Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54.515
Filter
Add more filters








Publication year range
1.
Int J Tuberc Lung Dis ; 28(6): 266-272, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822483

ABSTRACT

BACKGROUNDCurrent metrics for TB transmission include TB notifications, disease mortality, and prevalence surveys. These metrics are helpful to national TB programs to assess the burden of disease, but they do not directly measure incident infection in the community.METHODSTo estimate incidence of Mycobacterium tuberculosis infection in Kampala, Uganda, we performed a prospective cohort study between 2014 and 2017 which enrolled of 1,275 adult residents without signs of tuberculous infection (tuberculin skin test [TST] <5 mm and no signs of TB disease) and followed them for conversion of TST at 1 year.RESULTSDuring follow-up, 194 participants converted the TST and 158 converted by one year. The incidence density of TST conversion was 13.2 conversions/100 person-year (95% CI 11.6-15.1), which corresponds to an annual cumulative incidence of tuberculous infection of 12.4% (95% CI 10.7-14.3). Cumulative incidence was greater among older participants and among men. Among participants who reported prior exposure to TB cases, the cumulative risk was highest among those reporting exposure during follow-up.CONCLUSIONSThe high annual incidence of infection suggests that residents of Kampala have adequate contact for infection with undetected, infectious cases of TB as they go about their daily lives..


Subject(s)
Tuberculin Test , Tuberculosis , Humans , Incidence , Male , Uganda/epidemiology , Adult , Female , Prospective Studies , Tuberculosis/epidemiology , Young Adult , Middle Aged , Adolescent , Mycobacterium tuberculosis/isolation & purification , Prevalence , Endemic Diseases , Cohort Studies
3.
FASEB J ; 38(11): e23724, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837712

ABSTRACT

Mycobacterium tuberculosis, the pathogen of the deadly disease tuberculosis, depends on the redox cofactor mycofactocin (MFT) to adapt to and survive under hypoxic conditions. MftR is a TetR family transcription regulator that binds upstream of the MFT gene cluster and controls MFT synthesis. To elucidate the structural basis underlying MftR regulation, we determined the crystal structure of Mycobacterium tuberculosis MftR (TB-MftR). The structure revealed an interconnected hydrogen bond network in the α1-α2-α3 helices of helix-turn-helix (HTH) DNA-binding domain that is essential for nucleic acid interactions. The ligand-binding domain contains a hydrophobic cavity enclosing long-chain fatty acyl-CoAs like the key regulatory ligand oleoyl-CoA. Despite variations in ligand-binding modes, comparative analyses suggest regulatory mechanisms are largely conserved across TetR family acyl-CoA sensors. By elucidating the intricate structural mechanisms governing DNA and ligand binding by TB-MftR, our study enhances understanding of the regulatory roles of this transcription factor under hypoxic conditions, providing insights that could inform future research into Mycobacterium tuberculosis pathogenesis.


Subject(s)
Bacterial Proteins , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Crystallography, X-Ray , Transcription Factors/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Models, Molecular , Amino Acid Sequence
4.
Front Public Health ; 12: 1374703, 2024.
Article in English | MEDLINE | ID: mdl-38827613

ABSTRACT

Drug-resistant (DR) tuberculosis (TB) is a major public health concern globally, complicating TB control and management efforts. West Africa has historically faced difficulty in combating DR-TB due to limited diagnostic skills, insufficient access to excellent healthcare, and ineffective healthcare systems. This has aided in the emergence and dissemination of DR Mycobacterium tuberculosis complex (MTBC) strains in the region. In the past, DR-TB patients faced insufficient resources, fragmented efforts, and suboptimal treatment outcomes. However, current efforts to combat DR-TB in the region are promising. These efforts include strengthening diagnostic capacities, improving access to quality healthcare services, and implementing evidence-based treatment regimens for DR-TB. Additionally, many West African National TB control programs are collaborating with international partners to scale up laboratory infrastructure, enhance surveillance systems, and promote infection control measures. Moreso, novel TB drugs and regimens, such as bedaquiline and delamanid, are being introduced to improve treatment outcomes for DR-TB cases. Despite these obstacles, there is optimism for the future of DR-TB control in West Africa. Investments are being made to improve healthcare systems, expand laboratory capacity, and support TB research and innovation. West African institutions are now supporting knowledge sharing, capacity building, and resource mobilization through collaborative initiatives such as the West African Network for TB, AIDS, and Malaria (WANETAM), the West African Health Organization (WAHO), and other regional or global partners. These efforts hold promise for improved diagnostics, optimized treatment regimens, and provide better patient outcomes in the future where drug-resistant TB in WA can be effectively controlled, reducing the burden of the disease, and improving the health outcomes of affected individuals.


Subject(s)
Antitubercular Agents , Tuberculosis, Multidrug-Resistant , Humans , Africa, Western/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects
5.
PLoS One ; 19(6): e0303938, 2024.
Article in English | MEDLINE | ID: mdl-38843147

ABSTRACT

Oxford Nanopore Technologies (ONT) sequencing is a promising technology. We assessed the performance of the new ONT R10 flowcells and V14 rapid sequencing chemistry for Mtb whole genome sequencing of Mycobacterium tuberculosis (Mtb) DNA extracted from clinical primary liquid cultures (CPLCs). Using the recommended protocols for MinION Mk1C, R10.4.1 MinION flowcells, and the ONT Rapid Sequencing Kit V14 on six CPLC samples, we obtained a pooled library yield of 10.9 ng/µl, generated 1.94 Gb of sequenced bases and 214k reads after 48h in a first sequencing run. Only half (49%) of all generated reads met the Phred Quality score threshold (>8). To assess if the low data output and sequence quality were due to impurities present in DNA extracted directly from CPLCs, we added a pre-library preparation bead-clean-up step and included purified DNA obtained from an Mtb subculture as a control sample in a second sequencing run. The library yield for DNA extracted from four CPLCs and one Mtb subculture (control) was similar (10.0 ng/µl), 2.38 Gb of bases and 822k reads were produced. The quality was slightly better with 66% of the produced reads having a Phred Quality >8. A third run of DNA from six CPLCs with bead clean-up pre-processing produced a low library yield (±1 Gb of bases, 166k reads) of low quality (51% of reads with a Phred Quality score >8). A median depth of coverage above 10× was only achieved for five of 17 (29%) sequenced libraries. Compared to Illumina WGS of the same samples, accurate lineage predictions and full drug resistance profiles from the generated ONT data could not be determined by TBProfiler. Further optimization of the V14 ONT rapid sequencing chemistry and library preparation protocol is needed for clinical Mtb WGS applications.


Subject(s)
DNA, Bacterial , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , Humans , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Nanopores , Nanopore Sequencing/methods , Genome, Bacterial , Whole Genome Sequencing/methods , Tuberculosis/microbiology , Tuberculosis/diagnosis , Gene Library
6.
Front Immunol ; 15: 1401867, 2024.
Article in English | MEDLINE | ID: mdl-38846947

ABSTRACT

Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (MTB), remains one of the most prevalent and deadly infectious diseases worldwide. Currently, there are complex interactions between host cells and pathogens in TB. The onset, progression, and regression of TB are correlated not only with the virulence of MTB but also with the immunity of TB patients. Exosomes are cell-secreted membrane-bound nanovesicles with lipid bilayers that contain a variety of biomolecules, such as metabolites, lipids, proteins, and nucleic acids. Exosome-mediated cell-cell communication and interactions with the microenvironment represent crucial mechanisms through which exosomes exert their functional effects. Exosomes harbor a wide range of regulatory roles in physiological and pathological conditions, including MTB infection. Exosomes can regulate the immune response, metabolism, and cellular death to remodel the progression of MTB infection. During MTB infection, exosomes display distinctive profiles and quantities that may act as diagnostic biomarkers, suggesting that exosomes provide a revealing glimpse into the evolving landscape of MTB infections. Furthermore, exosomes derived from MTB and mesenchymal stem cells can be harnessed as vaccine platforms and drug delivery vehicles for the precise targeting and treatment of TB. In this review, we highlight the functions and mechanisms through which exosomes influence the progression of TB. Additionally, we unravel the critical significance of exosomal constituents in the diagnosis and therapeutic applications of TB, aiming to offer novel perspectives and strategies for combating TB.


Subject(s)
Biomarkers , Exosomes , Mycobacterium tuberculosis , Tuberculosis , Exosomes/immunology , Exosomes/metabolism , Humans , Tuberculosis/immunology , Tuberculosis/diagnosis , Tuberculosis/therapy , Tuberculosis/microbiology , Mycobacterium tuberculosis/immunology , Animals , Antitubercular Agents/therapeutic use
7.
J Med Primatol ; 53(3): e12716, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831476

ABSTRACT

Neotropical primates rarely exhibit active tuberculosis. A brown howler monkey was found injured in an urban area. Histopathology revealed granulomatous inflammation in the lungs, lymph nodes, and liver. Immunohistochemistry and molecular analysis confirmed the presence of Mycobacterium tuberculosis complex. The findings highlight the importance of TB surveillance in nonhuman primates.


Subject(s)
Alouatta , Monkey Diseases , Mycobacterium tuberculosis , Tuberculosis , Animals , Monkey Diseases/microbiology , Monkey Diseases/pathology , Brazil , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/veterinary , Tuberculosis/microbiology , Tuberculosis/pathology , Male , Female
8.
PLoS One ; 19(6): e0304162, 2024.
Article in English | MEDLINE | ID: mdl-38843269

ABSTRACT

BACKGROUND: Pulmonary tuberculosis (PTB) is the most common type of tuberculosis (TB). Rapid diagnosis of PTB can help in TB control. Although the use of molecular tests (such as the GeneXpert MTB/RIF) has improved the ability to rapidly diagnose PTB, there is still room for improvement. Nanopore sequencing is a novel means of rapid TB detection. The purpose of this study was to establish a systematic review and meta-analysis protocol for evaluating the accuracy of nanopore sequencing for the rapid diagnosis of PTB. METHODS: We completed this protocol according to the Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) statement and registered on the PROSPERO platform. We will screen studies related to nanopore sequencing for diagnosis of PTB by searching through PubMed, EMBASE, the Cochrane Library using English, and Wanfang database, CNKI (China National Knowledge Infrastructure) using Chinese. Eligible studies will be screened according to the inclusion and exclusion criteria established in the study protocol. We will evaluate the methodological quality of the individual included studies using Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). We will use Stata (version 15.0) with the midas command and RevMan (version 5.3) for meta-analysis and forest plots and SROC curves generation. A p < 0.05 was treated as a statistically significant difference. When significant heterogeneity exists between studies, we will explore sources of heterogeneity through meta-regression analysis and subgroup analysis. CONCLUSION: To the best of our knowledge, this will be the first systematic review and meta-analysis of nanopore sequencing for the diagnosis of PTB. We hope that this study will find a new and effective tool for the early diagnosis of PTB. PROSPERO REGISTRATION NUMBER: CRD42023495593.


Subject(s)
Meta-Analysis as Topic , Nanopore Sequencing , Systematic Reviews as Topic , Tuberculosis, Pulmonary , Tuberculosis, Pulmonary/diagnosis , Humans , Nanopore Sequencing/methods , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification
9.
Front Cell Infect Microbiol ; 14: 1398077, 2024.
Article in English | MEDLINE | ID: mdl-38836056

ABSTRACT

Mycobacterium tuberculosis (M.tb), the causative agent of Tuberculosis, is an intracellular bacterium well known for its ability to subvert host energy and metabolic pathways to maintain its intracellular survival. For this purpose, the bacteria utilize various mechanisms of which extracellular vehicles (EVs) related mechanisms attracted more attention. EVs are nanosized particles that are released by almost all cell types containing active biomolecules from the cell of origin and can target bioactive pathways in the recipient cells upon uptake. It is hypothesized that M.tb dictates the processes of host EV biogenesis pathways, selectively incorporating its molecules into the host EV to direct immune responses in its favor. During infection with Mtb, both mycobacteria and host cells release EVs. The composition of these EVs varies over time, influenced by the physiological and nutritional state of the host environment. Additionally, different EV populations contribute differently to the pathogenesis of disease at various stages of illness participating in a complex interplay between host cells and pathogens. These interactions ultimately influence immune responses and disease outcomes. However, the precise mechanisms and roles of EVs in pathogenicity and disease outcomes remain to be fully elucidated. In this review, we explored the properties and function of EVs in the context of M.tb infection within the host microenvironment and discussed their capacity as a novel therapeutic strategy to combat tuberculosis.


Subject(s)
Extracellular Vesicles , Host-Pathogen Interactions , Mycobacterium tuberculosis , Tuberculosis , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Mycobacterium tuberculosis/immunology , Humans , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/metabolism , Host-Pathogen Interactions/immunology , Animals
10.
Drug Des Devel Ther ; 18: 1969-1979, 2024.
Article in English | MEDLINE | ID: mdl-38836115

ABSTRACT

Tuberculosis (TB) stands as the second most prevalent cause of global human mortality from infectious diseases. In 2022, the World Health Organization documented an estimated number of global TB cases reaching 7.5 million, which causes death for 1.13 million patients. The continuous growth of drug-resistant TB cases due to various mutations in the Mycobacterium tuberculosis (MTB) strain, raises the urgency of the exploration of novel anti-TB treatments. Ursolic acid (UA) is a natural pentacyclic triterpene found in various plants that has shown potential as a novel anti-TB agent. This review aims to provide an overview of the therapeutic prospects of UA against MTB, with a particular emphasis on in silico, in vitro, and in vivo studies. Various mechanisms of action of UA against MTB are briefly recapped from in silico studies, such as enoyl acyl carrier protein reductase inhibitors, FadA5 (Acetyl-CoA acetyltransferase) inhibitors, tuberculosinyl adenosine transferase inhibitors, and small heat shock protein 16.3 inhibitor. The potential of UA to overcome drug resistance and its synergistic effects with existing antituberculosis drugs are briefly explained from in vitro studies using a variety of methods, such as Microplate Alamar Blue Assay, Mycobacteria Growth Indicator Tube 960 and Resazurin Assays, morphological change evaluation using transmission electron microscopy, and in vivo studies using BALB/C infected with multi drug resistant clinical isolates. Besides its promising mechanism as an antituberculosis drug, its complex chemical composition, limited availability and supply, and lack of intellectual property are also reviewed as those are the most frequently occurring challenges that need to be addressed for the successful development of UA as novel anti-TB agent.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Triterpenes , Ursolic Acid , Triterpenes/pharmacology , Triterpenes/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Humans , Mycobacterium tuberculosis/drug effects , Animals , Microbial Sensitivity Tests , Tuberculosis/drug therapy , Tuberculosis/microbiology
11.
Front Public Health ; 12: 1378426, 2024.
Article in English | MEDLINE | ID: mdl-38832230

ABSTRACT

Background: Tuberculosis remains a global health threat, and the World Health Organization reports a limited reduction in disease incidence rates, including both new and relapse cases. Therefore, studies targeting tuberculosis transmission chains and recurrent episodes are crucial for developing the most effective control measures. Herein, multiple tuberculosis clusters were retrospectively investigated by integrating patients' epidemiological and clinical information with median-joining networks recreated based on whole genome sequencing (WGS) data of Mycobacterium tuberculosis isolates. Methods: Epidemiologically linked tuberculosis patient clusters were identified during the source case investigation for pediatric tuberculosis patients. Only M. tuberculosis isolate DNA samples with previously determined spoligotypes identical within clusters were subjected to WGS and further median-joining network recreation. Relevant clinical and epidemiological data were obtained from patient medical records. Results: We investigated 18 clusters comprising 100 active tuberculosis patients 29 of whom were children at the time of diagnosis; nine patients experienced recurrent episodes. M. tuberculosis isolates of studied clusters belonged to Lineages 2 (sub-lineage 2.2.1) and 4 (sub-lineages 4.3.3, 4.1.2.1, 4.8, and 4.2.1), while sub-lineage 4.3.3 (LAM) was the most abundant. Isolates of six clusters were drug-resistant. Within clusters, the maximum genetic distance between closely related isolates was only 5-11 single nucleotide variants (SNVs). Recreated median-joining networks, integrated with patients' diagnoses, specimen collection dates, sputum smear microscopy, and epidemiological investigation results indicated transmission directions within clusters and long periods of latent infection. It also facilitated the identification of potential infection sources for pediatric patients and recurrent active tuberculosis episodes refuting the reactivation possibility despite the small genetic distance of ≤5 SNVs between isolates. However, unidentified active tuberculosis cases within the cluster, the variable mycobacterial mutation rate in dormant and active states, and low M. tuberculosis genetic variability inferred precise transmission chain delineation. In some cases, heterozygous SNVs with an allelic frequency of 10-73% proved valuable in identifying direct transmission events. Conclusion: The complex approach of integrating tuberculosis cluster WGS-data-based median-joining networks with relevant epidemiological and clinical data proved valuable in delineating epidemiologically linked patient transmission chains and deciphering causes of recurrent tuberculosis episodes within clusters.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Whole Genome Sequencing , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Male , Tuberculosis/transmission , Tuberculosis/epidemiology , Female , Retrospective Studies , Child , Child, Preschool , Adolescent , Cluster Analysis , Adult , Infant
13.
Nat Commun ; 15(1): 3927, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724531

ABSTRACT

Sputum culture reversion after conversion is an indicator of tuberculosis (TB) treatment failure. We analyze data from the endTB multi-country prospective observational cohort (NCT03259269) to estimate the frequency (primary endpoint) among individuals receiving a longer (18-to-20 month) regimen for multidrug- or rifampicin-resistant (MDR/RR) TB who experienced culture conversion. We also conduct Cox proportional hazard regression analyses to identify factors associated with reversion, including comorbidities, previous treatment, cavitary disease at conversion, low body mass index (BMI) at conversion, time to conversion, and number of likely-effective drugs. Of 1,286 patients, 54 (4.2%) experienced reversion, a median of 173 days (97-306) after conversion. Cavitary disease, BMI < 18.5, hepatitis C, prior treatment with second-line drugs, and longer time to initial culture conversion were positively associated with reversion. Reversion was uncommon. Those with cavitary disease, low BMI, hepatitis C, prior treatment with second-line drugs, and in whom culture conversion is delayed may benefit from close monitoring following conversion.


Subject(s)
Antitubercular Agents , Diarylquinolines , Nitroimidazoles , Oxazoles , Sputum , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Sputum/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Diarylquinolines/therapeutic use , Diarylquinolines/pharmacology , Male , Female , Oxazoles/therapeutic use , Adult , Nitroimidazoles/therapeutic use , Nitroimidazoles/pharmacology , Middle Aged , Prospective Studies , Mycobacterium tuberculosis/drug effects , Drug Repositioning
14.
PLoS Pathog ; 20(5): e1012148, 2024 May.
Article in English | MEDLINE | ID: mdl-38728367

ABSTRACT

Previously, we found that Mycobacterium tuberculosis (Mtb) infection in type 2 diabetes mellitus (T2DM) mice enhances inflammatory cytokine production which drives pathological immune responses and mortality. In the current study, using a T2DM Mtb infection mice model, we determined the mechanisms that make T2DM mice alveolar macrophages (AMs) more inflammatory upon Mtb infection. Among various cell death pathways, necroptosis is a major pathway involved in inflammatory cytokine production by T2DM mice AMs. Anti-TNFR1 antibody treatment of Mtb-infected AMs from T2DM mice significantly reduced expression of receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) (necroptosis markers) and IL-6 production. Metabolic profile comparison of Mtb-infected AMs from T2DM mice and Mtb-infected AMs of nondiabetic control mice indicated that 2-ketohexanoic acid and deoxyadenosine monophosphate were significantly abundant, and acetylcholine and pyridoxine (Vitamin B6) were significantly less abundant in T2DM mice AMs infected with Mtb. 2-Ketohexanoic acid enhanced expression of TNFR1, RIPK3, MLKL and inflammatory cytokine production in the lungs of Mtb-infected nondiabetic mice. In contrast, pyridoxine inhibited RIPK3, MLKL and enhanced expression of Caspase 3 (apoptosis marker) in the lungs of Mtb-infected T2DM mice. Our findings demonstrate that metabolic changes in Mtb-infected T2DM mice enhance TNFR1-mediated necroptosis of AMs, which leads to excess inflammation and lung pathology.


Subject(s)
Diabetes Mellitus, Type 2 , Mycobacterium tuberculosis , Necroptosis , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Mice, Inbred C57BL , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Male , Cytokines/metabolism
15.
Front Public Health ; 12: 1337357, 2024.
Article in English | MEDLINE | ID: mdl-38689770

ABSTRACT

Introduction: A major sublineage within the Mycobacterium tuberculosis (MTB) LAM family characterized by a new in-frame fusion gene Rv3346c/55c was discovered in Rio de Janeiro (Brazil) in 2007, called RDRio, associated to drug resistance. The few studies about prevalence of MTB RDRio strains in Latin America reported values ranging from 3% in Chile to 69.8% in Venezuela, although no information is available for countries like Ecuador. Methods: A total of 814 MTB isolates from years 2012 to 2016 were screened by multiplex PCR for RDRio identification, followed by 24-loci MIRU-VNTR and spoligotyping. Results: A total number of 17 MTB RDRio strains were identified, representing an overall prevalence of 2.09% among MTB strains in Ecuador. While 10.9% of the MTB isolates included in the study were multidrug resistance (MDR), 29.4% (5/17) of the RDRio strains were MDR. Discussion: This is the first report of the prevalence of MTB RDRio in Ecuador, where a strong association with MDR was found, but also a very low prevalence compared to other countries in Latin America. It is important to improve molecular epidemiology tools as a part of MTB surveillance programs in Latin America to track the transmission of potentially dangerous MTB stains associated to MDR TB like MTB RDRio.


Subject(s)
Genotype , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Ecuador/epidemiology , Humans , Prevalence , Retrospective Studies , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Genetic Variation , Antitubercular Agents/pharmacology , Adult , Male , Female , Middle Aged , Drug Resistance, Multiple, Bacterial/genetics , Adolescent
16.
Sci Rep ; 14(1): 10455, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714745

ABSTRACT

Ethiopia is one of the countries with a high tuberculosis (TB) burden, yet little is known about the spatial distribution of Mycobacterium tuberculosis (Mtb) lineages. This study identifies the spoligotyping of 1735 archived Mtb isolates from the National Drug Resistance Survey, collected between November 2011 and June 2013, to investigate Mtb population structure and spatial distribution. Spoligotype International Types (SITs) and lineages were retrieved from online databases. The distribution of lineages was evaluated using Fisher's exact test and logistic regression models. The Global Moran's Index and Getis-Ord Gi statistic were utilized to identify hotspot areas. Our results showed that spoligotypes could be interpreted and led to 4 lineages and 283 spoligotype patterns in 91% of the isolates, including 4% of those with multidrug/rifampicin resistance (MDR/RR) TB. The identified Mtb lineages were lineage 1 (1.8%), lineage 3 (25.9%), lineage 4 (70.6%) and lineage 7 (1.6%). The proportion of lineages 3 and 4 varied by regions, with lineage 3 being significantly greater than lineage 4 in reports from Gambella (AOR = 4.37, P < 0.001) and Tigray (AOR = 3.44, P = 0.001) and lineage 4 being significantly higher in Southern Nations Nationalities and Peoples Region (AOR = 1.97, P = 0.026) than lineage 3. Hotspots for lineage 1 were located in eastern Ethiopia, while a lineage 7 hotspot was identified in northern and western Ethiopia. The five prevalent spoligotypes, which were SIT149, SIT53, SIT25, SIT37 and SIT26 account for 42.8% of all isolates under investigation, while SIT149, SIT53 and SIT21 account for 52-57.8% of drug-resistant TB cases. TB and drug resistant TB are mainly caused by lineages 3 and 4, and significant proportions of the prevalent spoligotypes also influence drug-resistant TB and the total TB burden. Regional variations in lineages may result from both local and cross-border spread.


Subject(s)
Mycobacterium tuberculosis , Ethiopia/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Humans , Female , Male , Adult , Middle Aged , Adolescent , Young Adult , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis/epidemiology , Tuberculosis/microbiology , Bacterial Typing Techniques
17.
Ann Clin Microbiol Antimicrob ; 23(1): 40, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702782

ABSTRACT

BACKGROUND: Pretomanid is a key component of new regimens for the treatment of drug-resistant tuberculosis (TB) which are being rolled out globally. However, there is limited information on the prevalence of pre-existing resistance to the drug. METHODS: To investigate pretomanid resistance rates in China and its underlying genetic basis, as well as to generate additional minimum inhibitory concentration (MIC) data for epidemiological cutoff (ECOFF)/breakpoint setting, we performed MIC determinations in the Mycobacterial Growth Indicator Tube™ (MGIT) system, followed by WGS analysis, on 475 Mycobacterium tuberculosis (MTB) isolated from Chinese TB patients between 2013 and 2020. RESULTS: We observed a pretomanid MIC distribution with a 99% ECOFF equal to 0.5 mg/L. Of the 15 isolates with MIC values > 0.5 mg/L, one (MIC = 1 mg/L) was identified as MTB lineage 1 (L1), a genotype previously reported to be intrinsically less susceptible to pretomanid, two were borderline resistant (MIC = 2-4 mg/L) and the remaining 12 isolates were highly resistant (MIC ≥ 16 mg/L) to the drug. Five resistant isolates did not harbor mutations in the known pretomanid resistant genes. CONCLUSIONS: Our results further support a breakpoint of 0.5 mg/L for a non-L1 MTB population, which is characteristic of China. Further, our data point to an unexpected high (14/475, 3%) pre-existing pretomanid resistance rate in the country, as well as to the existence of yet-to-be-discovered pretomanid resistance genes.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , China/epidemiology , Humans , Antitubercular Agents/pharmacology , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/epidemiology , Prevalence , Nitroimidazoles/pharmacology , Genotype , Mutation , Whole Genome Sequencing
18.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(5): 485-489, 2024 May 12.
Article in Chinese | MEDLINE | ID: mdl-38706074

ABSTRACT

Programmed cell death 1 (PD-1) and its ligands, PD-L1 and PD-L2, expressed on a variety of immune cells, play multiple regulatory roles in the host immune response to Mycobacterium tuberculosis infection. In this study, we reviewed that the regulatory roles of PD-1/PD-L1, PD-L2 signaling in the host adaptive immune response, such as the innate response of macrophages, and the interaction between T cells and macrophages in response to MTB. In addition, during MTB infection, PD-1/PD-L1, PD-L2 signaling is also involved in the host inflammatory response, as well as the potential roles of PD-1/PD-L1, PD-L2 in the diagnosis and treatment of tuberculosis.


Subject(s)
B7-H1 Antigen , Macrophages , Mycobacterium tuberculosis , Programmed Cell Death 1 Ligand 2 Protein , Programmed Cell Death 1 Receptor , Signal Transduction , Tuberculosis , Humans , Tuberculosis/immunology , Tuberculosis/microbiology , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Mycobacterium tuberculosis/immunology , Macrophages/immunology , Macrophages/metabolism , Immunity, Innate , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Adaptive Immunity
19.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(5): 475-480, 2024 May 12.
Article in Chinese | MEDLINE | ID: mdl-38706072

ABSTRACT

Tuberculosis (TB) is the leading cause of death among people living with HIV/AIDS (PLWHA), posing a significant disease burden. Early TB screening in PLWHA is a key intervention to reduce transmission and control disease progression. ​Lipoarabinomannan (LAM) is a glycolipid of Mycobacterium tuberculosis (MTB) that can be detected in the urine of tuberculosis patients. LAM is useful for the rapid and accurate diagnosis of tuberculosis. This article reviews LAM and its application and limitations in the diagnosis of PLWHA, hoping to provide a reference for the diagnosis of tuberculosis in PLWHA.


Subject(s)
Lipopolysaccharides , Tuberculosis , Humans , Lipopolysaccharides/urine , Tuberculosis/diagnosis , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/immunology , HIV Infections/complications , HIV Infections/diagnosis , Acquired Immunodeficiency Syndrome/complications , Antigens, Bacterial/urine
20.
Sci Rep ; 14(1): 10375, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710737

ABSTRACT

Tuberculosis (TB) a disease caused by Mycobacterium tuberculosis (Mtb) poses a significant threat to human life, and current BCG vaccinations only provide sporadic protection, therefore there is a need for developing efficient vaccines. Numerous immunoinformatic methods have been utilized previously, here for the first time a deep learning framework based on Deconvolutional Neural Networks (DCNN) and Bidirectional Long Short-Term Memory (DCNN-BiLSTM) was used to predict Mtb Multiepitope vaccine (MtbMEV) subunits against six Mtb H37Rv proteins. The trained model was used to design MEV within a few minutes against TB better than other machine learning models with 99.5% accuracy. The MEV has good antigenicity, and physiochemical properties, and is thermostable, soluble, and hydrophilic. The vaccine's BLAST search ruled out the possibility of autoimmune reactions. The secondary structure analysis revealed 87% coil, 10% beta, and 2% alpha helix, while the tertiary structure was highly upgraded after refinement. Molecular docking with TLR3 and TLR4 receptors showed good binding, indicating high immune reactions. Immune response simulation confirmed the generation of innate and adaptive responses. In-silico cloning revealed the vaccine is highly expressed in E. coli. The results can be further experimentally verified using various analyses to establish a candidate vaccine for future clinical trials.


Subject(s)
Mycobacterium tuberculosis , Neural Networks, Computer , Tuberculosis Vaccines , Tuberculosis Vaccines/immunology , Mycobacterium tuberculosis/immunology , Humans , Molecular Docking Simulation , Vaccine Development/methods , Epitopes/immunology , Tuberculosis/prevention & control , Tuberculosis/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL