Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters








Publication year range
1.
Science ; 379(6632): 576-582, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36758083

ABSTRACT

Taxon-specific small RNA loci are widespread in eukaryotic genomes, yet their role in lineage-specific adaptation, phenotypic diversification, and speciation is poorly understood. Here, we report that a speciation locus in monkeyflowers (Mimulus), YELLOW UPPER (YUP), contains an inverted repeat region that produces small interfering RNAs (siRNAs) in a phased pattern. Although the inverted repeat is derived from a partial duplication of a protein-coding gene that is not involved in flower pigmentation, one of the siRNAs targets and represses a master regulator of floral carotenoid pigmentation. YUP emerged with two protein-coding genes that control other aspects of flower coloration as a "superlocus" in a subclade of Mimulus and has contributed to subsequent phenotypic diversification and pollinator-mediated speciation in the descendant species.


Subject(s)
Carotenoids , Flowers , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Mimulus , Pigmentation , RNA, Small Interfering , Carotenoids/metabolism , Flowers/genetics , Flowers/growth & development , Mimulus/genetics , Mimulus/growth & development , Pigmentation/genetics , RNA, Small Interfering/genetics , Genetic Loci
2.
Science ; 379(6632): 534-535, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36758095
3.
Commun Biol ; 4(1): 327, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712659

ABSTRACT

Imperfect historical records and complex demographic histories present challenges for reconstructing the history of biological invasions. Here, we combine historical records, extensive worldwide and genome-wide sampling, and demographic analyses to investigate the global invasion of Mimulus guttatus from North America to Europe and the Southwest Pacific. By sampling 521 plants from 158 native and introduced populations genotyped at >44,000 loci, we determined that invasive M. guttatus was first likely introduced to the British Isles from the Aleutian Islands (Alaska), followed by admixture from multiple parts of the native range. We hypothesise that populations in the British Isles then served as a bridgehead for vanguard invasions worldwide. Our results emphasise the highly admixed nature of introduced M. guttatus and demonstrate the potential of introduced populations to serve as sources of secondary admixture, producing novel hybrids. Unravelling the history of biological invasions provides a starting point to understand how invasive populations adapt to novel environments.


Subject(s)
Biological Evolution , Genes, Plant , Genetic Variation , Genome, Plant , Introduced Species , Mimulus/genetics , Adaptation, Physiological , Gene Expression Regulation, Plant , Mimulus/growth & development
4.
PLoS Genet ; 17(1): e1008945, 2021 01.
Article in English | MEDLINE | ID: mdl-33439857

ABSTRACT

Evolution by natural selection occurs when the frequencies of genetic variants change because individuals differ in Darwinian fitness components such as survival or reproductive success. Differential fitness has been demonstrated in field studies of many organisms, but it remains unclear how well we can quantitatively predict allele frequency changes from fitness measurements. Here, we characterize natural selection on millions of Single Nucleotide Polymorphisms (SNPs) across the genome of the annual plant Mimulus guttatus. We use fitness estimates to calibrate population genetic models that effectively predict allele frequency changes into the next generation. Hundreds of SNPs experienced "male selection" in 2013 with one allele at each SNP elevated in frequency among successful male gametes relative to the entire population of adults. In the following generation, allele frequencies at these SNPs consistently shifted in the predicted direction. A second year of study revealed that SNPs had effects on both viability and reproductive success with pervasive trade-offs between fitness components. SNPs favored by male selection were, on average, detrimental to survival. These trade-offs (antagonistic pleiotropy and temporal fluctuations in fitness) may be essential to the long-term maintenance of alleles. Despite the challenges of measuring selection in the wild, the strong correlation between predicted and observed allele frequency changes suggests that population genetic models have a much greater role to play in forward-time prediction of evolutionary change.


Subject(s)
Evolution, Molecular , Genetic Fitness/genetics , Mimulus/genetics , Selection, Genetic/genetics , Alleles , DNA, Plant/genetics , Gene Frequency/genetics , Genetics, Population , Genome, Plant/genetics , Genotype , Mimulus/growth & development , Quantitative Trait Loci/genetics
5.
Plant Cell ; 32(11): 3452-3468, 2020 11.
Article in English | MEDLINE | ID: mdl-32917737

ABSTRACT

Over 80,000 angiosperm species produce flowers with petals fused into a corolla tube. The corolla tube contributes to the tremendous diversity of flower morphology and plays a critical role in plant reproduction, yet it remains one of the least understood plant structures from a developmental genetics perspective. Through mutant analyses and transgenic experiments, we show that the tasiRNA-ARF pathway is required for corolla tube formation in the monkeyflower species Mimulus lewisii Loss-of-function mutations in the M. lewisii orthologs of ARGONAUTE7 and SUPPRESSOR OF GENE SILENCING3 cause a dramatic decrease in abundance of TAS3-derived small RNAs and a moderate upregulation of AUXIN RESPONSE FACTOR3 (ARF3) and ARF4, which lead to inhibition of lateral expansion of the bases of petal primordia and complete arrest of the upward growth of the interprimordial regions, resulting in unfused corollas. Using the DR5 auxin-responsive promoter, we discovered that auxin signaling is continuous along the petal primordium base and the interprimordial region during the critical stage of corolla tube formation in the wild type, similar to the spatial pattern of MlARF4 expression. Auxin response is much weaker and more restricted in the mutant. Furthermore, exogenous application of a polar auxin transport inhibitor to wild-type floral apices disrupted petal fusion. Together, these results suggest a new conceptual model highlighting the central role of auxin-directed synchronized growth of the petal primordium base and the interprimordial region in corolla tube formation.


Subject(s)
Flowers/growth & development , Flowers/genetics , Mimulus/genetics , Plant Proteins/genetics , Arabidopsis Proteins/genetics , Flowers/anatomy & histology , Flowers/drug effects , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Metabolic Networks and Pathways/genetics , Mimulus/drug effects , Mimulus/growth & development , Mutation , Phenotype , Phthalimides/pharmacology , Plants, Genetically Modified , RNA, Plant/genetics , RNA, Small Interfering
6.
Mol Ecol ; 28(23): 5155-5171, 2019 12.
Article in English | MEDLINE | ID: mdl-31631452

ABSTRACT

Assembly of microbial communities is the result of neutral and selective processes. However, the relative importance of these processes is still debated. Microbial communities of flowers, in particular, have gained recent attention because of their potential impact to plant fitness and plant-pollinator interactions. However, the role of selection and dispersal in the assembly of these communities remains poorly understood. Here, we evaluated the role of pollinator-mediated dispersal on the contribution of neutral and selective processes in the assembly of floral microbiomes of the yellow monkeyflower (Mimulus guttatus). We sampled floral organs from flowers in the presence and absence of pollinators within five different serpentine seeps in CA and obtained 16S amplicon data on the epiphytic bacterial communities. Consistent with strong microenvironment selection within flowers we observed significant differences in community composition across floral organs and only a small effect of geographic distance. Pollinator exposure affected the contribution of environmental selection and depended on the rate and intimacy of interactions with flower visitors. This study provides evidence of the importance of dispersal and within-flower heterogeneity in shaping epiphytic bacterial communities of flowers, and highlights the complex interplay between pollinator behaviour, environmental selection and additional abiotic factors in shaping the epiphytic bacterial communities of flowers.


Subject(s)
Flowers/genetics , Microbiota/genetics , Mimulus/genetics , Flowers/growth & development , Flowers/microbiology , Mimulus/growth & development , Mimulus/microbiology , Phenotype , Pollination/genetics , RNA, Ribosomal, 16S/genetics
8.
New Phytol ; 224(3): 1171-1183, 2019 11.
Article in English | MEDLINE | ID: mdl-31400159

ABSTRACT

Environmental variation affects a plant's life cycle by influencing the timing of germination and flowering, and the duration of the growing season. Yet we know little information about how environmental heterogeneity generates variation in germination schedules and the consequences for growth and fecundity through genetic and plastic responses. We use an annual population of Mimulus guttatus in which, in nature, seeds germinate in both fall and spring. We investigate whether there is a genetic basis to the timing of germination, the effect of germination timing on fecundity, and if growth and flowering respond plastically to compensate for different season lengths. Using sibling families grown in simulated seasonal conditions, we find that families do not differ in their propensity to germinate between seasons. However, the germination season affects subsequent growth and flowering time, with significant genotype-by-environment interactions (G × E). Most G × E is due to unequal variance between seasons, because the spring cohort harbours little genetic variance. Despite their different season lengths, the cohorts do not differ in flower number (fecundity). Heterogeneous environments with unpredictable risks may maintain promiscuous germination, which then affects flowering time. Therefore, if selection at particular life stages changes with climate change, there may be consequences for the entire life cycle.


Subject(s)
Environment , Mimulus/physiology , Quantitative Trait, Heritable , Fertility , Genetic Variation , Germination/physiology , Inheritance Patterns/genetics , Least-Squares Analysis , Mimulus/genetics , Mimulus/growth & development , Models, Biological , Plant Leaves/physiology
9.
Evolution ; 73(6): 1168-1181, 2019 06.
Article in English | MEDLINE | ID: mdl-30793293

ABSTRACT

Environmental gradients can drive adaptive evolutionary shifts in plant resource allocation among growth, reproduction, and herbivore resistance. However, few studies have attempted to connect these adaptations to underlying physiological and genetic mechanisms. Here, we evaluate potential mechanisms responsible for a coordinated locally adaptive shift between growth, reproduction, and herbivore defense in the yellow monkeyflower, Mimulus guttatus. Through manipulative laboratory experiments, we found that gibberellin (GA) growth hormones may play a role in the developmental divergence between perennial and annual ecotypes of M. guttatus. Further, we detected an interaction between a locally adaptive chromosomal inversion, DIV1, and GA addition. This finding is consistent with the inversion contributing to the evolutionary divergence between inland annual and coastal perennial ecotypes by reducing GA biosynthesis/activity in perennials. Finally, we found evidence that the DIV1 inversion is partially responsible for a coordinated shift in the divergence of growth, reproduction, and herbivore resistance traits between coastal perennial and inland annual M. guttatus. The inversion has already been established to have a substantial impact on the life-history shift between long-term growth and rapid reproduction. Here, we demonstrate that the DIV1 inversion also has sizable impacts on both the total abundance and composition of phytochemical compounds involved in herbivore resistance.


Subject(s)
Adaptation, Biological , Ecotype , Food Chain , Mimulus/physiology , Gibberellins/metabolism , Herbivory , Mimulus/genetics , Mimulus/growth & development , Quantitative Trait Loci , Reproduction
10.
Mol Ecol ; 28(6): 1343-1357, 2019 03.
Article in English | MEDLINE | ID: mdl-30028906

ABSTRACT

Chromosomal inversions can play an important role in adaptation, but the mechanism of their action in many natural populations remains unclear. An inversion could suppress recombination between locally beneficial alleles, thereby preventing maladaptive reshuffling with less-fit, migrant alleles. The recombination suppression hypothesis has gained much theoretical support but empirical tests are lacking. Here, we evaluated the evolutionary history and phenotypic effects of a chromosomal inversion which differentiates annual and perennial forms of Mimulus guttatus. We found that perennials likely possess the derived orientation of the inversion. In addition, this perennial orientation occurs in a second perennial species, M. decorus, where it is strongly associated with life history differences between co-occurring M. decorus and annual M. guttatus. One prediction of the recombination suppression hypothesis is that loci contributing to local adaptation will predate the inversion. To test whether the loci influencing perenniality pre-date this inversion, we mapped QTLs for life history traits that differ between annual M. guttatus and a more distantly related, collinear perennial species, M. tilingii. Consistent with the recombination suppression hypothesis, we found that this region is associated with life history in the absence of the inversion, and this association can be broken into at least two QTLs. However, the absolute phenotypic effect of the LG8 inversion region on life history is weaker in M. tilingii than in perennials which possess the inversion. Thus, while we find support for the recombination suppression hypothesis, the contribution of this inversion to life history divergence in this group is likely complex.


Subject(s)
Adaptation, Physiological/genetics , Chromosome Inversion/genetics , Genetic Speciation , Mimulus/genetics , Ecotype , Genetics, Population , Mimulus/growth & development , Quantitative Trait Loci/genetics , Recombination, Genetic , Reproductive Isolation
11.
New Phytol ; 222(2): 694-700, 2019 04.
Article in English | MEDLINE | ID: mdl-30471231

ABSTRACT

Contents Summary 694 I. Introduction 694 II. The system 695 III. Regulation of carotenoid pigmentation 695 IV. Formation of periodic pigmentation patterns 696 V. Developmental genetics of corolla tube formation and elaboration 697 VI. Molecular basis of floral trait variation underlying pollinator shift 698 VII. Outlook 699 Acknowledgements 699 References 699 SUMMARY: Monkeyflowers (Mimulus) have long been recognized as a classic ecological and evolutionary model system. However, only recently has it been realized that this system also holds great promise for studying the developmental genetics and evo-devo of important plant traits that are not found in well-established model systems such as Arabidopsis. Here, I review recent progress in four different areas of plant research enabled by this new model, including transcriptional regulation of carotenoid biosynthesis, formation of periodic pigmentation patterns, developmental genetics of corolla tube formation and elaboration, and the molecular basis of floral trait divergence underlying pollinator shift. These examples suggest that Mimulus offers ample opportunities to make exciting discoveries in plant development and evolution.


Subject(s)
Mimulus/growth & development , Mimulus/genetics , Models, Biological , Plant Development/genetics , Carotenoids/metabolism , Flowers/genetics , Flowers/physiology , Pigmentation
12.
Am J Bot ; 105(4): 749-759, 2018 04.
Article in English | MEDLINE | ID: mdl-29683478

ABSTRACT

PREMISE OF THE STUDY: The timing of major phenological transitions is critical to lifetime fitness, and life history theory predicts differences for annual and perennial plants. To correctly time these transitions, many plants rely on environmental cues such as exposure to extended periods of cold, which may occur at different stages throughout their lifetime. METHODS: We studied the role of cold at different life stages, by jointly exposing seed (stratification) and rosettes (vernalization) to cold. We used 23 populations of Mimulus guttatus, which vary from annuals to perennials, and investigated how cold at one or both stages affected germination, flowering, growth, and biomass. KEY RESULTS: We found that stratification and vernalization interact to affect life cycle transitions, and that cold at either stage could synchronize flowering phenology. For perennials, either stratification or vernalization is necessary for maximum flowering. We also found that germination timing covaried with later traits. Moreover, plants from environments with dissimilar climates displayed different phenological responses to stratification or vernalization. CONCLUSIONS: In general, cold is more important for seed germination in annuals and plants from environments with warm temperatures and variable precipitation. In contrast, cold is more important for flowering in perennials: it accelerates flowering in plants from lower precipitation environments, and it increases flowering proportion in plants from cooler, more stable precipitation environments. We discuss our findings in the context of the variable environments plants experience within a population and the variation encountered across the biogeographic native range of the species.


Subject(s)
Flowers/growth & development , Germination , Cold Temperature , Environment , Flowers/physiology , Germination/physiology , Mimulus/growth & development , Mimulus/physiology , Seasons , Seeds/physiology
13.
G3 (Bethesda) ; 7(12): 3947-3954, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29051190

ABSTRACT

Single-gene overdominance is one of the major mechanisms proposed to explain heterosis (i.e., hybrid vigor), the phenomenon that hybrid offspring between two inbred lines or varieties show superior phenotypes to both parents. Although sporadic examples of single-gene overdominance have been reported over the decades, the molecular nature of this phenomenon remains poorly understood and it is unclear whether any generalizable principle underlies the various cases. Through bulk segregant analysis, chemical profiling, and transgenic experiments, we show that loss-of-function alleles of the FLAVONE SYNTHASE (FNS) gene cause overdominance in anthocyanin-based flower color intensity in the monkeyflower species Mimulus lewisii FNS negatively affects flower color intensity by competing with the anthocyanin biosynthetic enzymes for the same substrates, yet positively affects flower color intensity by producing flavones, the colorless copigments required for anthocyanin stabilization, leading to enhanced pigmentation in the heterozyote (FNS/fns) relative to both homozygotes (FNS/FNS and fns/fns). We suggest that this type of antagonistic pleiotropy (i.e., alleles with opposing effects on different components of the phenotypic output) might be a general principle underlying single-gene overdominance.


Subject(s)
Flowers/genetics , Mimulus/genetics , Pigmentation/genetics , Plants, Genetically Modified/genetics , Anthocyanins/biosynthesis , Anthocyanins/genetics , Color , Flavones/biosynthesis , Flavones/genetics , Flowers/metabolism , Genes, Dominant/genetics , Genetic Pleiotropy , Hybrid Vigor/genetics , Mimulus/growth & development , Mixed Function Oxygenases/genetics
14.
Genetics ; 206(3): 1621-1635, 2017 07.
Article in English | MEDLINE | ID: mdl-28455350

ABSTRACT

The degree to which genomic architecture varies across space and time is central to the evolution of genomes in response to natural selection. Bulked-segregant mapping combined with pooled sequencing provides an efficient means to estimate the effect of genetic variants on quantitative traits. We develop a novel likelihood framework to identify segregating variation within multiple populations and generations while accommodating estimation error on a sample- and SNP-specific basis. We use this method to map loci for flowering time within natural populations of Mimulus guttatus, collecting the early- and late-flowering plants from each of three neighboring populations and two consecutive generations. Structural variants, such as inversions, and genes from multiple flowering-time pathways exhibit the strongest associations with flowering time. We find appreciable variation in genetic effects on flowering time across both time and space; the greatest differences evident between populations, where numerous factors (environmental variation, genomic background, and private polymorphisms) likely contribute to heterogeneity. However, the changes across years within populations clearly identify genotype-by-environment interactions as an important influence on flowering time variation.


Subject(s)
Flowers/genetics , Genome, Plant , Mimulus/genetics , Polymorphism, Single Nucleotide , Ecosystem , Flowers/growth & development , Genetic Heterogeneity , Mimulus/growth & development , Quantitative Trait Loci
15.
Am Nat ; 187(2): 182-93, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26807746

ABSTRACT

Species responses to climate change depend on the interplay of migration and adaptation, yet we know relatively little about the potential for adaptation. Genetic adaptations to climate change often involve shifts in the timing of phenological events, such as flowering. If populations at the edge of a species range have lower genetic variation in phenological traits than central populations, then their persistence under climate change could be threatened. To test this hypothesis, we performed artificial selection experiments using the scarlet monkeyflower (Mimulus cardinalis) and compared genetic variation in flowering time among populations at the latitudinal center, northern edge, and southern edge of the species range. We also assessed whether selection on flowering time yielded correlated responses in functional traits, potentially representing a cost associated with early or late flowering. Contrary to prediction, southern populations exhibited greater responses to selection on flowering time than central or northern populations. Further, selection for early flowering resulted in correlated increases in specific leaf area and leaf nitrogen, whereas selection for late flowering led to decreases in these traits. These results provide critical insights about how spatial variation in the potential for adaptation may affect population persistence under changing climates.


Subject(s)
Climate Change , Genetic Variation , Mimulus/genetics , Phenotype , Flowers/growth & development , Mimulus/growth & development , Plant Dispersal , Selection, Genetic
16.
Mol Phylogenet Evol ; 73: 129-39, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24508602

ABSTRACT

Evolutionary transitions in growth habit and flowering time responses to variable environmental signals have occurred multiple times independently across angiosperms and have major impacts on plant fitness. Proteins in the SPL family of transcription factors collectively regulate flowering time genes that have been implicated in interspecific shifts in annuality/perenniality. However, their potential importance in the evolution of angiosperm growth habit has not been extensively investigated. Here we identify orthologs representative of the major SPL gene clades in annual Arabidopsis thaliana and Mimulus guttatus IM767, and perennial A. lyrata and M. guttatus PR, and characterize their expression. Spatio-temporal expression patterns are complex across both diverse tissues of the same taxa and comparable tissues of different taxa, consistent with genic sub- or neo-functionalization. However, our data are consistent with a general role for several SPL genes in the promotion of juvenile to adult phase change and/or flowering time in Mimulus and Arabidopsis. Furthermore, several candidate genes were identified for future study whose differential expression correlates with growth habit and architectural variation in annual versus perennial taxa.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Flowers/growth & development , Gene Expression Regulation, Plant/genetics , Mimulus/anatomy & histology , Mimulus/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Flowers/genetics , Gene Duplication , Gene Expression Profiling , Genes, Plant/genetics , Mimulus/growth & development , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Spatio-Temporal Analysis , Time Factors , Transcription Factors/genetics , Transcription Factors/metabolism
17.
PLoS Genet ; 9(12): e1003965, 2013.
Article in English | MEDLINE | ID: mdl-24339787

ABSTRACT

Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation), we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp.) resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube) proteins within maternal reproductive structures (styles) of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens towards the goal of identifying the molecular basis of genetically complex traits.


Subject(s)
Mimulus/genetics , Plant Infertility/genetics , Pollen Tube/genetics , Reproductive Isolation , Evolution, Molecular , Flowers , Genetic Speciation , Genetics, Population , Hybridization, Genetic , Mimulus/growth & development , Pollen Tube/growth & development
18.
New Phytol ; 199(2): 571-583, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23600522

ABSTRACT

Species with extensive ranges experience highly variable environments with respect to temperature, light and soil moisture. Synchronizing the transition from vegetative to floral growth is important to employ favorable conditions for reproduction. Optimal timing of this transition might be different for semelparous annual plants and iteroparous perennial plants. We studied variation in the critical photoperiod necessary for floral induction and the requirement for a period of cold-chilling (vernalization) in 46 populations of annuals and perennials in the Mimulus guttatus species complex. We then examined critical photoperiod and vernalization QTLs in growth chambers using F(2) progeny from annual and perennial parents that differed in their requirements for flowering. We identify extensive variation in critical photoperiod, with most annual populations requiring substantially shorter day lengths to initiate flowering than perennial populations. We discover a novel type of vernalization requirement in perennial populations that is contingent on plants experiencing short days first. QTL analyses identify two large-effect QTLs which influence critical photoperiod. In two separate vernalization experiments we discover each set of crosses contain different large-effect QTLs for vernalization. Mimulus guttatus harbors extensive variation in critical photoperiod and vernalization that may be a consequence of local adaptation.


Subject(s)
Cold Temperature , Flowers/genetics , Flowers/physiology , Mimulus/genetics , Mimulus/physiology , Photoperiod , Quantitative Trait Loci/genetics , Genetic Markers , Genotype , Linear Models , Mimulus/growth & development , North America , Species Specificity
19.
PLoS Genet ; 9(3): e1003385, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23555295

ABSTRACT

Identifying the molecular genetic basis of traits contributing to speciation is of crucial importance for understanding the ecological and evolutionary mechanisms that generate biodiversity. Despite several examples describing putative "speciation genes," it is often uncertain to what extent these genetic changes have contributed to gene flow reductions in nature. Therefore, considerable interest lies in characterizing the molecular basis of traits that actively confer reproductive isolation during the early stages of speciation, as these loci can be attributed directly to the process of divergence. In Southern California, two ecotypes of Mimulus aurantiacus are parapatric and differ primarily in flower color, with an anthocyanic, red-flowered morph in the west and an anthocyanin-lacking, yellow-flowered morph in the east. Evidence suggests that the genetic changes responsible for this shift in flower color have been essential for divergence and have become fixed in natural populations of each ecotype due to almost complete differences in pollinator preference. In this study, we demonstrate that a cis-regulatory mutation in an R2R3-MYB transcription factor results in differential regulation of enzymes in the anthocyanin biosynthetic pathway and is the major contributor to differences in floral pigmentation. In addition, molecular population genetic data show that, despite gene flow at neutral loci, divergent selection has driven the fixation of alternate alleles at this gene between ecotypes. Therefore, by identifying the genetic basis underlying ecologically based divergent selection in flower color between these ecotypes, we have revealed the ecological and functional mechanisms involved in the evolution of pre-mating isolation at the early stages of incipient speciation.


Subject(s)
Biological Evolution , Flowers , Genetic Speciation , Pigmentation/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Arabidopsis Proteins/genetics , Biodiversity , California , Ecosystem , Flowers/cytology , Flowers/genetics , Flowers/growth & development , Genetics, Population , Mimulus/genetics , Mimulus/growth & development , Mutation
20.
Oecologia ; 170(1): 111-22, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22437908

ABSTRACT

In flowering plants, soil heterogeneity can generate divergent natural selection over fine spatial scales, and thus promote local adaptation in the absence of geographic barriers to gene flow. Here, we investigate phenotypic and genetic differentiation in one of the few flowering plants that thrives in both geothermal and non-thermal soils in Yellowstone National Park (YNP). Yellow monkeyflowers (Mimulus guttatus) growing at two geothermal ("thermal") sites in YNP were distinct in growth form and phenology from paired populations growing nearby (<500 m distant) in non-thermal soils. In simulated thermal and non-thermal environments, thermal plants remained significantly divergent from non-thermal plants in vegetative, floral, mating system, and phenological traits. Plants from both thermal populations flowered closer to the ground, allocated relatively more to sexual reproduction, were more likely to initiate flowering under short daylengths, and made smaller flowers that could efficiently self-fertilize without pollinators. These shared differences are consistent with local adaptation to life in the ephemeral window for growth and reproduction created by winter and spring snowmelt on hot soils. In contrast, habitat type (thermal vs. non-thermal) explained little of the genetic variation at neutral markers. Instead, we found that one thermal population (Agrostis Headquarters; AHQ-T) was strongly differentiated from all other populations (all F (ST) > 0.34), which were only weakly differentiated from each other (all F (ST) < 0.07). Phenotypic differentiation of thermal M. guttatus, but little population genetic evidence of long-term ecotypic divergence, encourages further investigations of the potential for fine-scale adaptation and reproductive isolation across the geothermal gradient in Yellowstone.


Subject(s)
Flowers , Genetic Variation , Mimulus/genetics , Adaptation, Physiological , Ecology , Genetic Markers , Mimulus/growth & development , Montana , Phenotype , Pollination , Reproduction , Soil , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL