Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.827
Filter
1.
PLoS One ; 19(8): e0308273, 2024.
Article in English | MEDLINE | ID: mdl-39088551

ABSTRACT

BACKGROUND: Exposure to ionizing radiation has been linked to cardiovascular diseases. However, the impact of moderate doses of radiation on abdominal aortic aneurysm (AAA) remains unknown. METHODS: Angiotensin II-infused Apoe-/- mice were irradiated (acute, 1 Gray) either 3 days before (Day-3) or 1 day after (Day+1) pomp implantation. Isolated primary aortic vascular smooth muscle cells (VSMCs) were irradiated (acute 1 Gray) for mechanistic studies and functional testing in vitro. RESULTS: Day-3 and Day+1 irradiation resulted in a significant reduction in aorta dilation (Control: 1.39+/-0.12; Day-3: 1.12+/-0.11; Day+1: 1.15+/-0.08 mm, P<0.001) and AAA incidence (Control: 81.0%; Day-3: 33.3%, Day+1: 53.3%) compared to the non-irradiated group. Day-3 and Day+1 irradiation led to an increase in collagen content in the adventitia (Thickness control: 23.64+/-2.9; Day-3: 54.39+/-15.5; Day+1 37.55+/-10.8 mm, P = 0.006). However, the underlying protective mechanisms were different between Day-3 and Day+1 groups. Irradiation before Angiotensin II (AngII) infusion mainly modulated vascular smooth muscle cell (VSMC) phenotype with a decrease in contractile profile and enhanced proliferative and migratory activity. Irradiation after AngII infusion led to an increase in macrophage content with a local anti-inflammatory phenotype characterized by the upregulation of M2-like gene and IL-10 expression. CONCLUSION: Moderate doses of ionizing radiation mitigate AAA either through VSCM phenotype or inflammation modulation, depending on the time of irradiation.


Subject(s)
Angiotensin II , Aortic Aneurysm, Abdominal , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Radiation, Ionizing , Animals , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/etiology , Mice , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/radiation effects , Muscle, Smooth, Vascular/pathology , Angiotensin II/pharmacology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/radiation effects , Myocytes, Smooth Muscle/pathology , Male , Disease Models, Animal , Interleukin-10/metabolism , Interleukin-10/genetics , Collagen/metabolism , Cell Proliferation/radiation effects
2.
FASEB J ; 38(15): e23850, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39091212

ABSTRACT

Atherosclerosis is a leading cause of cardiovascular diseases (CVDs), often resulting in major adverse cardiovascular events (MACEs), such as myocardial infarction and stroke due to the rupture or erosion of vulnerable plaques. Ferroptosis, an iron-dependent form of cell death, has been implicated in the development of atherosclerosis. Despite its involvement in CVDs, the specific role of ferroptosis in atherosclerotic plaque stability remains unclear. In this study, we confirmed the presence of ferroptosis in unstable atherosclerotic plaques and demonstrated that the ferroptosis inhibitor ferrostatin-1 (Fer-1) stabilizes atherosclerotic plaques in apolipoprotein E knockout (Apoe-/-) mice. Using bioinformatic analysis combining RNA sequencing (RNA-seq) with single-cell RNA sequencing (scRNA-seq), we identified Yes-associated protein 1 (YAP1) as a potential key regulator of ferroptosis in vascular smooth muscle cells (VSMCs) of unstable plaques. In vitro, we found that YAP1 protects against oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in VSMCs. Mechanistically, YAP1 exerts its anti-ferroptosis effects by regulating the expression of glutaminase 1 (GLS1) to promote the synthesis of glutamate (Glu) and glutathione (GSH). These findings establish a novel mechanism where the inhibition of ferroptosis promotes the stabilization of atherosclerotic plaques through the YAP1/GLS1 axis, attenuating VSMC ferroptosis. Thus, targeting the YAP1/GLS1 axis to suppress VSMC ferroptosis may represent a novel strategy for preventing and treating unstable atherosclerotic plaques.


Subject(s)
Ferroptosis , Muscle, Smooth, Vascular , Plaque, Atherosclerotic , YAP-Signaling Proteins , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , YAP-Signaling Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Male , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Mice, Knockout , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Phenylenediamines/pharmacology , Cyclohexylamines/pharmacology , Apolipoproteins E/metabolism , Apolipoproteins E/genetics
3.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3894-3900, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099363

ABSTRACT

This study explored the effect of Tianma Gouteng Decoction on oxidative stress induced by angiotensin Ⅱ(AngⅡ) in vascular smooth muscle cell(VSMC) and its molecular mechanism. Primary rat VSMC were cultured using tissue block method, and VSMC were identified by α-actin immunofluorescence staining. AngⅡ at a concentration of 1×10~(-6) mol·L~(-1) was used as the stimulating factor, and Sprague Dawley(SD) rats were orally administered with Tianma Gouteng Decoction to prepare drug serum. Rat VSMC were divided into normal group, model group, Chinese medicine group, and inhibitor(3-methyladenine, 3-MA) group. Cell counting kit-8(CCK-8) assay was used to detect cell proliferation activity. Bromodeoxyuridine(BrdU) flow cytometry was used to detect cell cycle. Transwell assay was used to detect cell migration ability. Enzyme-linked immunosorbent assay(ELISA) was used to detect the activity of superoxide dismutase(SOD), catalase(CAT), and malondialdehyde(MDA) in VSMC. The intracellular reactive oxygen species(ROS) fluorescence intensity was detected using DCFH-DA fluorescent probe. Western blot was used to detect the expression of PTEN-induced putative kinase 1(PINK1), Parkin, p62, and microtubule-associated protein 1A/1B-light chain 3(LC3-Ⅱ) proteins in VSMC. The results showed that Tianma Gouteng Decoction-containing serum at a concentration of 8% could significantly inhibit VSMC growth after 48 hours of intervention. Compared with the normal group, the model group showed significantly increased cell proliferation activity and migration, significantly decreased levels of SOD and CAT, significantly increased levels of MDA, significantly enhanced ROS fluorescence intensity, significantly decreased expression of PINK1, Parkin, and LC3-Ⅱ proteins, and significantly increased expression of p62 protein. Compared with the model group, the Chinese medicine group showed significantly reduced cell proliferation activity and migration, significantly increased levels of SOD and CAT, significantly decreased levels of MDA, significantly weakened ROS fluorescence intensity, significantly increased expression of PINK1, Parkin, and LC3-Ⅱ proteins, and significantly decreased expression of p62 protein. Compared with the Chinese medicine group, the addition of the mitochondrial autophagy inhibitor 3-MA could block the intervention of Tianma Gouteng Decoction-containing serum on VSMC proliferation, migration, mitochondrial autophagy, and oxidative stress levels, with statistically significant differences. In summary, Tianma Gouteng Decoction has good antioxidant activity and can inhibit cell proliferation and migration. Its mechanism of action may be related to the activation of the mitochondrial autophagy PINK1/Parkin signaling pathway.


Subject(s)
Angiotensin II , Cell Proliferation , Drugs, Chinese Herbal , Muscle, Smooth, Vascular , Oxidative Stress , Protein Kinases , Rats, Sprague-Dawley , Ubiquitin-Protein Ligases , Animals , Drugs, Chinese Herbal/pharmacology , Oxidative Stress/drug effects , Rats , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Male , Cell Proliferation/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Reactive Oxygen Species/metabolism , Cell Movement/drug effects , Signal Transduction/drug effects , Cells, Cultured , Superoxide Dismutase/metabolism
4.
FASEB J ; 38(15): e23868, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39102213

ABSTRACT

Glycolysis is a major determinant of pulmonary artery smooth muscle cell (PASMC) proliferation in pulmonary hypertension (PH). Circular RNAs (circRNAs) are powerful regulators of glycolysis in multiple diseases; however, the role of circRNAs in glycolysis in PH has been poorly characterized. The aim of this study was to uncover the regulatory mechanism of a new circRNA, circNAP1L4, in human pulmonary artery smooth muscle cell (HPASMC) proliferation through the host protein NAP1L4 to regulate the super-enhancer-driven glycolysis gene hexokinase II (HK II). CircNAP1L4 was downregulated in hypoxic HPASMCs and plasma of PH patients. Functionally, circNAP1L4 overexpression inhibited glycolysis and proliferation in hypoxic HPASMCs. Mechanistically, circNAP1L4 directly bound to its host protein NAP1L4 and affected the ability of NAP1L4 to move into the nucleus to regulate the epigenomic signals of the super-enhancer of HK II. Intriguingly, circNAP1L4 overexpression inhibited the proliferation but not the migration of human pulmonary arterial endothelial cells (HPAECs) cocultured with HPASMCs. Furthermore, pre-mRNA-processing-splicing Factor 8 (PRP8) was found to regulate the production ratio of circNAP1L4 and linear NAP1L4. In vivo, targeting circNAP1L4 alleviates SU5416 combined with hypoxia (SuHx)-induced PH. Overall, these findings reveal a new circRNA that inhibits PASMC proliferation and serves as a therapeutic target for PH.


Subject(s)
Cell Proliferation , Glycolysis , Hexokinase , Hypertension, Pulmonary , Myocytes, Smooth Muscle , Pulmonary Artery , RNA, Circular , Humans , Hexokinase/metabolism , Hexokinase/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Myocytes, Smooth Muscle/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Mice , Male , Cells, Cultured , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology
5.
J Cardiovasc Pharmacol ; 84(2): 125-135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39115715

ABSTRACT

ABSTRACT: Aneurysms are localized dilations of blood vessels, which can expand to 50% of the original diameter. They are more common in cardiovascular and cerebrovascular vessels. Rupture is one of the most dangerous complications. The pathophysiology of aneurysms is complex and diverse, often associated with progressive vessel wall dysfunction resulting from vascular smooth muscle cell death and abnormal extracellular matrix synthesis and degradation. Multiple studies have shown that long noncoding RNAs (lncRNAs) play a significant role in the progression of cardiovascular and cerebrovascular diseases. Therefore, it is necessary to find and summarize them. LncRNAs control gene expression and disease progression by regulating target mRNA or miRNA and are biomarkers for the diagnosis and prognosis of aneurysmal cardiovascular and cerebrovascular diseases. This review explores the role, mechanism, and clinical value of lncRNAs in aneurysms, providing new insights for a deeper understanding of the pathogenesis of cardiovascular and cerebrovascular aneurysms.


Subject(s)
Intracranial Aneurysm , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , RNA, Long Noncoding , Humans , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Intracranial Aneurysm/genetics , Intracranial Aneurysm/pathology , Intracranial Aneurysm/metabolism , Intracranial Aneurysm/physiopathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Animals , Gene Expression Regulation , Aneurysm/genetics , Aneurysm/pathology , Aneurysm/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Signal Transduction
6.
Int J Biol Sci ; 20(10): 3691-3709, 2024.
Article in English | MEDLINE | ID: mdl-39113704

ABSTRACT

Tumor endothelial marker 1 (TEM1), an activated mesenchymal cell marker, is implicated in tissue remodeling and repair. Herein, we investigated the role and therapeutic implications of TEM1 in abdominal aortic aneurysm (AAA), a potentially life-threatening aortic disease characterized by vascular inflammation and matrix turnover. Characterization of human AAA revealed increased TEM1 expression derived mainly from medial vascular smooth muscle cells (VSMCs) and adventitial fibroblasts. Bioinformatics analysis demonstrated the association between TEM1-expressing VSMCs and fibroblasts and collagen gene expression. Consistently, collagen content and TEM1 expressed by VSMCs and fibroblasts were increased during CaCl2-induced AAA formation in mice. TEM1 silencing in VSMCs and fibroblasts inhibited transforming growth factor-ß1-induced phenotypic change, SMAD2 phosphorylation, and COL1A1 gene expression. Also, Tem1 deficiency reduced collagen synthesis and exacerbated CaCl2-induced AAA formation in mice without disturbing elastin destruction and inflammatory responses. In contrast, rTEM1 promoted phenotypic change and COL1A1 gene expression through SMAD2 phosphorylation in VSMCs and fibroblasts. Treatment with rTEM1 enhanced collagen synthesis, attenuated elastin fragmentation, and inhibited CaCl2-induced and angiotensin II-infused AAA formation. In summary, TEM1 in resident stromal cells regulates collagen synthesis to counteract aortic wall failure during AAA formation. Matrix integrity restored by rTEM1 treatment may hold therapeutic potential against AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Animals , Humans , Male , Mice , Aortic Aneurysm, Abdominal/metabolism , Fibroblasts/metabolism , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Smad2 Protein/metabolism
7.
Nat Commun ; 15(1): 7398, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191789

ABSTRACT

Smooth muscle cell (SMC) phenotypic modulation, primarily driven by PDGFRß signaling, is implicated in occlusive cardiovascular diseases. However, the promotive and restrictive regulation mechanism of PDGFRß and the role of protein tyrosine phosphatase non-receptor type 14 (PTPN14) in neointimal hyperplasia remain unclear. Our study observes a marked upregulation of PTPN14 in SMCs during neointimal hyperplasia. PTPN14 overexpression exacerbates neointimal hyperplasia in a phosphatase activity-dependent manner, while SMC-specific deficiency of PTPN14 mitigates this process in mice. RNA-seq indicates that PTPN14 deficiency inhibits PDGFRß signaling-induced SMC phenotypic modulation. Moreover, PTPN14 interacts with intracellular region of PDGFRß and mediates its dephosphorylation on Y692 site. Phosphorylation of PDGFRßY692 negatively regulates PDGFRß signaling activation. The levels of both PTPN14 and phospho-PDGFRßY692 are correlated with the degree of stenosis in human coronary arteries. Our findings suggest that PTPN14 serves as a critical modulator of SMCs, promoting neointimal hyperplasia. PDGFRßY692, dephosphorylated by PTPN14, acts as a self-inhibitory site for controlling PDGFRß activation.


Subject(s)
Hyperplasia , Myocytes, Smooth Muscle , Neointima , Receptor, Platelet-Derived Growth Factor beta , Signal Transduction , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Animals , Hyperplasia/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Neointima/metabolism , Neointima/pathology , Mice , Phosphorylation , Male , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Mice, Inbred C57BL , Mice, Knockout , Coronary Vessels/pathology , Coronary Vessels/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology
8.
Cells ; 13(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39120288

ABSTRACT

Vascular smooth muscle cells (VSMCs) play a critical role in maintaining vascular integrity. VSMC dysfunction leads to numerous vascular diseases. Adenosine deaminases acting on RNA 1 (ADAR1), an RNA editing enzyme, has shown both RNA editing and non-editing functions. Global deletion of ADAR1 causes embryonic lethality, but the phenotype of homozygous ADAR1 deletion specifically in SMCs (ADAR1sm-/-) remains to be determined. By crossing ADAR1fl/fl mice with Myh11-CreERT2 mice followed by Tamoxifen induction, we found that ADAR1sm-/- leads to lethality in adult mice 14 days after the induction. Gross examination revealed extensive hemorrhage and detrimental vascular damage in different organs. Histological analyses revealed destruction of artery structural integrity with detachment of elastin laminae from VSMCs in ADAR1sm-/- aortas. Furthermore, ADAR1sm-/- resulted in severe VSMC apoptosis and mitochondrial dysfunction. RNA sequencing analyses of ADAR1sm-/- aorta segments demonstrated profound transcriptional alteration of genes impacting vascular health including a decrease in fibrillin-1 expression. More importantly, ADAR1sm-/- disrupts the elastin and fibrillin-1 interaction, a molecular event essential for artery structure. Our results indicate that ADAR1 plays a critical role in maintaining SMC survival and vascular stability and resilience.


Subject(s)
Adenosine Deaminase , Homeostasis , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Animals , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Aorta/metabolism , Aorta/pathology , Apoptosis/genetics , Fibrillin-1/genetics , Fibrillin-1/metabolism , Elastin/metabolism , Mice, Knockout , Mice, Inbred C57BL , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
9.
Cells ; 13(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39195275

ABSTRACT

Restenosis following percutaneous revascularization is a major challenge in patients with insulin resistance and diabetes. Currently, the vascular effects of insulin are not fully understood. In vitro, insulin's effects on endothelial cells (ECs) are beneficial, whereas on vascular smooth muscle cells (SMCs), they are mitogenic. We previously demonstrated a suppressive effect of insulin on neointimal growth under insulin-sensitive conditions that was abolished in insulin-resistant conditions. Here, we aimed to determine the cell-specific effects of insulin on neointimal growth in a model of restenosis under insulin-sensitive and insulin-resistant conditions. Vascular cell-specific insulin receptor (IR)-deficient mice were fed a low-fat diet (LFD) or a high-fat, high-sucrose diet (HFSD) and implanted with an insulin pellet or vehicle prior to femoral artery wire injury. In insulin-sensitive conditions, insulin decreased neointimal growth only in controls. However, under insulin-resistant conditions, insulin had no effect in either control, EC-specific or SMC-specific IR-deficient mice. These data demonstrate that EC and SMC IRs are required for the anti-restenotic effect of insulin in insulin-sensitive conditions and that, in insulin resistance, insulin has no adverse effect on vascular SMCs in vivo.


Subject(s)
Disease Models, Animal , Endothelial Cells , Insulin Resistance , Insulin , Receptor, Insulin , Animals , Insulin/metabolism , Insulin/pharmacology , Mice , Receptor, Insulin/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Neointima/pathology , Neointima/metabolism , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Mice, Inbred C57BL
10.
Physiol Rep ; 12(16): e16156, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39175041

ABSTRACT

Pulmonary hypertension (PH) arises from increased pulmonary vascular resistance due to contraction and remodeling of the pulmonary arteries. The structural changes include thickening of the smooth muscle layer from increased proliferation and resistance to apoptosis. The mechanisms underlying apoptosis resistance in PH are not fully understood. In cancer cells, high expression of aquaporin 1 (AQP1), a water channel, is associated with apoptosis resistance. We showed AQP1 protein was expressed in pulmonary arterial smooth muscle cells (PASMCs) and upregulated in preclinical PH models. In this study, we used PASMCs isolated from control male rats and the SU5416 plus hypoxia (SuHx) model to test the role of AQP1 in modulating susceptibility to apoptosis. We found the elevated level of AQP1 in PASMCs from SuHx rats was necessary for resistance to apoptosis and that apoptosis resistance could be conferred by increasing AQP1 in control PASMCs. In exploring the downstream pathways involved, we found AQP1 levels influence the expression of Bcl-2, with enhanced AQP1 levels corresponding to increased Bcl-2 expression, reducing the ratio of BAX to Bcl-2, consistent with apoptosis resistance. These results provide a mechanism by which AQP1 can regulate PASMC fate.


Subject(s)
Apoptosis , Aquaporin 1 , Hypoxia , Indoles , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Pulmonary Artery , Pyrroles , Animals , Aquaporin 1/metabolism , Aquaporin 1/genetics , Male , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/cytology , Rats , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Pyrroles/pharmacology , Indoles/pharmacology , Hypoxia/metabolism , Rats, Sprague-Dawley , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Cells, Cultured , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Disease Models, Animal
11.
J Clin Invest ; 134(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145443

ABSTRACT

The phenotypic switch of vascular smooth cells (VSMCs) from a contractile to a synthetic state is associated with the development and progression of aortic aneurysm (AA). However, the mechanism underlying this process remains unclear. In this issue of the JCI, Song et al. identified SLC44A2 as a regulator of the phenotypic switch in VSMCs. Inhibition of SLC44A2 facilitated the switch to the synthetic state, contributing to the development of AA. Mechanistically, SLC44A2 interacted with NRP1 and ITGB3 to activate the TGF-ß/SMAD signaling pathway, resulting in VSMCs with a contractile phenotype. Furthermore, VSMC-specific SLC44A2 overexpression by genetic or pharmacological manipulation reduced AA in mouse models. These findings suggest the potential of targeting the SLC44A2 signaling pathway for AA prevention and treatment.


Subject(s)
Aortic Aneurysm , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Signal Transduction , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Aortic Aneurysm/genetics , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Phenotype , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Integrin beta3/metabolism , Integrin beta3/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Neuropilin-1/metabolism , Neuropilin-1/genetics
12.
Gene ; 929: 148820, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39103059

ABSTRACT

BACKGROUND: Abdominal aortic aneurysm (AAA) is a complex vascular disorder characterized by the progressive dilation of the abdominal aorta, with a high risk of rupture and mortality. Understanding the cellular interactions and molecular mechanisms underlying AAA development is critical for identifying potential therapeutic targets. METHODS: This study utilized datasets GSE197748, GSE164678 and GSE183464 from the GEO database, encompassing bulk and single-cell RNA sequencing data from AAA and control samples. We performed principal component analysis, differential expression analysis, and functional enrichment analysis to identify key pathways involved in AAA. Cell-cell interactions were investigated using CellPhoneDB, focusing on fibroblasts, vascular smooth muscle cells (VSMCs), and macrophages. We further validated our findings using a mouse model of AAA induced by porcine pancreatic enzyme infusion, followed by gene expression analysis and co-immunoprecipitation experiments. RESULTS: Our analysis revealed significant alterations in gene expression profiles between AAA and control samples, with a pronounced immune response and cell adhesion pathways being implicated. Single-cell RNA sequencing data highlighted an increased proportion of pro-inflammatory macrophages, along with changes in the composition of fibroblasts and VSMCs in AAA. CellPhoneDB analysis identified critical ligand-receptor interactions, notably collagen type I alpha 1 chain (COL1A1)/COL1A2-CD18 and thrombospondin 1 (THBS1)-CD3, suggesting complex communication networks between fibroblasts and VSMCs. In vivo experiments confirmed the upregulation of these genes in AAA mice and demonstrated the functional interaction between COL1A1/COL1A2 and CD18. CONCLUSION: The interaction between fibroblasts and VSMCs, mediated by specific ligand-receptor pairs such as COL1A1/COL1A2-CD18 and THBS1-CD3, plays a pivotal role in AAA pathogenesis.


Subject(s)
Aortic Aneurysm, Abdominal , Muscle, Smooth, Vascular , Sequence Analysis, RNA , Single-Cell Analysis , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/metabolism , Animals , Mice , Single-Cell Analysis/methods , Humans , Sequence Analysis, RNA/methods , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Macrophages/metabolism , Disease Progression , Fibroblasts/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Disease Models, Animal , Male , Mice, Inbred C57BL , Gene Expression Profiling/methods , Cell Communication/genetics , Collagen Type I/genetics , Collagen Type I/metabolism
13.
Curr Med Sci ; 44(4): 680-685, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39096479

ABSTRACT

Neoatherosclerosis (NA) within stents has become an important clinical problem after coronary artery stent implantation. In-stent restenosis and in-stent thrombosis are the two major complications following coronary stent placement and seriously affect patient prognosis. As the common pathological basis of these two complications, NA plaques, unlike native atherosclerotic plaques, often grow around residual oxidized lipids and stent struts. The main components are foam cells formed by vascular smooth muscle cells (VSMCs) engulfing oxidized lipids at lipid residue sites. Current research mainly focuses on optical coherence tomography (OCT) and intravascular ultrasound (IVUS), but the specific pathogenesis of NA is still unclear. A thorough understanding of the pathogenesis and pathological features of NA provides a theoretical basis for clinical treatment. This article reviews the previous research of our research group and the current situation of domestic and foreign research.


Subject(s)
Tomography, Optical Coherence , Humans , Coronary Restenosis/etiology , Coronary Restenosis/diagnostic imaging , Coronary Restenosis/therapy , Coronary Restenosis/pathology , Atherosclerosis/therapy , Atherosclerosis/diagnostic imaging , Atherosclerosis/metabolism , Atherosclerosis/pathology , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/therapy , Plaque, Atherosclerotic/diagnostic imaging , Stents/adverse effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Ultrasonography, Interventional/methods , Coronary Artery Disease/therapy , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/etiology , Coronary Artery Disease/pathology , Foam Cells/pathology , Foam Cells/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism
14.
Nat Commun ; 15(1): 6919, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39134547

ABSTRACT

Serum response factor (SRF) controls gene transcription in vascular smooth muscle cells (VSMCs) and regulates VSMC phenotypic switch from a contractile to a synthetic state, which plays a key role in the pathogenesis of cardiovascular diseases (CVD). It is not known how post-translational SUMOylation regulates the SRF activity in CVD. Here we show that Senp1 deficiency in VSMCs increased SUMOylated SRF and the SRF-ELK complex, leading to augmented vascular remodeling and neointimal formation in mice. Mechanistically, SENP1 deficiency in VSMCs increases SRF SUMOylation at lysine 143, reducing SRF lysosomal localization concomitant with increased nuclear accumulation and switching a contractile phenotype-responsive SRF-myocardin complex to a synthetic phenotype-responsive SRF-ELK1 complex. SUMOylated SRF and phospho-ELK1 are increased in VSMCs from coronary arteries of CVD patients. Importantly, ELK inhibitor AZD6244 prevents the shift from SRF-myocardin to SRF-ELK complex, attenuating VSMC synthetic phenotypes and neointimal formation in Senp1-deficient mice. Therefore, targeting the SRF complex may have a therapeutic potential for the treatment of CVD.


Subject(s)
Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Nuclear Proteins , Phenotype , Serum Response Factor , Sumoylation , Vascular Remodeling , Animals , Humans , Male , Mice , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , ets-Domain Protein Elk-1/metabolism , ets-Domain Protein Elk-1/genetics , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Neointima/pathology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Serum Response Factor/metabolism , Serum Response Factor/genetics , Trans-Activators/metabolism , Trans-Activators/genetics
15.
Cardiovasc Toxicol ; 24(9): 889-903, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39138741

ABSTRACT

Aortic aneurysm and dissection (AAD) is a cardiovascular disease that poses a severe threat to life and has high morbidity and mortality rates. Clinical and animal-based studies have irrefutably shown that fluoroquinolones, a commonly prescribed antibiotic for treating infections, significantly increase the risk of AAD. Despite this, the precise mechanism by which fluoroquinolones cause AAD remains unclear. Therefore, this study aims to investigate the molecular mechanism and role of Ciprofloxacin definitively-a type of fluoroquinolone antibiotic-in the progression of AAD. Aortic transcriptome data were collected from GEO datasets to detect the genes and pathways expressed differently between healthy donors and AAD patients. Human primary Vascular Smooth Muscle Cells (VSMCs) were isolated from the aorta. After 72 h of exposure to 110ug/ml Ciprofloxacin or 100 nmol/L AngII, either or combined, the senescent cells were identified through SA-ß-gal staining. MitoTracker staining was used to examine the morphology of mitochondria in each group. Cellular Reactive Oxygen Species (ROS) levels were measured using MitoSox and DCFH-DA staining. Western blot assay was performed to detect the protein expression level. We conducted an analysis of transcriptome data from both healthy donors and patients with AAD and found that there were significant changes in cellular senescence-related signaling pathways in the latter group. We then isolated and identified human primary VSMCs from healthy donors (control-VSMCs) and patients' (AAD-VSMCs) aortic tissue, respectively. We found that VSMCs from patients exhibited senescent phenotype as compared to control-VSMCs. The higher levels of p21 and p16 and elevated SA-ß-gal activity demonstrated this. We also found that pretreatment with Ciprofloxacin promoted angiotensin-II-induced cellular senescence in control-VSMCs. This was evidenced by increased SA-ß-gal activity, decreased cell proliferation, and elevation of p21 and p16 protein levels. Additionally, we found that Angiotensin-II (AngII) induced VSMC senescence by promoting ROS generation. We used DCFH-DA and mitoSOX staining to identify that Ciprofloxacin and AngII pretreatment further elevated ROS levels than the vehicle or alone group. Furthermore, JC-1 staining showed that mitochondrial membrane potential significantly declined in the Ciprofloxacin and AngII combination group compared to others. Compared to the other three groups, pretreatment of Ciprofloxacin plus AngII could further induce mitochondrial fission, demonstrated by mitoTracker staining and western blotting assay. Mechanistically, we found that Ciprofloxacin impaired the balance of mitochondrial fission and fusion dynamics in VSMCs by suppressing the phosphorylation of AMPK signaling. This caused mitochondrial dysfunction and ROS generation, thereby elevating AngII-induced cellular senescence. However, treatment with the AMPK activator partially alleviated those effects. Our data indicate that Ciprofloxacin may accelerate AngII-induced VSMC senescence through modulating AMPK/ROS signaling and, subsequently, hasten the progression of AAD.


Subject(s)
AMP-Activated Protein Kinases , Angiotensin II , Aortic Dissection , Cellular Senescence , Ciprofloxacin , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Reactive Oxygen Species , Signal Transduction , Humans , Cellular Senescence/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/enzymology , Aortic Dissection/chemically induced , Aortic Dissection/pathology , Aortic Dissection/enzymology , Aortic Dissection/metabolism , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/metabolism , Angiotensin II/toxicity , Cells, Cultured , Ciprofloxacin/pharmacology , AMP-Activated Protein Kinases/metabolism , Case-Control Studies , Aortic Aneurysm/chemically induced , Aortic Aneurysm/pathology , Aortic Aneurysm/metabolism , Aortic Aneurysm/enzymology , Male , Middle Aged , Oxidative Stress/drug effects
16.
Clinics (Sao Paulo) ; 79: 100400, 2024.
Article in English | MEDLINE | ID: mdl-39089097

ABSTRACT

BACKGROUND: Aortic Dissection (AD) is a vascular disease with a high mortality rate and limited treatment strategies. The current research analyzed the function and regulatory mechanism of lncRNA HCG18 in AD. METHODS: HCG18, miR-103a-3p, and HMGA2 levels in the aortic tissue of AD patients were examined by RT-qPCR. After transfection with relevant plasmids, the proliferation of rat aortic Vascular Smoothing Muscle Cells (VSMCs) was detected by CCK-8 and colony formation assay, Bcl-2 and Bax was measured by Western blot, and apoptosis was checked by flow cytometry. Then, the targeting relationship between miR-103a-3p and HCG18 or HMGA2 was verified by bioinformation website analysis and dual luciferase reporter assay. Finally, the effect of HCG18 was verified in an AD rat model induced by ß-aminopropionitrile. RESULTS: HCG18 and HMGA2 were upregulated and miR-103a-3p was downregulated in the aortic tissues of AD patients. Downregulating HCG18 or upregulating miR-103a-3p enhanced the proliferation of VSMCs and limited cell apoptosis. HCG18 promoted HMGA2 expression by competing with miR-103a-3p and restoring HMGA2 could impair the effect of HCG18 downregulation or miR-103a-3p upregulation in mediating the proliferation and apoptosis of VSMCs. In addition, down-regulation of HCG18 could improve the pathological injury of the aorta in AD rats. CONCLUSION: HCG18 reduces proliferation and induces apoptosis of VSMCs through the miR-103a-3p/HMGA2 axis, thus aggravating AD.


Subject(s)
Aortic Dissection , Apoptosis , Cell Proliferation , MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Aortic Dissection/genetics , Aortic Dissection/metabolism , Humans , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Male , Rats , Muscle, Smooth, Vascular/metabolism , Down-Regulation , Rats, Sprague-Dawley , Up-Regulation , Middle Aged , Myocytes, Smooth Muscle/metabolism , Disease Models, Animal
17.
Int Immunopharmacol ; 140: 112834, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39116495

ABSTRACT

BACKGROUND: Atherosclerotic (AS) plaques require a dense necrotic core and a robust fibrous cap to maintain stability. While previous studies have indicated that the traditional Chinese medicine Huang Lian Jie Du Decoction (HLJDD) possesses the capability to stabilize AS plaques, the underlying mechanisms remain obscure. This study aims to delve deeper into the potential mechanisms by which HLJDD improves AS through an integrated research strategy. METHODS: Leveraging an AS model in ApoE-/- mice exposed to a high-fat diet (HFD), we scrutinized the therapeutic effects of HLJDD using microscopic observations, oil red O staining, HE staining and Masson staining. Employing comprehensive techniques of network pharmacology, bioinformatics, and molecular docking, we elucidated the mechanism by which HLJDD stabilizes AS plaques. In vitro experiments, utilizing ox-LDL-induced macrophages and apoptotic vascular smooth muscle cells (VSMCs), assessed the impact of HLJDD on efferocytosis and the role of SLC2A1. RESULTS: In vivo experiments showcased the efficacy of HLJDD in reducing the quantity of aortic plaques, diminishing lipid deposition, and enhancing plaque stability in AS mice. Employing network pharmacology and machine learning, we pinpointed SLC2A1 as a crucial regulatory target. Molecular docking further validated the binding of HLJDD components with SLC2A1. The experiments demonstrated a dose-dependent upregulation in SLC2A1 expression by HLJDD, amplifying efferocytosis. Importantly, this effect was reversed by the SLC2A1 inhibitor STF-31, highlighting the pivotal role of SLC2A1 as a target. CONCLUSION: The HLJDD can modulate macrophage efferocytosis by enhancing the expression levels of SLC2A1, thereby improving the stability of atherosclerotic plaques.


Subject(s)
Drugs, Chinese Herbal , Glucose Transporter Type 1 , Macrophages , Plaque, Atherosclerotic , Animals , Plaque, Atherosclerotic/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mice , Male , Macrophages/drug effects , Macrophages/metabolism , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Diet, High-Fat , Mice, Inbred C57BL , Phagocytosis/drug effects , Humans , Molecular Docking Simulation , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Disease Models, Animal , Apoptosis/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Lipoproteins, LDL/metabolism , RAW 264.7 Cells , Mice, Knockout, ApoE , Efferocytosis
18.
Discov Med ; 36(187): 1678-1691, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39190383

ABSTRACT

BACKGROUND: Remodeling of vascular smooth muscle cells (VSMCs), as a pathological hallmark of cardiovascular diseases, is related to the molecular rewiring of Calcium signaling, which induces upregulation of stromal interaction molecule (STIM) proteins. This study analyzed the influence of STIM1 proteins on the remodeling of VSMCs in atherosclerosis (AS). METHODS: After oxidized low-density lipoprotein (ox-LDL) treatment and transfection, VSMC viability, migration, and invasion were separately measured using Cell Counting Kit-8, Scratch assay, and Transwell assay. An animal AS model was constructed, and histological analysis via hematoxylin-eosin staining was conducted on the aorta. RESULTS: Ox-LDL promoted expression of STIM1 and Orai calcium release-activated calcium modulator 1 (Orai1). STIM1 or Orai1 downregulation suppressed viability, migration, invasion, and phenotypic switching of ox-LDL-treated VSMCs, whereas STIM1 or Orai1 upregulation had opposite effects. Orai1 level was upregulated by STIM1 overexpression. Orai1 silencing reversed the effects of STIM1 overexpression in VSMCs. STIM1 deficiency alleviated AS and regulated expression of Orai1 and phenotypic switch-related factors in vivo. CONCLUSION: STIM1 deficiency suppresses viability, migration, invasion, and phenotypic switching of ox-LDL-induced VSMCs and alleviates AS by inhibiting Orai1.


Subject(s)
Atherosclerosis , Cell Movement , Lipoproteins, LDL , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , ORAI1 Protein , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Atherosclerosis/pathology , Atherosclerosis/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Animals , ORAI1 Protein/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/antagonists & inhibitors , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Lipoproteins, LDL/metabolism , Cell Movement/drug effects , Humans , Male , Mice , Cell Survival/drug effects , Disease Models, Animal , Vascular Remodeling/drug effects , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics
19.
Nat Cardiovasc Res ; 3(5): 541-557, 2024 May.
Article in English | MEDLINE | ID: mdl-39195932

ABSTRACT

Common arterial grafts used in coronary artery bypass grafting include internal thoracic artery (ITA), radial artery (RA) and right gastroepiploic artery (RGA) grafts; of these, the ITA has the best clinical outcome. Here, by analyzing the single-cell transcriptome of different arterial grafts, we suggest optimization strategies for the RA and RGA based on the ITA as a reference. Compared with the ITA, the RA had more lipid-handling-related CD36+ endothelial cells. Vascular smooth muscle cells from the RGA were more susceptible to spasm, followed by those from the RA; comparison with the ITA suggested that potassium channel openers may counteract vasospasm. Fibroblasts from the RA and RGA highly expressed GDF10 and CREB5, respectively; both GDF10 and CREB5 are associated with extracellular matrix deposition. Cell-cell communication analysis revealed high levels of macrophage migration inhibitory factor signaling in the RA. Administration of macrophage migration inhibitory factor inhibitor to mice with partial carotid artery ligation blocked neointimal hyperplasia induced by disturbed flow. Modulation of identified targets may have protective effects on arterial grafts.


Subject(s)
Mammary Arteries , Animals , Humans , Mammary Arteries/transplantation , Mammary Arteries/metabolism , Single-Cell Analysis , Radial Artery/transplantation , Radial Artery/metabolism , Gastroepiploic Artery/metabolism , Gastroepiploic Artery/transplantation , Myocytes, Smooth Muscle/metabolism , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Disease Models, Animal , Mice, Inbred C57BL , Neointima/pathology , Neointima/metabolism , Coronary Artery Bypass/methods , Cell Communication , Fibroblasts/metabolism , Endothelial Cells/metabolism , Mice , Signal Transduction , Transcriptome , Vasoconstriction/drug effects , Cells, Cultured , Hyperplasia/metabolism , Hyperplasia/pathology , Cyclic AMP Response Element-Binding Protein/metabolism
20.
Nat Cardiovasc Res ; 3(2): 203-220, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39196190

ABSTRACT

Drugs that lower plasma apolipoprotein B (ApoB)-containing lipoproteins are central to treating advanced atherosclerosis and provide partial protection against clinical events. Previous research showed that lowering ApoB-containing lipoproteins stops plaque inflammation, but how these drugs affect the heterogeneous population of plaque cells derived from smooth muscle cells (SMCs) is unknown. SMC-derived cells are the main cellular component of atherosclerotic lesions and the source of structural components that determine the size of plaques and their propensity to rupture and trigger thrombosis, the proximate cause of heart attack and stroke. Using lineage tracing and single-cell techniques to investigate the full SMC-derived cellular compartment in progressing and regressing plaques in mice, here we show that lowering ApoB-containing lipoproteins reduces nuclear factor kappa-light-chain-enhancer of activated B cells signaling in SMC-derived fibromyocytes and chondromyocytes and leads to depletion of these abundant cell types from plaques. These results uncover an important mechanism through which cholesterol-lowering drugs can achieve plaque regression.


Subject(s)
Atherosclerosis , Disease Models, Animal , Myocytes, Smooth Muscle , Plaque, Atherosclerotic , Animals , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Atherosclerosis/pathology , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Chondrocytes/metabolism , Signal Transduction/drug effects , Mice, Inbred C57BL , Anticholesteremic Agents/pharmacology , Anticholesteremic Agents/therapeutic use , Male , Cholesterol/metabolism , Cholesterol/blood , Mice , Aortic Diseases/pathology , Aortic Diseases/metabolism , Single-Cell Analysis , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , NF-kappa B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL