Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 350
Filter
1.
Front Biosci (Schol Ed) ; 16(3): 17, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39344395

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelium that is commonly found in the Thai population. CCA has poor prognosis and a low survival rate due to the lack of early diagnosis methods and the limited effectiveness of current treatments. A number of oncogenic spliced-transcripts resulting from mRNA splicing errors have been reported in CCA, and aberrant mRNA splicing is suspected to be a key driver of this cancer type. The hyperphosphorylation of serine/arginine rich-splicing factors (SRSFs) by serine/arginine protein kinases (SRPKs) causes them to translocate to the nucleus where they facilitate gene splicing errors that generate cancer-related mRNA/protein isoforms. METHODS: The correlation between SRPK expression and the survival of CCA patients was analyzed using data from The Cancer Genome Atlas (TCGA) dataset. The effect of SRPK inhibitors (SRPIN340 and SPHINX31) on two CCA cell lines (KKU-213A and TFK-1) was also investigated. The induction of cell death was studied by Calcein-AM/PI staining, AnnexinV/7AAD staining, immunofluorescence (IF), and Western blotting (WB). The phosphorylation and nuclear translocation of SRSFs was tracked by WB and IF, and the repair of splicing errors was examined by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). RESULTS: High levels of SRPK1 and SRPK2 transcripts, and in particular SRPK1, correlated with shorter survival in CCA patients. SRPIN340 and SPHINX31 increased the number of dead and apoptotic cells in a dose-dependent manner. CCA also showed diffuse expression of cytoplasmic cytochrome C and upregulation of cleaved caspase-3. Moreover, SRSFs showed low levels of phosphorylation, resulting in the accumulation of cytoplasmic SRSF1. To link these phenotypes with aberrant gene splicing, the apoptosis-associated genes Bridging Integrator 1 (BIN1), Myeloid cell leukemia factor 1 (MCL-1) and B-cell lymphoma 2 (BCL2) were selected for further investigation. Treatment with SRPIN340 and SPHINX31 decreased anti-apoptotic BIN1+12A and increased pro-apoptotic MCL-1S and BCL-xS. CONCLUSIONS: The SRPK inhibitors SRPIN340 and SPHINX31 can suppress the phosphorylation of SRSFs and their nuclear translocation, thereby producing BIN1, MCL-1 and BCL2 isoforms that favor apoptosis and facilitate CCA cell death.


Subject(s)
Apoptosis , Bile Duct Neoplasms , Cholangiocarcinoma , Myeloid Cell Leukemia Sequence 1 Protein , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-bcl-2 , Serine-Arginine Splicing Factors , Humans , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Apoptosis/drug effects , Phosphorylation/drug effects , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/antagonists & inhibitors , Serine-Arginine Splicing Factors/genetics , Cell Line, Tumor , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , RNA Splicing/drug effects , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology
2.
J Am Chem Soc ; 146(35): 24348-24357, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39182188

ABSTRACT

Interactions between proteins and α-helical peptides have been the focus of drug discovery campaigns. However, the large interfaces formed between multiple turns of an α-helix and a binding protein represent a significant challenge to inhibitor discovery. Modified peptides featuring helix-stabilizing macrocycles have shown promise as inhibitors of these interactions. Here, we tested the ability of N-terminal to side-chain thioether-cyclized peptides to inhibit the α-helix binding protein Mcl-1, by screening a trillion-scale library. The enriched peptides were lariats featuring a small, four-amino-acid N-terminal macrocycle followed by a short linear sequence that resembled the natural α-helical Mcl-1 ligands. These "Heliats" (helical lariats) bound Mcl-1 with tens of nM affinity, and inhibited the interaction between Mcl-1 and a natural peptide ligand. Macrocyclization was found to stabilize α-helical structures and significantly contribute to affinity and potency. Yet, the 2nd and 3rd positions within the macrocycle were permissible to sequence variation, so that a minimal macrocyclic motif, of an N-acetylated d-phenylalanine at the 1st position thioether connected to a cysteine at the 4th, could be grafted into a range of peptides and stabilize helical conformations. We found that d-stereochemistry is more helix-stabilizing than l- at the 1st position in the motif, as the d-amino acid can utilize polyproline II torsional angles that allow for more optimal intrachain hydrogen bonding. This mixed stereochemistry macrocyclic N-cap is synthetically accessible, requiring only minor modifications to standard solid-phase peptide synthesis, and its compatibility with peptide screening can provide ready access to helix-focused peptide libraries for de novo inhibitor discovery.


Subject(s)
Macrocyclic Compounds , Myeloid Cell Leukemia Sequence 1 Protein , Peptides , Stereoisomerism , Peptides/chemistry , Peptides/chemical synthesis , Peptides/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Humans , Protein Conformation, alpha-Helical , Models, Molecular
3.
J Med Chem ; 67(16): 14370-14393, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39102508

ABSTRACT

Myeloid cell leukemia 1 (Mcl-1) is a key regulator of the intrinsic apoptosis pathway. Overexpression of Mcl-1 is correlated with high tumor grade, poor survival, and both intrinsic and acquired resistance to cancer therapies. Herein, we disclose the structure-guided design of a small molecule Mcl-1 inhibitor, compound 26, that binds to Mcl-1 with subnanomolar affinity, inhibits growth in cell culture assays, and possesses low clearance in mouse and dog pharmacokinetic (PK) experiments. Evaluation of 26 as a single agent in Mcl-1 sensitive hematological and solid tumor xenograft models resulted in regressions. Co-treatment of Mcl-1-sensitive and Mcl-1 insensitive lung cancer derived xenografts with 26 and docetaxel or topotecan, respectively, resulted in an enhanced tumor response. These findings support the premise that pro-apoptotic priming of tumor cells by other therapies in combination with Mcl-1 inhibition may significantly expand the subset of cancers in which Mcl-1 inhibitors may prove beneficial.


Subject(s)
Antineoplastic Agents , Myeloid Cell Leukemia Sequence 1 Protein , Xenograft Model Antitumor Assays , Animals , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Dogs , Structure-Activity Relationship , Female , Drug Discovery , Taxoids/pharmacology , Taxoids/pharmacokinetics , Taxoids/therapeutic use , Taxoids/chemistry , Docetaxel/pharmacology , Docetaxel/therapeutic use , Docetaxel/pharmacokinetics , Docetaxel/chemistry
4.
Bioorg Chem ; 151: 107687, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39096559

ABSTRACT

Increasing the levels of antiapoptotic Bcl-2 proteins is an important way that cancer cells utilize to get out of apoptosis, underscoring their significance as promising targets for anticancer therapies. Lately, a primary compound 1 bearing thiazolidine-2,4-dione was discovered to exhibit comparable Mcl-1 inhibitory activity in comparison to WL-276. Herein, thirty-nine thiazolidine-2,4-dione analogs were yielded through incorporating different biphenyl moieties (R1), amino acid side chains (R2) and sulfonamides (R3) on 1. The findings indicated that certain compounds exhibited favorable inhibitory effects against Bcl-2/Mcl-1, while demonstrating limited or negligible binding affinity towards Bcl-xL. In particular, compounds 16 and 20 exhibited greater Bcl-2/Mcl-1 inhibition compared to AT-101, WL-276 and 1. Moreover, they demonstrated notable antiproliferative effects and significantly induced apoptosis in U937 cells. The western blot and co-immunoprecipitation assays confirmed that 20 could induce alterations in the expression of apoptosis-associated proteins to result in apoptosis through on-target Bcl-2 and Mcl-1 inhibition. In addition, 20 exhibited favorable stability profiles in both rat plasma and rat liver microsomes. In total, 20 could be used as a promising compound to discover Bcl-2/Mcl-1 dual inhibitors with favorable therapeutic properties.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Dose-Response Relationship, Drug , Drug Discovery , Drug Screening Assays, Antitumor , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2 , Thiazolidinediones , Humans , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , Apoptosis/drug effects , Thiazolidinediones/pharmacology , Thiazolidinediones/chemistry , Thiazolidinediones/chemical synthesis , Animals , Rats , Drug Development
5.
J Med Chem ; 67(16): 13925-13958, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39121336

ABSTRACT

Mcl-1 is a main antiapoptotic protein in acute myeloid leukemia (AML) and is used as a target to develop inhibitors. Currently, potent Mcl-1 inhibitors primarily interact with the P2-P4 pockets of Mcl-1, but pharmacological modulation by targeting the P1 pocket is less explored. We designed a series of 1H-indole-2-carboxylic acid compounds as novel Mcl-1 inhibitors occupying the P1-P3 pockets and evaluated their Mcl-1 inhibition and apoptosis induction in AML cells. Two-dimensional 15N-HSQC spectroscopy indicated that 47 (Ki = 24 nM) bound to the BH3 binding groove, occupied the P1 pocket in Mcl-1, and formed interactions with Lys234 and Val249. 47 exhibited good microsomal stability and pharmacokinetic profiles, with low potential risk of cardiotoxicity. 47 inhibited tumor growth in HL-60 and THP-1 xenograft models with growth inhibition rate of 63.7% and 57.4%, respectively. Collectively, 47 represents a novel Mcl-1 inhibitor targeting the P1-P3 pockets with excellent antileukemia effects.


Subject(s)
Antineoplastic Agents , Apoptosis , Indoles , Leukemia, Myeloid, Acute , Myeloid Cell Leukemia Sequence 1 Protein , Humans , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Apoptosis/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Animals , Indoles/pharmacology , Indoles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Mice , Xenograft Model Antitumor Assays , Drug Discovery , Cell Proliferation/drug effects , Cell Line, Tumor , HL-60 Cells , Binding Sites
6.
Nat Commun ; 15(1): 6076, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39025835

ABSTRACT

Current KRASG12C (OFF) inhibitors that target inactive GDP-bound KRASG12C cause responses in less than half of patients and these responses are not durable. A class of RASG12C (ON) inhibitors that targets active GTP-bound KRASG12C blocks ERK signaling more potently than the inactive-state inhibitors. Sensitivity to either class of agents is strongly correlated with inhibition of mTORC1 activity. We have previously shown that PI3K/mTOR and ERK-signaling pathways converge on key cellular processes and that inhibition of both pathways is required for inhibition of these processes and for significant antitumor activity. We find here that the combination of a KRASG12C inhibitor with a selective mTORC1 kinase inhibitor causes synergistic inhibition of Cyclin D1 expression and cap-dependent translation. Moreover, BIM upregulation by KRASG12C inhibition and inhibition of MCL-1 expression by the mTORC1 inhibitor are both required to induce significant cell death. In vivo, this combination causes deep, durable tumor regressions and is well tolerated. This study suggests that the ERK and PI3K/mTOR pathways each mitigate the effects of inhibition of the other and that combinatorial inhibition is a potential strategy for treating KRASG12C-dependent lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Synergism , Lung Neoplasms , Mechanistic Target of Rapamycin Complex 1 , Proto-Oncogene Proteins p21(ras) , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Cell Line, Tumor , Mice , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays , Signal Transduction/drug effects , Cyclin D1/metabolism , Cyclin D1/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Female , Bcl-2-Like Protein 11/metabolism , Bcl-2-Like Protein 11/genetics
7.
Mar Drugs ; 22(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38921561

ABSTRACT

Acute myeloid leukemia (AML) is a hematologic malignancy characterized by infiltration of the blood and bone marrow, exhibiting a low remission rate and high recurrence rate. Current research has demonstrated that class I HDAC inhibitors can downregulate anti-apoptotic proteins, leading to apoptosis of AML cells. In the present investigation, we conducted structural modifications of marine cytotoxin Santacruzamate A (SCA), a compound known for its inhibitory activity towards HDACs, resulting in the development of a novel series of potent class I HDACs hydrazide inhibitors. Representative hydrazide-based compound 25c exhibited concentration-dependent induction of apoptosis in AML cells as a single agent. Moreover, 25c exhibited a synergistic anti-AML effect when combined with Venetoclax, a clinical Bcl-2 inhibitor employed in AML therapy. This combination resulted in a more pronounced downregulation of anti-apoptotic proteins Mcl-1 and Bcl-xL, along with a significant upregulation of the pro-apoptotic protein cleaved-caspase3 and the DNA double-strand break biomarker γ-H2AX compared to monotherapy. These results highlighted the potential of 25c as a promising lead compound for AML treatment, particularly when used in combination with Venetoclax.


Subject(s)
Antineoplastic Agents , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Drug Synergism , Histone Deacetylase Inhibitors , Leukemia, Myeloid, Acute , Sulfonamides , Humans , Sulfonamides/pharmacology , Sulfonamides/chemistry , Leukemia, Myeloid, Acute/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylases/metabolism , Animals , Caspase 3/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
8.
Phys Chem Chem Phys ; 26(22): 16107-16124, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38780456

ABSTRACT

Myeloid cell leukemia 1 (Mcl1), a critical protein that regulates apoptosis, has been considered as a promising target for antitumor drugs. The conventional pharmacophore screening approach has limitations in conformation sampling and data mining. Here, we offered an innovative solution to identify Mcl1 inhibitors with molecular dynamics-refined pharmacophore and machine learning methods. Considering the safety and druggability of FDA-approved drugs, virtual screening of the database was performed to discover Mcl1 inhibitors, and the hit was subsequently validated via TR-FRET, cytotoxicity, and flow cytometry assays. To reveal the binding characteristics shared by the hit and a typical Mcl1 selective inhibitor, we employed quantum mechanics and molecular mechanics (QM/MM) calculations, umbrella sampling, and metadynamics in this work. The combined studies suggested that fluvastatin had promising cell inhibitory potency and was suitable for further investigation. We believe that this research will shed light on the discovery of novel Mcl1 inhibitors that can be used as a supplemental treatment against leukemia and provide a possible method to improve the accuracy of drug repurposing with limited computational resources while balancing the costs of experimentation well.


Subject(s)
Antineoplastic Agents , Drug Repositioning , Machine Learning , Molecular Dynamics Simulation , Myeloid Cell Leukemia Sequence 1 Protein , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Quantum Theory , Cell Line, Tumor , Fluvastatin/pharmacology , Fluvastatin/chemistry , Pharmacophore
9.
Nutr Cancer ; 76(8): 736-744, 2024.
Article in English | MEDLINE | ID: mdl-38795070

ABSTRACT

Considering the established pharmacokinetics and toxicity profiles, drug repurposing has emerged as an alternative therapeutic approach for treating cancer. Mefloquine has previously demonstrated inhibitory effects on multiple cancer types. This study aims to explore the impact of mefloquine on nasopharyngeal carcinoma (NPC). We found that mefloquine, at pharmacologically achievable concentrations, displayed anti-NPC activity while sparing normal counterparts. Mefloquine inhibits proliferation and induces death by reducing the levels of Cyclin A2, Bcl-2, and Bcl-xL. Intriguingly, we observed an increase in the levels of the anti-apoptotic protein Mcl-1. Mefloquine exerts its effects on NPC cells by inducing lysosomal-mediated ROS production, and the heightened expression of Mcl-1 is a consequence of ROS generation in mefloquine-treated NPC cells. The combination of an Mcl-1 inhibitor with mefloquine synergistically inhibits NPC growth in mice without causing substantial toxicity. These findings demonstrate the effectiveness and limited toxicity of mefloquine as a monotherapy and in combination with an Mcl-1 inhibitor. Our research underscores the promise of the mefloquine and Mcl-1 inhibitor combination as a potential treatment for NPC. Additionally, the elevation of Mcl-1 is a compensatory response in cells exposed to oxidative stress, offering a potential target to overcome resistance induced by pro-oxidant therapies.


Subject(s)
Cell Proliferation , Mefloquine , Myeloid Cell Leukemia Sequence 1 Protein , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Reactive Oxygen Species , Animals , Humans , Mice , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Repositioning , Drug Synergism , Mefloquine/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays
10.
J Biol Chem ; 300(6): 107375, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762181

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive breast cancer sub-type with limited treatment options and poor prognosis. Currently, standard treatments for TNBC include surgery, chemotherapy, and anti-PDL1 therapy. These therapies have limited efficacy in advanced stages. Myeloid-cell leukemia 1 (MCL1) is an anti-apoptotic BCL2 family protein. High expression of MCL1 contributes to chemotherapy resistance and is associated with a worse prognosis in TNBC. MCL1 inhibitors are in clinical trials for TNBC, but response rates to these inhibitors can vary and predictive markers are lacking. Currently, we identified a 4-member (AXL, ETS1, IL6, EFEMP1) gene signature (GS) that predicts MCL1 inhibitor sensitivity in TNBC cells. Factors encoded by these genes regulate signaling pathways to promote MCL1 inhibitor resistance. Small molecule inhibitors of the GS factors can overcome resistance and sensitize otherwise resistant TNBC cells to MCL1 inhibitor treatment. These findings offer insights into potential therapeutic strategies and tumor stratification for MCL1 inhibitor use in TNBC.


Subject(s)
Drug Resistance, Neoplasm , Myeloid Cell Leukemia Sequence 1 Protein , Triple Negative Breast Neoplasms , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Female , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology , Interleukin-6/metabolism , Interleukin-6/genetics , Proto-Oncogene Protein c-ets-1
11.
Cell Rep Med ; 5(6): 101585, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38781960

ABSTRACT

RAS pathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Here, using single-cell, multi-omics technologies, we seek to dissect the biological mechanisms underlying the initiation and progression of RAS pathway-mutated CMML. We identify that RAS pathway mutations induce transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs) and downstream monocytic populations in response to cell-intrinsic and -extrinsic inflammatory signaling that also impair the functions of immune cells. HSPCs expand at disease progression after therapy with HMA or the BCL2 inhibitor venetoclax and rely on the NF-κB pathway effector MCL1 to maintain survival. Our study has implications for the development of therapies to improve the survival of patients with RAS pathway-mutated CMML.


Subject(s)
Apoptosis , Leukemia, Myelomonocytic, Chronic , Mutation , Myeloid Cell Leukemia Sequence 1 Protein , Leukemia, Myelomonocytic, Chronic/drug therapy , Leukemia, Myelomonocytic, Chronic/pathology , Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Humans , Apoptosis/drug effects , Animals , Mutation/genetics , Mice , Signal Transduction/drug effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/drug effects , Disease Progression , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , NF-kappa B/metabolism , DNA Methylation/drug effects , DNA Methylation/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Blast Crisis/pathology , Blast Crisis/drug therapy , Blast Crisis/genetics , Blast Crisis/metabolism
12.
Cell Death Differ ; 31(6): 711-721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582955

ABSTRACT

BAX and BAK are pro-apoptotic members of the BCL2 family that are required to permeabilize the mitochondrial outer membrane. The proteins can adopt a non-activated monomeric conformation, or an activated conformation in which the exposed BH3 domain facilitates binding either to a prosurvival protein or to another activated BAK or BAX protein to promote pore formation. Certain cancer cells are proposed to have high levels of activated BAK sequestered by MCL1 or BCLXL, thus priming these cells to undergo apoptosis in response to BH3 mimetic compounds that target MCL1 or BCLXL. Here we report the first antibody, 14G6, that is specific for the non-activated BAK conformer. A crystal structure of 14G6 Fab bound to BAK revealed a binding site encompassing both the α1 helix and α5-α6 hinge regions of BAK, two sites involved in the unfolding of BAK during its activation. In mitochondrial experiments, 14G6 inhibited BAK unfolding triggered by three diverse BAK activators, supporting crucial roles for both α1 dissociation and separation of the core (α2-α5) and latch (α6-α9) regions in BAK activation. 14G6 bound the majority of BAK in several leukaemia cell lines, and binding decreased following treatment with BH3 mimetics, indicating only minor levels of constitutively activated BAK in those cells. In summary, 14G6 provides a new means of assessing BAK status in response to anti-cancer treatments.


Subject(s)
bcl-2 Homologous Antagonist-Killer Protein , bcl-2 Homologous Antagonist-Killer Protein/metabolism , Humans , Apoptosis/drug effects , Cell Line, Tumor , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/drug therapy , Mitochondria/metabolism , Mitochondria/drug effects , Animals , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
13.
J Med Chem ; 67(8): 5963-5998, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38597264

ABSTRACT

As a tripartite cell death switch, B-cell lymphoma protein 2 (Bcl-2) family members precisely regulate the endogenous apoptosis pathway in response to various cell signal stresses through protein-protein interactions. Myeloid leukemia-1 (Mcl-1), a key anti-apoptotic Bcl-2 family member, is positioned downstream in the endogenous apoptotic pathway and plays a central role in regulating mitochondrial function. Mcl-1 is highly expressed in a variety of hematological malignancies and solid tumors, contributing to tumorigenesis, poor prognosis, and chemoresistance, making it an attractive target for cancer treatment. This Perspective aims to discuss the mechanism by which Mcl-1 regulates apoptosis and non-apoptotic functions in cancer cells and to outline the discovery and optimization process of potent Mcl-1 modulators. In addition, we summarize the structural characteristics of potent inhibitors that bind to Mcl-1 through multiple co-crystal structures and analyze the cardiotoxicity caused by current Mcl-1 inhibitors, providing prospects for rational targeting of Mcl-1.


Subject(s)
Antineoplastic Agents , Myeloid Cell Leukemia Sequence 1 Protein , Neoplasms , Humans , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Apoptosis/drug effects , Animals
14.
Cell Death Differ ; 31(4): 405-416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538744

ABSTRACT

BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.


Subject(s)
AMP-Activated Protein Kinases , Aniline Compounds , Myeloid Cell Leukemia Sequence 1 Protein , Pyrimidines , Sulfonamides , bcl-X Protein , Humans , Animals , Aniline Compounds/pharmacology , Sulfonamides/pharmacology , AMP-Activated Protein Kinases/metabolism , Mice , bcl-X Protein/metabolism , bcl-X Protein/antagonists & inhibitors , Cell Line, Tumor , Pyrimidines/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Pyrazoles/pharmacology , bcl-Associated Death Protein/metabolism , Apoptosis/drug effects , Cell Death/drug effects , Leukemia/drug therapy , Leukemia/pathology , Leukemia/metabolism , Phosphorylation/drug effects , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Drug Synergism
15.
Anticancer Drugs ; 35(3): 219-226, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37948336

ABSTRACT

After an initial positive response to chemotherapy, cancer patients often become resistant and experience relapse. Our previous research identified eukaryotic translation initiation factor 4E (eIF4E) as a crucial target to overcome chemoresistance. In this study, we delved further into the role and therapeutic potential of myeloid cell leukemia 1 (Mcl-1), an eIF4E-mediated target, in chemoresistance. We showed that the levels of phosphor and total eIF4E, as well as Mcl-1, were elevated in chemoresistant cervical but not colon cancer cells. Mcl-1 inhibitor S64315 decreased Mcl-1 levels in chemoresistant cancer cells, regardless of Mcl-1 upregulation, decreased viability in chemoresistant cancer cells and acted synergistically with chemotherapy drugs. The combined inhibition of Mcl-1 and B-cell lymphoma 2 (Bcl-2), employing both genetic and pharmacological approaches, led to a markedly more substantial decrease in viability compared with the inhibition of either target individually. The combination of S64315 and Bcl-2 inhibitors reduced tumor growth in chemoresistant cervical and colon cancer models without causing general toxicity in mice. This combination also prolonged overall survival compared with using S64315 or venetoclax alone. Our research highlights the therapeutic potential of inhibiting Mcl-1 and Bcl-2 simultaneously in chemoresistant cancers and provides a rationale for initiating clinical trials to investigate the combination of S64315 and venetoclax for the treatment of advanced colon and cervical cancer.


Subject(s)
Colonic Neoplasms , Drug Resistance, Neoplasm , Sulfonamides , Animals , Humans , Mice , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Eukaryotic Initiation Factor-4E , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
16.
J Org Chem ; 88(22): 15562-15568, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37909857

ABSTRACT

ABBV-467 is a highly potent and selective MCL-1 inhibitor that was advanced to a phase I clinical trial for the treatment of multiple myeloma. Due to its large size and structural complexity, ABBV-467 is a challenging synthetic target. Herein, we describe the synthesis of ABBV-467 on a decagram scale, which enabled preclinical characterization. The strategy is convergent and stereoselective, featuring a hindered biaryl cross coupling, enantioselective hydrogenation, and conformationally preorganized macrocyclization by C-O bond formation as key steps.


Subject(s)
Antineoplastic Agents , Myeloid Cell Leukemia Sequence 1 Protein , Antineoplastic Agents/pharmacology , Hydrogenation , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
17.
Biomed Pharmacother ; 168: 115738, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864894

ABSTRACT

Tuberculosis (TB) accounts for 1.6 million deaths annually and over 25% of deaths due to antimicrobial resistance. Mycobacterium tuberculosis (M.tb) drives MCL-1 expression (family member of anti-apoptotic BCL-2 proteins) to limit apoptosis and grow intracellularly in human macrophages. The feasibility of re-purposing specific MCL-1 and BCL-2 inhibitors to limit M.tb growth, using inhibitors that are in clinical trials and FDA-approved for cancer treatment has not be tested previously. We show that specifically inhibiting MCL-1 and BCL-2 induces apoptosis of M.tb-infected macrophages, and markedly reduces M.tb growth in human and murine macrophages, and in a pre-clinical model of human granulomas. MCL-1 and BCL-2 inhibitors limit growth of drug resistant and susceptible M.tb in macrophages and act in additive fashion with the antibiotics isoniazid and rifampicin. This exciting work uncovers targeting the intrinsic apoptosis pathway as a promising approach for TB host-directed therapy. Since safety and activity studies are underway in cancer clinics for MCL-1 and BCL-2 inhibitors, we expect that re-purposing them for TB treatment should translate more readily and rapidly to the clinic. Thus, the work supports further development of this host-directed therapy approach to augment current TB treatment.


Subject(s)
Antineoplastic Agents , Antitubercular Agents , Drug Repositioning , Mycobacterium tuberculosis , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2 , Tuberculosis , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Antitubercular Agents/metabolism , Macrophages/drug effects , Mycobacterium tuberculosis/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Tuberculosis/drug therapy , Tuberculosis/microbiology
18.
Pharm Res ; 40(4): 977-988, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37012536

ABSTRACT

PURPOSE: AZD5991 is a potent and selective macrocyclic inhibitor of Mcl-1 in clinical development. Developing an intravenous solution formulation for AZD5991 proved to be challenging primarily due to the poor intrinsic solubility of AZD5991. In this article are described studies performed to select a suitable crystalline form and to assess physicochemical properties of AZD5991 to aid in the design of a solution formulation for preclinical studies. METHODS: It is preferable that the preclinical formulation has a line of sight for clinical formulation. For AZD5991, a concentration of at least 20 mg/ml was required for toxicology studies. Toward this goal, extensive pre-formulation characterization of AZD5991 including solid form analysis, pH-solubility profiling and solubility determination in cosolvents and other solubilizing media were carried out. RESULTS & DISCUSSION: Crystalline Form A, which is more stable in aqueous solution and possesses acceptable thermal stability, was selected for preclinical and clinical development of AZD5991. Extensive solubility evaluation revealed an interesting pH-solubility profile that significantly enhances solubilization at pH > 8.5 to allow solution concentrations of at least 30 mg/ml by in situ meglumine salt formation. CONCLUSION: Developing pre-clinical formulations to support in vivo studies requires a good understanding of the physicochemical properties of the drug candidates. Candidates with challenging pharmaceutic properties like the novel macrocycle molecule AZD5991, demand extensive characterization in its polymorph landscape, solubility profile and suitability evaluation of the excipients. Meglumine, a pH-adjusting and solubilizing agent, was found to be the best choice for formulating AZD5991 into an intravenous product to support preclinical studies.


Subject(s)
Antineoplastic Agents , Meglumine , Chemical Phenomena , Excipients/chemistry , Sodium Chloride , Solubility , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
19.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902139

ABSTRACT

Myelodysplastic syndromes (MDSs) belong to a group of clonal bone marrow malignancies. In light of the emergence of new molecules, a significant contribution to the understanding of the pathogenesis of the disease is the study of the B-cell CLL/lymphoma 2 (BCL-2) and the programmed cell death receptor 1 (PD-1) protein and its ligands. BCL-2-family proteins are involved in the regulation of the intrinsic apoptosis pathway. Disruptions in their interactions promote the progression and resistance of MDSs. They have become an important target for specific drugs. Bone marrow cytoarchitecture may prove to be a predictor of response to its use. The challenge is the observed resistance to venetoclax, for which the MCL-1 protein may be largely responsible. Molecules with the potential to break the associated resistance include S63845, S64315, chidamide and arsenic trioxide (ATO). Despite promising in vitro studies, the role of PD-1/PD-L1 pathway inhibitors has not yet been established. Knockdown of the PD-L1 gene in preclinical studies was associated with increased levels of BCL-2 and MCL-1 in lymphocytes T, which could increase their survival and promote tumor apoptosis. A trial (NCT03969446) is currently underway to combine inhibitors from both groups.


Subject(s)
B7-H1 Antigen , Myelodysplastic Syndromes , Programmed Cell Death 1 Receptor , Proto-Oncogene Proteins c-bcl-2 , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , B7-H1 Antigen/metabolism , Cell Line, Tumor , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
20.
J Biol Chem ; 299(2): 102875, 2023 02.
Article in English | MEDLINE | ID: mdl-36621626

ABSTRACT

Aurora kinases (AURKs) are mitotic kinases important for regulating cell cycle progression. Small-molecule inhibitors of AURK have shown promising antitumor effects in multiple cancers; however, the utility of these inhibitors as inducers of cancer cell death has thus far been limited. Here, we examined the role of the Bcl-2 family proteins in AURK inhibition-induced apoptosis in colon cancer cells. We found that alisertib and danusertib, two small-molecule inhibitors of AURK, are inefficient inducers of apoptosis in HCT116 and DLD-1 colon cancer cells, the survival of which requires at least one of the two antiapoptotic Bcl-2 family proteins, Bcl-xL and Mcl-1. We further identified Bcl-xL as a major suppressor of alisertib- or danusertib-induced apoptosis in HCT116 cells. We demonstrate that combination of a Bcl-2 homology (BH)3-mimetic inhibitor (ABT-737), a selective inhibitor of Bcl-xL, Bcl-2, and Bcl-w, with alisertib or danusertib potently induces apoptosis through the Bcl-2 family effector protein Bax. In addition, we identified Bid, Puma, and Noxa, three BH3-only proteins of the Bcl-2 family, as mediators of alisertib-ABT-737-induced apoptosis. We show while Noxa promotes apoptosis by constitutively sequestering Mcl-1, Puma becomes associated with Mcl-1 upon alisertib treatment. On the other hand, we found that alisertib treatment causes activation of caspase-2, which promotes apoptosis by cleaving Bid into truncated Bid, a suppressor of both Bcl-xL and Mcl-1. Together, these results define the Bcl-2 protein network critically involved in AURK inhibitor-induced apoptosis and suggest that BH3-mimetics targeting Bcl-xL may help overcome resistance to AURK inhibitors in cancer cells.


Subject(s)
Antineoplastic Agents , Apoptosis , Aurora Kinases , bcl-X Protein , Humans , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/metabolism , Aurora Kinases/antagonists & inhibitors , bcl-2-Associated X Protein/metabolism , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/physiopathology , Enzyme Activation/drug effects , HCT116 Cells , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL