 0.05) higher for cows fed D3 compared with D1 and D2. Fat, protein, lactose, and total solids were trending on the same track. The feed conversion ratio (FCR) of cows fed diet D3 was better than cows fed D1 diet. The level of glucose in the blood increased (P < 0.05) significantly with feeding on HSB than LSB, which was significantly (P < 0.05) higher compared to CGS. In conclusion, co-ensiling of RS with the whole SB plant consider a good method to improve its nutritional value.


Subject(s)
Beta vulgaris , Diet , Lactation , Oryza , Silage , Animals , Cattle/physiology , Female , Beta vulgaris/chemistry , Lactation/physiology , Oryza/chemistry , Silage/analysis , Diet/veterinary , Animal Nutritional Physiological Phenomena , Animal Feed/analysis , Milk/chemistry , Milk/metabolism , Digestion
11.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791583

ABSTRACT

Milk is a fundamental component of the human diet, owing to its substantial nutritional content. In addition, milk contains nanoparticles called extracellular vesicles (EVs), which have indicated their potential beneficial roles such as cell-to-cell communication, disease biomarkers, and therapeutics agents. Amidst other types of EVs, milk EVs (MEVs) have their significance due to their high abundance, easy access, and stability in harsh environmental conditions, such as low pH in the gut. There have been plenty of studies conducted to evaluate the therapeutic potential of bovine MEVs over the past few years, and attention has been given to their engineering for drug delivery and targeted therapy. However, there is a gap between the experimental findings available and clinical trials due to the many challenges related to EV isolation, cargo, and the uniformity of the material. This review aims to provide a comprehensive comparison of various techniques for the isolation of MEVs and offers a summary of the therapeutic potential of bovine MEVs described over the last decade, analyzing potential challenges and further applications. Although a number of aspects still need to be further elucidated, the available data point to the role of MEVs as a potential candidate with therapeutics potential, and the supplementation of MEVs would pave the way to understanding their in-depth effects.


Subject(s)
Extracellular Vesicles , Milk , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Cattle , Milk/chemistry , Milk/metabolism , Humans , Drug Delivery Systems/methods
12.
Sci Rep ; 14(1): 10968, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745072

ABSTRACT

Dietary supplementation of ruminants with fish oil is a strategy for favorably modifying the fatty acid composition of milk fat. This study investigated the effect of supplementing cows' diet with fish oil after low-temperature crystallisation (LTC-FO) compared to its raw form (FO) on milk yield, milk components (fat, protein, and lactose), and milk fatty acid profile. Twenty-four mid-lactating multiparous Polish Holstein-Friesian cows fed a total-mix ration were randomly assigned to two homogeneous groups (n = 12 cows each) and supplemented with LTC-FO or FO at 1% of dry matter. Milk samples were collected on days 14 and 30 of the 30-day experiment. No significant differences between the groups in terms of milk yield, milk protein, and lactose content were found, however, the fat yield and content decreased in the LTC-FO group. Milk fat from cows in the LTC-FO group contained significantly higher levels of C18:1 trans-11, C18:2 cis-9, trans-11, C18:3n - 3, C20:5, and C22:6, and lower levels of saturated fatty acids compared to the FO group (p < 0.05). Therefore, LTC-FO may be a more efficient feed additive than FO and may serve as a practical way to modify the fatty acid composition of milk fat.


Subject(s)
Dietary Supplements , Fatty Acids, Omega-3 , Fatty Acids , Fish Oils , Lactation , Milk , Animals , Cattle , Milk/chemistry , Milk/metabolism , Fish Oils/administration & dosage , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-3/metabolism , Female , Fatty Acids/analysis , Fatty Acids/metabolism , Animal Feed/analysis , Diet/veterinary
13.
Sci Rep ; 14(1): 11705, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778064

ABSTRACT

A serious environmental problem that threatens soil quality, agricultural productivity, and food safety is heavy metal pollution in water sources. Heavy metal pollution is the main problem in tehsil Pasrur, Sialkot, Pakistan. Present study was arranged to notice the heavy metals in water, soil, forages and buffalo milk. There are seven sites that were used for this experiment. Highest malondialdehyde (MDA) contents (3.00 ± 0.01) were noticed in barseem roots at site 7. Ascorbate Peroxidase (APX) was reached at its peak (1.93 ± 0.01) at site 7 in the fresh barseem. Maximum protein contents (0.36 ± 0.01) were observed in fresh plant samples at site 2. Site 3's buffalo milk samples had the highest Ni content (7.22 ± 0.33 ppm), while Site 3's soil samples had the lowest Cr content (8.89 ± 0.56 ppm), Site 1's plant shoots had the lowest Cr content (27.75 ± 1.98 ppm), and Site 3's water had the highest Cr content (40.07 ± 0.49 ppm). The maximum fat content (5.38 ± 2.32%) was found in the milk of the animals at site 7. The highest density (31.88 ± 6.501%), protein content (3.64 ± 0.33%), lactose content (5.54 ± 0.320%), salt content (0.66 ± 0.1673%), and freezing point (- 0.5814 ± 0.1827 °C) were also observed in the milk from animals at site 7, whereas site 5 displayed the highest water content (0.66 ± 0.1673%) and peak pH value (11.64 ± 0.09). In selected samples, the pollution load index for Ni (which ranged from 0.01 to 1.03 mg/kg) was greater than 1. Site 7 has the highest conductivity value (5.48 ± 0.48). Values for the health risk index varied from 0.000151 to 1.00010 mg/kg, suggesting that eating tainted animal feed may pose health concerns. Significant health concerns arise from metal deposition in the food chain from soil to feed, with nickel having the highest health risk index.


Subject(s)
Metals, Heavy , Milk , Soil Pollutants , Soil , Animals , Metals, Heavy/analysis , Soil Pollutants/analysis , Milk/chemistry , Milk/metabolism , Pakistan , Soil/chemistry , Water Pollutants, Chemical/analysis , Animal Feed/analysis , Buffaloes , Environmental Monitoring/methods , Malondialdehyde/metabolism , Malondialdehyde/analysis
14.
Trop Anim Health Prod ; 56(5): 175, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789604

ABSTRACT

The aim of this study was to estimate the (co)variance components and genetic parameters for milk yield adjusted to 305d (MY305), calving-to-conception interval (CCI), number of services per conception (NSC) and calving interval (CI) of Honduran Holstein cows, by fitting a bivariate animal model using Maximum Restricted Likelihood procedures. Model included the fixed effects of calving number, the contemporary calving group (farm-season-year of calving and the cow age as covariate). The estimated means and standard deviations for MY, CCI, NSC and CI were, 5098.60 ± 1564.32 kg, 168.27 ± 104.71 days, 2.46 ± 1.69 services, and 448.73 ± 109.16 days, respectively; and their estimated heritabilities were 0.21 ± 0.05, 0.03 ± 0.028, 0.02 ± 0.024 and 0.06 ± 0.04, respectively. The genetic correlations between MY305 and CCI, NSC and CI were positive and antagonist, with values of 0.64 ± 0.52, 0.99 ± 0.56, and 0.32 ± 0.24 respectively. Even though moderate to low heritability was estimated for MY305, systematic selection for milk yield, with a reduction in reproductive efficiency, if considered as the only selection criterion is important to be considered. By including reproductive traits and considering permanent environment effects into the breeding program, might yield a slow, but constant and permanent improvement over time.


Subject(s)
Lactation , Milk , Reproduction , Animals , Cattle/genetics , Cattle/physiology , Lactation/physiology , Female , Milk/metabolism , Honduras , Dairying , Breeding
15.
BMC Genomics ; 25(1): 323, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561663

ABSTRACT

BACKGROUND: Cow milk fat is an essential indicator for evaluating and measuring milk quality and cow performance. Growing research has identified the molecular functions of circular RNAs (circRNAs) necessary for mammary gland development and lactation in mammals. METHOD: The present study analyzed circRNA expression profiling data in mammary epithelial cells (MECs) from cows with highly variable milk fat percentage (MFP) using differential expression analysis and weighted gene co-expression network analysis (WGCNA). RESULTS: A total of 309 differentially expressed circRNAs (DE-circRNAs) were identified in the high and low MFP groups. WGCNA analysis revealed that the pink module was significantly associated with MFP (r = - 0.85, P = 0.007). Parental genes of circRNAs in this module were enriched mainly in lipid metabolism-related signaling pathways, such as focal adhesion, ECM-receptor interaction, adherens junction and AMPK. Finally, six DE-circRNAs were screened from the pink module: circ_0010571, circ_0007797, circ_0002746, circ_0003052, circ_0004319, and circ_0012840. Among them, circ_0002746, circ_0003052, circ_0004319, and circ_0012840 had circular structures and were highly expressed in mammary tissues. Subcellular localization revealed that these four DE-circRNAs may play a regulatory role in the mammary glands of dairy cows, mainly as competitive endogenous RNAs (ceRNAs). Seven hub target genes (GNB1, GNG2, PLCB1, PLCG1, ATP6V0C, NDUFS4, and PIGH) were obtained by constructing the regulatory network of their ceRNAs and then analyzed by CytoHubba and MCODE plugins in Cytoscape. Functional enrichment analysis revealed that these genes are crucial and most probable ceRNA regulators in milk fat metabolism. CONCLUSIONS: Our study identified several vital circRNAs and ceRNAs affecting milk fat synthesis, providing new research ideas and a theoretical basis for cow lactation, milk quality, and breed improvement.


Subject(s)
MicroRNAs , RNA, Circular , Female , Cattle , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Milk/metabolism , RNA, Competitive Endogenous , Lactation/genetics , Lipid Metabolism/genetics , Gene Regulatory Networks , MicroRNAs/genetics , Mammals/genetics
16.
Anim Sci J ; 95(1): e13938, 2024.
Article in English | MEDLINE | ID: mdl-38567743

ABSTRACT

We compared the in situ dry matter degradability (ISDMD) and crude protein degradability (ISCPD) of high-moisture corn grain silage and dried corn grains produced in Japan (JHC and JDC, respectively) with corn grains imported from the United States (USC), Brazil (BRC), and South Africa (SAC). The ISDMD values of USC, BAC, and SAC were between those of JHC and JDC, but ISDMD did not differ significantly between USC and SAC. In contrast, ISDMD was lower for BAC than USC and SAC. Overall, our results indicate that ISDMD and ISCPD in the rumen differ between corn grains sources (domestic compared with imported and between production locations), primarily due to differences between the corn varieties represented. In particular, the ISDMD and ISCPD of JHC were greater than those of JDC, and this difference in degradability needs to be considered when using high-moisture corn grain silage as a substitute for dried corn grain as a feed for dairy cattle.


Subject(s)
Silage , Zea mays , Cattle , Female , Animals , Silage/analysis , Lactation/metabolism , Japan , Diet/veterinary , Rumen/metabolism , Animal Feed/analysis , Digestion , Milk/metabolism , Edible Grain/metabolism
17.
J Agric Food Chem ; 72(15): 8285-8303, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588092

ABSTRACT

The gut barrier plays an important role in health maintenance by preventing the invasion of dietary pathogens and toxins. Disruption of the gut barrier can cause severe intestinal inflammation. As a natural source, milk is enriched with many active constituents that contribute to numerous beneficial functions, including immune regulation. These components collectively serve as a shield for the gut barrier, protecting against various threats such as biological, chemical, mechanical, and immunological threats. This comprehensive review delves into the active ingredients in milk, encompassing casein, α-lactalbumin, ß-lactoglobulin, lactoferrin, the milk fat globular membrane, lactose, transforming growth factor, and glycopeptides. The primary focus is to elucidate their impact on the integrity and function of the gut barrier. Furthermore, the implications of different processing methods of dairy products on the gut barrier protection are discussed. In conclusion, this study aimed to underscore the vital role of milk and dairy products in sustaining gut barrier health, potentially contributing to broader perspectives in nutritional sciences and public health.


Subject(s)
Caseins , Milk , Animals , Milk/metabolism , Caseins/metabolism , Lactalbumin/metabolism , Lactoglobulins/metabolism , Diet
18.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38581217

ABSTRACT

Pelleted total mixed ration (P-TMR) feeding, which has become a common practice in providing nutrition for fattening sheep, requires careful consideration of the balance between forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) to maintain proper rumen functions. The present study aimed to investigate the effects of the dietary FNDF/RDS ratio (FRR) on chewing activity, ruminal fermentation, ruminal microbes, and nutrient digestibility in Hu sheep fed a P-TMR diet. This study utilized eight ruminally cannulated male Hu sheep, following a 4 × 4 Latin square design with 31 d each period. Diets consisted of four FRR levels: 1.0 (high FNDF/RDS ratio, HFRR), 0.8 (middle high FNDF/RDS ratio, MHFRR), 0.6 (middle low FNDF/RDS ratio, MLFRR), and 0.4 (low FNDF/RDS ratio, LFRR). Reducing the dietary FRR levels resulted in a linear decrease in ruminal minimum pH and mean pH, while linearly increasing the duration and area of pH below 5.8 and 5.6, as well as the acidosis index. Sheep in the HFRR and MHFRR groups did not experience subacute ruminal acidosis (SARA), whereas sheep in another two groups did. The concentration of total volatile fatty acid and the molar ratios of propionate and valerate, as well as the concentrate of lactate in the rumen linearly increased with reducing dietary FRR, while the molar ratio of acetate and acetate to propionate ratio linearly decreased. The degradability of NDF and ADF for alfalfa hay has a quadratic response with reducing the dietary FRR. The apparent digestibility of dry matter, organic matter, neutral detergent fiber, and acid detergent fiber linearly decreased when the dietary FRR was reduced. In addition, reducing the dietary FRR caused a linear decrease in OTUs, Chao1, and Ace index of ruminal microflora. Reducing FRR in the diet increased the percentage of reads assigned as Firmicutes, but it decreased the percentage of reads assigned as Bacteroidetes in the rumen. At genus level, the percentage of reads assigned as Prevotella, Ruminococcus, Succinivibrio, and Butyrivibrio linearly decreased when the dietary FRR was reduced. The results of this study demonstrate that the dietary FRR of 0.8 is crucial in preventing the onset of SARA and promotes an enhanced richness of ruminal microbes and also improves fiber digestibility, which is a recommended dietary FRR reference when formulating P-TMR diets for sheep.


Forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) are key components of carbohydrates in the diet for ruminants, which would reflect saliva secretion and the acid production potential of feed. However, appropriate FNDF to RDS ratios (FRR) applicable to ruminants under the condition of pelleted total mixed ration (P-TMR) feeding have not been reported. In this study, we investigated the effects of the dietary FRR on chewing activity, ruminal fermentation, ruminal microbial communities, and nutrient digestibility of Hu sheep under P-TMR feeding. The results indicate that reducing dietary FRR levels would induce acidosis in sheep, which negatively affected fiber utilization and ruminal bacterial communities. The FRR of 0.8 was a recommended dietary FRR when formulating a P-TMR diet for fattening sheep, as indicated by decreased ruminal acidosis risk and increased richness of ruminal microbes in the rumen as well as nutrient digestibility.


Subject(s)
Acidosis , Sheep Diseases , Male , Female , Animals , Sheep , Milk/metabolism , Mastication/physiology , Starch/metabolism , Lactation/physiology , Detergents/metabolism , Silage/analysis , Propionates/metabolism , Fermentation , Rumen/metabolism , Dietary Fiber/metabolism , Dietary Carbohydrates/metabolism , Diet/veterinary , Nutrients , Acetates/metabolism , Acidosis/veterinary , Digestion/physiology
19.
Trop Anim Health Prod ; 56(4): 140, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656670

ABSTRACT

This study evaluated three continuous grazing systems: Brachiaria Brizantha, Clitoria ternatea and naturalized pastures, complemented with commercial concentrate and C. ternatea silage on milk yield, nutrient use and enteric methane (CH4) emissions. Nine multiparous cows of local Zebu breeds, with an average weight of 448 ± 87 kg, were used. The chemical composition of the food was determined. Live weight, milk production, and quality were assessed. Furthermore, serum urea, urea nitrogen, creatinine and glucose in blood were monitored, and nitrogen use efficiency were calculated. Enteric methane (CH4) emissions were estimated using Tier-2 methodology. A 3 × 3 latin square experimental design was applied. The grazing systems of B. brizantha and C. ternatea had the greater live weights of 465.8 and 453.3 kg/cow, although the latter is similar to naturalized pasture. Milk production and quality were not affected by grazing system, with the exception of the non-fat solids, where the C. ternatea system was lower (102.2 g/kg) than the other grazing systems. The crude protein and N intake, and N excretion in feces and urine were lower in naturalized pasture systems (1139.0 g/day). N outputs in milk was high in the C. ternatea system (56.3 g/cow/day). The naturalized pastures systems showed the better feed use efficiency (25.7%) compared to others. Serum urea and blood urea nitrogen were greater in B. brizantha followed by C. ternatea. Enteric CH4 emissions were indifferent among grazing systems when expressed as a percentage of greenhouse gases (7.1%). In conclusion, the grazing C. ternatea supplemented with commercial concentrate and C. ternatea silage maintains milk production and quality, reduced cow/day emissions (by 2.5%) and lowered energy losses as methane.


Subject(s)
Animal Feed , Lactation , Methane , Milk , Animals , Cattle/physiology , Methane/analysis , Methane/metabolism , Female , Lactation/physiology , Milk/chemistry , Milk/metabolism , Animal Feed/analysis , Diet/veterinary , Animal Husbandry/methods , Silage/analysis , Animal Nutritional Physiological Phenomena , Brachiaria , Nitrogen/metabolism , Nitrogen/analysis , Nutrients/analysis , Nutrients/metabolism , Fabaceae/chemistry
20.
BMC Vet Res ; 20(1): 150, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643124

ABSTRACT

BACKGROUND: Buffaloes have the highest potential for production due to a promising gene pool that is being enhanced and upgraded. Mastitis is a significant health impediment that greatly diminishes milk yield and quality, affecting rural farmers' livelihoods. The traditional gold standard used for diagnosing mastitis or subclinical mastitis is CMT, but it has the drawback of false positive or negative results. Subclinical mastitis, if not treated promptly, can lead to mammary tumors. To address the gap in early diagnosis of subclinical mastitis in CMT-negative milk of buffaloes, we performed a retrospective analysis and evaluated the milk miRNA expression profiles as potential biomarkers. RESULTS: Thirty buffalo milk samples based on clinical signs and CMT were divided into normal, subclinical, and clinical mastitis. SCC evaluation showed significant differences between the groups. The data analysis demonstrated that the elevation of miR-146a and miR-383 differed substantially between normal, subclinical, and clinical mastitis milk of buffaloes with 100% sensitivity and specificity. The relationship of SCC with miR-146a and miR-383 in normal/healthy and subclinical mastitis was positively correlated. CONCLUSION: The overexpression of miR-146a and miR-383 is associated with inflammation. It can be a valuable prognostic and most sensitive biomarker for early mastitis detection in buffaloes with SCC below 2 lakhs and CMT-ve, enhancing the accuracy of subclinical mastitis diagnosis.


Subject(s)
Bison , Cattle Diseases , Mastitis, Bovine , MicroRNAs , Cattle , Animals , Female , Milk/metabolism , Buffaloes , MicroRNAs/genetics , Retrospective Studies , Mastitis, Bovine/diagnosis , Mastitis, Bovine/metabolism , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL