Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.285
Filter
1.
J Clin Immunol ; 44(7): 160, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990428

ABSTRACT

BACKGROUND: Inborn errors of immunity (IEIs) encompass various diseases with diverse clinical and immunological symptoms. Determining the genotype-phenotype of different variants in IEI entity precisely is challenging, as manifestations can be heterogeneous even in patients with the same mutated gene. OBJECTIVE: In the present study, we conducted a systematic review of patients recorded with NFKB1 and NFKB2 mutations, two of the most frequent monogenic IEIs. METHODS: The search for relevant literature was conducted in databases including Web of Science, PubMed, and Scopus. Information encompassing demographic, clinical, immunological, and genetic data was extracted from cases reported with mutations in NFKB1 and NFKB2. The comprehensive features of manifestations in patients were described, and a comparative analysis of primary characteristics was conducted between individuals with NFKB1 loss of function (LOF) and NFKB2 (p52-LOF/IκBδ-gain of function (GOF)) variants. RESULTS: A total of 397 patients were included in this study, 257 had NFKB1 mutations and 140 had NFKB2 mutations. There were 175 LOF cases in NFKB1 and 122 p52LOF/IκBδGOF cases in NFKB2 pivotal groups with confirmed functional implications. NFKB1LOF and p52LOF/IκBδGOF predominant cases (81.8% and 62.5% respectively) initially presented with a CVID-like phenotype. Patients with NFKB1LOF variants often experienced hematologic autoimmune disorders, whereas p52LOF/IκBδGOF patients were more susceptible to other autoimmune diseases. Viral infections were markedly higher in p52LOF/IκBδGOF cases compared to NFKB1LOF (P-value < 0.001). NFKB2 (p52LOF/IκBδGOF) patients exhibited a greater prevalence of ectodermal dysplasia and pituitary gland involvement than NFKB1LOF patients. Most NFKB1LOF and p52LOF/IκBδGOF cases showed low CD19 + B cells, with p52LOF/IκBδGOF having more cases of this type. Low memory B cells were more common in p52LOF/IκBδGOF patients. CONCLUSIONS: Patients with NFKB2 mutations, particularly p52LOF/IκBδGOF, are at higher risk of viral infections, pituitary gland involvement, and ectodermal dysplasia compared to patients with NFKB1LOF mutations. Genetic testing is essential to resolve the initial complexity and confusion surrounding clinical and immunological features. Emphasizing the significance of functional assays in determining the probability of correlations between mutations and immunological and clinical characteristics of patients is crucial.


Subject(s)
Mutation , NF-kappa B p50 Subunit , NF-kappa B p52 Subunit , Humans , NF-kappa B p50 Subunit/genetics , NF-kappa B p52 Subunit/genetics , Mutation/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Phenotype
2.
Medicine (Baltimore) ; 103(26): e38737, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941371

ABSTRACT

Alterations in signaling pathways and modulation of cell metabolism are associated with the pathogenesis of cancers, including hepatocellular carcinoma (HCC). Small ubiquitin-like modifier (SUMO) proteins and NF-κB family play major roles in various cellular processes. The current study aims to determine the expression profile of SUMO and NF-κB genes in HCC tumors and investigate their association with the clinical outcome of HCC. The expression of 5 genes - SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 - was quantified in tumor and adjacent non-tumor tissues of 58 HBV-related HCC patients by real-time quantitative PCR and was analyzed for the possible association with clinical parameters of HCC. The expression of SUMO2 was significantly higher in HCC tumor tissues compared to the adjacent non-tumor tissues (P = .01), while no significant difference in SUMO1, SUMO3, NF-κB p65, and NF-κB p50 expression was observed between HCC tumor and non-tumor tissues (P > .05). In HCC tissues, a strong correlation was observed between the expression of SUMO2 and NF-κB p50, between SUMO3 and NF-κB p50, between SUMO3 and NF-κB p65 (Spearman rho = 0.83; 0.82; 0.772 respectively; P < .001). The expression of SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 was decreased in grade 3 compared to grades 1 and 2 in HCC tumors according to the World Health Organization grades system. Our results highlighted that the SUMO2 gene is upregulated in tumor tissues of patients with HCC, and is related to the development of HCC, thus it may be associated with the pathogenesis of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Small Ubiquitin-Related Modifier Proteins , Humans , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/virology , Liver Neoplasms/metabolism , Male , Female , Middle Aged , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , NF-kappa B/metabolism , Adult , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Hepatitis B virus/genetics , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Aged , Gene Expression Regulation, Neoplastic , Ubiquitins/genetics , Ubiquitins/metabolism , Hepatitis B/complications , Hepatitis B/genetics
3.
Int Immunopharmacol ; 136: 112372, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850784

ABSTRACT

Hypoxic ischemic encephalopathy (HIE) is a primary cause of neonatal death and disabilities. The pathogenetic process of HIE is closely associated with neuroinflammation. Therefore, targeting and suppressing inflammatory pathways presents a promising therapeutic strategy for the treatment of HIE. Echinatin is an active component of glycyrrhiza, with anti-inflammatory and anti-oxidative properties. It is commonly combined with other traditional Chinese herbs to exert heat-clearing and detoxifying effects. This study aimed to investigate the anti-inflammatory and neuroprotective effects of Echinatin in neonatal rats with hypoxic-ischemic brain damage, as well as in PC12 cells exposed to oxygen-glucose deprivation (OGD). In vivo, Echinatin effectively reduced cerebral edema and infarct volume, protected brain tissue morphology, improved long-term behavioral functions, and inhibited microglia activation. These effects were accompanied by the downregulation of inflammatory factors and pyroptosis markers. The RNA sequencing analysis revealed an enrichment of inflammatory genes in rats with hypoxic-ischemic brain damage, and Protein-protein interaction (PPI) network analysis identified TLR4, MyD88, and NF-κB as the key regulators. In vitro, Echinatin reduced the levels of TLR4 relevant proteins, inhibited nuclear translocation of NF-κB, reduced the expression of downstreams inflammatory cytokines and pyroptosis proteins, and prevented cell membrane destructions. These findings demonstrated that Echinatin could inhibit the TLR4/NF-κB pathway, thereby alleviating neuroinflammation and pyroptosis. This suggests that Echinatin could be a potential candidate for the treatment of HIE.


Subject(s)
Hypoxia-Ischemia, Brain , NF-kappa B , Neuroprotective Agents , Pyroptosis , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4 , Animals , Male , Rats , Animals, Newborn , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Brain/drug effects , Brain/pathology , Brain/metabolism , Disease Models, Animal , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Inflammation/drug therapy , Microglia/drug effects , Microglia/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , NF-kappa B/metabolism , PC12 Cells , Pyroptosis/drug effects , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , NF-kappa B p50 Subunit/metabolism
4.
PLoS One ; 19(5): e0303138, 2024.
Article in English | MEDLINE | ID: mdl-38722890

ABSTRACT

Human T-cell leukemia virus type I (HTLV-I) is an oncogenic virus whose infection can cause diverse diseases, most notably adult T-cell leukemia/lymphoma (ATL or ATLL), an aggressive and fatal malignancy of CD4 T cells. The oncogenic ability of HTLV-I is mostly attributed to the viral transcriptional transactivator Tax. Tax alone is sufficient to induce specific tumors in mice depending on the promotor used to drive Tax expression, thereby being used to understand HTLV-I tumorigenesis and model the tumor types developed in Tax transgenic mice. Tax exerts its oncogenic role predominantly by activating the cellular transcription factor NF-κB. Here, we report that genetic deletion of NF-κB1, the prototypic member of the NF-κB family, promotes adrenal medullary tumors but suppresses neurofibromas in mice with transgenic Tax driven by the HTLV-I Long Terminal Repeat (LTR) promoter. The adrenal tumors are derived from macrophages. Neoplastic macrophages also infiltrate the spleen and lymph nodes, causing splenomegaly and lymphadenopathy in mice. Nevertheless, the findings could be human relevant, because macrophages are important target cells of HTLV-I infection and serve as a virus reservoir in vivo. Moreover, the spleen, lymph nodes and adrenal glands are the most common sites of tumor cell infiltration in HTLV-I-infected patients. These data provide new mechanistic insights into the complex interaction between Tax and NF-κB, therefore improving our understanding of HTLV-I oncogenic pathogenesis. They also expand our knowledge and establish a new animal model of macrophage neoplasms and adrenal tumors.


Subject(s)
Gene Products, tax , Human T-lymphotropic virus 1 , Macrophages , Animals , Humans , Mice , Adrenal Gland Neoplasms/virology , Adrenal Gland Neoplasms/pathology , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/metabolism , Gene Products, tax/metabolism , Gene Products, tax/genetics , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/pathogenicity , Macrophages/metabolism , Macrophages/virology , Mice, Transgenic , NF-kappa B p50 Subunit/metabolism , NF-kappa B p50 Subunit/genetics , Terminal Repeat Sequences/genetics
5.
Cell Rep Med ; 5(4): 101503, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593810

ABSTRACT

In monogenic autoinflammatory diseases, mutations in genes regulating innate immune responses often lead to uncontrolled activation of inflammasome pathways or the type I interferon (IFN-I) response. We describe a mechanism of autoinflammation potentially predisposing patients to life-threatening necrotizing soft tissue inflammation. Six unrelated families are identified in which affected members present with necrotizing fasciitis or severe soft tissue inflammations. Exome sequencing reveals truncating monoallelic loss-of-function variants of nuclear factor κ light-chain enhancer of activated B cells (NFKB1) in affected patients. In patients' macrophages and in NFKB1-variant-bearing THP-1 cells, activation increases both interleukin (IL)-1ß secretion and IFN-I signaling. Truncation of NF-κB1 impairs autophagy, accompanied by the accumulation of reactive oxygen species and reduced degradation of inflammasome receptor nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3), and Toll/IL-1 receptor domain-containing adaptor protein inducing IFN-ß (TRIF), thus leading to combined excessive inflammasome and IFN-I activity. Many of the patients respond to anti-inflammatory treatment, and targeting IL-1ß and/or IFN-I signaling could represent a therapeutic approach for these patients.


Subject(s)
Fasciitis, Necrotizing , Interferon Type I , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Immunity, Innate , Inflammation/metabolism , NF-kappa B p50 Subunit
6.
Front Immunol ; 15: 1379777, 2024.
Article in English | MEDLINE | ID: mdl-38504985

ABSTRACT

CD8+ T cells are critical mediators of pathogen clearance and anti-tumor immunity. Although signaling pathways leading to the activation of NF-κB transcription factors have crucial functions in the regulation of immune responses, the CD8+ T cell-autonomous roles of the different NF-κB subunits, are still unresolved. Here, we investigated the function of the ubiquitously expressed transcription factor RelA in CD8+ T-cell biology using a novel mouse model and gene-edited human cells. We found that CD8+ T cell-specific ablation of RelA markedly altered the transcriptome of ex vivo stimulated cells, but maintained the proliferative capacity of both mouse and human cells. In contrast, in vivo experiments showed that RelA deficiency did not affect the CD8+ T-cell response to acute viral infection or transplanted tumors. Our data suggest that in CD8+ T cells, RelA is dispensable for their protective activity in pathological contexts.


Subject(s)
Neoplasms , Virus Diseases , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/metabolism , Neoplasms/metabolism , NF-kappa B/metabolism , NF-kappa B p50 Subunit/metabolism , Transcription Factor RelA/metabolism , Virus Diseases/metabolism
7.
Genes (Basel) ; 15(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38397187

ABSTRACT

Tumor-associated macrophages (TAMs) are the major component of the tumor microenvironment (TME), where they sustain tumor progression and or-tumor immunity. Due to their plasticity, macrophages can exhibit anti- or pro-tumor functions through the expression of different gene sets leading to distinct macrophage phenotypes: M1-like or pro-inflammatory and M2-like or anti-inflammatory. NF-κB transcription factors are central regulators of TAMs in cancers, where they often drive macrophage polarization toward an M2-like phenotype. Therefore, the NF-κB pathway is an attractive therapeutic target for cancer immunotherapy in a wide range of human tumors. Hence, targeting NF-κB pathway in the myeloid compartment is a potential clinical strategy to overcome microenvironment-induced immunosuppression and increase anti-tumor immunity. In this review, we discuss the role of NF-κB as a key driver of macrophage functions in tumors as well as the principal strategies to overcome tumor immunosuppression by targeting the NF-κB pathway.


Subject(s)
NF-kappa B , Neoplasms , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Macrophages/metabolism , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , NF-kappa B p50 Subunit , Phenotype , Tumor Microenvironment/genetics
8.
J Neural Transm (Vienna) ; 131(7): 773-779, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38416198

ABSTRACT

The NF-κB pathway is involved in the pathogenesis of neurological disorders that have inflammation as a hallmark, including Parkinson's disease (PD). Our objective was to determine whether common functional variants in the NFKB1, NFKBIA and NFKBIZ genes were associated with the risk of PD. A total of 532 Spanish PD cases (61% male; 38% early-onset, ≤ 55 years) and 300 population controls (50% ≤55 years) were genotyped for the NFKB1 rs28362491 and rs7667496, NFKBIA rs696, and NFKBIZ rs1398608 polymorphisms. We compared allele and genotype frequencies between early and late-onset, male and female, and patient's vs. controls. We found that the two NFKB1 alleles were significantly associated with PD in our population (p = 0.01; total patients vs. controls), without difference between Early and Late onset patients. The frequencies of the NFKB1 variants significantly differ between male and female patients. Compared to controls, male patients showed a significantly higher frequency of rs28362491 II (p = 0.02, OR = 1.52, 95%CI = 1.10-2.08) and rs28362491 C (p = 0.003, OR = 1.62, 95%CI = 1.18-2.22). The two NFKB1 variants were in strong linkage disequilibrium and the I-C haplotype was significantly associated with the risk of PD among male (p = 0.002). In conclusion, common variants in the NF-kB genes were associated with the risk of developing PD in our population, with significant differences between male and female. These results encourage further studies to determine the involvement of the NF-kB components in the pathogenesis of Parkinson´s disease.


Subject(s)
Genetic Predisposition to Disease , NF-kappa B p50 Subunit , Parkinson Disease , Humans , Male , Parkinson Disease/genetics , Parkinson Disease/epidemiology , Female , NF-kappa B p50 Subunit/genetics , Middle Aged , Genetic Predisposition to Disease/genetics , Aged , Adult , Polymorphism, Single Nucleotide , Sex Factors , Genotype , Spain/epidemiology , Gene Frequency , Genetic Association Studies
9.
Clin Immunol ; 261: 110165, 2024 04.
Article in English | MEDLINE | ID: mdl-38423196

ABSTRACT

Mutations in NFkB pathway genes can cause inborn errors of immunity (IEI), with NFKB1 haploinsufficiency being a significant etiology for common variable immunodeficiency (CVID). Indeed, mutations in NFKB1 are found in 4 to 5% of in European and United States CVID cohorts, respectively; CVID representing almost » of IEI patients in European countries registries. This case study presents a 49-year-old patient with respiratory infections, chronic diarrhea, immune thrombocytopenia, hypogammaglobulinemia, and secondary lymphoma. Comprehensive genetic analysis, including high-throughput sequencing of 300 IEI-related genes and copy number variation analysis, identified a critical 2.6-kb deletion spanning the first untranslated exon and its upstream region. The region's importance was confirmed through genetic markers indicative of enhancers and promoters. The deletion was also found in the patient's brother, who displayed similar but milder symptoms. Functional analysis supported haploinsufficiency with reduced mRNA and protein expression in both patients. This case underscores the significance of copy number variation (CNV) analysis and targeting noncoding exons within custom gene panels, emphasizing the broader genomic approaches needed in medical genetics.


Subject(s)
Common Variable Immunodeficiency , Siblings , Male , Adult , Humans , Middle Aged , Haploinsufficiency/genetics , DNA Copy Number Variations , NF-kappa B/genetics , Common Variable Immunodeficiency/genetics , Regulatory Sequences, Nucleic Acid , NF-kappa B p50 Subunit/genetics
10.
CNS Neurosci Ther ; 30(2): e14609, 2024 02.
Article in English | MEDLINE | ID: mdl-38334011

ABSTRACT

BACKGROUND: Neuropathic pain is a prevalent and highly debilitating condition that impacts millions of individuals globally. Neuroinflammation is considered a key factor in the development of neuropathic pain. Accumulating evidence suggests that protein tyrosine phosphatase 1B (PTP1B) plays a crucial role in regulating neuroinflammation. Nevertheless, the specific involvement of PTP1B in neuropathic pain remains largely unknown. This study aims to examine the impact of PTP1B on neuropathic pain and unravel the underlying molecular mechanisms implicated. METHODS: In the current study, we evaluated the paw withdrawal threshold (PWT) of male rats following spared nerve injury (SNI) to assess the presence of neuropathic pain. To elucidate the underlying mechanisms, western blotting, immunofluorescence, and electron microscopy techniques were employed. RESULTS: Our results showed that SNI significantly elevated PTP1B levels, which was accompanied by an increase in the expression of endoplasmic reticulum (ER) stress markers (BIP, p-PERK, p-IRE1α, and ATF6) and phosphorylated NF-κB in the spinal dorsal horn. SNI-induced mechanical allodynia was impaired by the treatment of intrathecal injection of PTP1B siRNA or PTP1B-IN-1, a specific inhibitor of PTP1B. Moreover, the intrathecal administration of PTP1B-IN-1 effectively suppressed the expression of ER stress markers (BIP, p-PERK/p-eIF2α, p-IRE1α, and ATF6), leading to the inhibition of NF-κB, microglia, and astrocytes activation, as well as a decrease in pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1ß. However, these effects were reversed by intrathecal administration of tunicamycin (Tm, an inducer of ER stress). Additionally, intrathecal administration of Tm in healthy rats resulted in the development of mechanical allodynia and the activation of NF-κB-mediated neuroinflammatory signaling. CONCLUSIONS: The upregulation of PTP1B induced by SNI facilitates the activation of NF-κB and glial cells via ER stress in the spinal dorsal horn. This, in turn, leads to an increase in the production of pro-inflammatory cytokines, thereby contributing to the development and maintenance of neuropathic pain. Therefore, targeting PTP1B could be a promising therapeutic strategy for the treatment of neuropathic pain.


Subject(s)
NF-kappa B , Neuralgia , Animals , Male , Rats , Cytokines , Endoplasmic Reticulum Stress , Endoribonucleases/therapeutic use , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Neuralgia/metabolism , Neuroglia/metabolism , Neuroinflammatory Diseases , Protein Serine-Threonine Kinases , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/therapeutic use , Rats, Sprague-Dawley , NF-kappa B p50 Subunit/metabolism
11.
Mol Cell ; 84(3): 401-403, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306998

ABSTRACT

We talk to Vasty Osei Amponsa and Kylie J. Walters about their paper "hRpn13 shapes the proteome and transcriptome through epigenetic factors HDAC8, PADI4, and transcription factor NF-κB p50", their journeys across continents leading them to the NCI, and how Kylie tries to foster curiosity and a sense of belonging in her lab.


Subject(s)
NF-kappa B p50 Subunit , NF-kappa B , Female , Humans , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , NF-kappa B/metabolism , Transcription Factor RelA/metabolism , Gene Expression Regulation , Transcriptome
12.
Nucleic Acids Res ; 52(4): 1527-1543, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38272542

ABSTRACT

The NF-κB protein p65/RelA plays a pivotal role in coordinating gene expression in response to diverse stimuli, including viral infections. At the chromatin level, p65/RelA regulates gene transcription and alternative splicing through promoter enrichment and genomic exon occupancy, respectively. The intricate ways in which p65/RelA simultaneously governs these functions across various genes remain to be fully elucidated. In this study, we employed the HTLV-1 Tax oncoprotein, a potent activator of NF-κB, to investigate its influence on the three-dimensional organization of the genome, a key factor in gene regulation. We discovered that Tax restructures the 3D genomic landscape, bringing together genes based on their regulation and splicing patterns. Notably, we found that the Tax-induced gene-gene contact between the two master genes NFKBIA and RELA is associated with their respective changes in gene expression and alternative splicing. Through dCas9-mediated approaches, we demonstrated that NFKBIA-RELA interaction is required for alternative splicing regulation and is caused by an intragenic enrichment of p65/RelA on RELA. Our findings shed light on new regulatory mechanisms upon HTLV-1 Tax and underscore the integral role of p65/RelA in coordinated regulation of NF-κB-responsive genes at both transcriptional and splicing levels in the context of the 3D genome.


The NF-κB pathway is essential for coordinating gene expression in response to various stimuli, including viral infections. Most studies have focused on the role of NF-κB in transcriptional regulation. In the present study, the impact of the potent NF-κB activator HTLV-1 Tax oncoprotein on the three-dimensional organization of the genome was investigated. Tax-mediated NF-κB activation was found to restructure the 3D genomic landscape in cells and to bring genes together in multigene complexes that are coordinately regulated either transcriptionally or through alternative splicing by NF-κB. Induced coordinate changes in transcription and alternative splicing included the two master genes of NF-κB pathway NFKBIA and RELA. The findings have significant implications for understanding cell fate determination and disease development associated with HTLV-1 infection, as well as chronic NF-κB activation in various human inflammatory diseases and cancer.


Subject(s)
Chromatin Assembly and Disassembly , Gene Expression Regulation , NF-kappa B p50 Subunit , Alternative Splicing/genetics , Chromatin Assembly and Disassembly/genetics , Gene Products, tax/genetics , Gene Products, tax/metabolism , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Transcriptional Activation , Humans , NF-kappa B p50 Subunit/metabolism
13.
Am J Hum Genet ; 111(2): 295-308, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38232728

ABSTRACT

Infectious agents contribute significantly to the global burden of diseases through both acute infection and their chronic sequelae. We leveraged the UK Biobank to identify genetic loci that influence humoral immune response to multiple infections. From 45 genome-wide association studies in 9,611 participants from UK Biobank, we identified NFKB1 as a locus associated with quantitative antibody responses to multiple pathogens, including those from the herpes, retro-, and polyoma-virus families. An insertion-deletion variant thought to affect NFKB1 expression (rs28362491), was mapped as the likely causal variant and could play a key role in regulation of the immune response. Using 121 infection- and inflammation-related traits in 487,297 UK Biobank participants, we show that the deletion allele was associated with an increased risk of infection from diverse pathogens but had a protective effect against allergic disease. We propose that altered expression of NFKB1, as a result of the deletion, modulates hematopoietic pathways and likely impacts cell survival, antibody production, and inflammation. Taken together, we show that disruptions to the tightly regulated immune processes may tip the balance between exacerbated immune responses and allergy, or increased risk of infection and impaired resolution of inflammation.


Subject(s)
Genetic Predisposition to Disease , Hypersensitivity , Inflammation , Humans , Genome-Wide Association Study , Hypersensitivity/genetics , Inflammation/genetics , NF-kappa B p50 Subunit/genetics , UK Biobank
14.
Drug Deliv Transl Res ; 14(2): 400-417, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37598133

ABSTRACT

Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder associated with increased oxidative stress, the underlying vital process contributing to cell death. Tanshinone IIA (TAN) is a phytomedicine with a documented activity in treating many CNS disorders, particularly PD owing to its unique anti-inflammatory and antioxidant effect. However, its clinical utility is limited by its poor aqueous solubility, short half-life, and hence low concentration reaching targeted cells. This work aimed to develop a biocompatible chitosan-coated nanostructured lipid carriers (CS-NLCs) for effective brain delivery of TAN for PD management. The proposed nanosystem was successfully prepared using a simple melt-emulsification ultra-sonication method, optimized and characterized both in vitro and in vivo in a rotenone-induced PD rat model. The developed TAN-loaded CS-NLCs (CS-TAN-NLCs) showed good colloidal properties (size ≤ 200 nm, PDI ≤ 0.2, and ζ-potential + 20 mV) and high drug entrapment efficiency (> 97%) with sustained release profile for 24 h. Following intranasal administration, CS-TAN-NLCs succeeded to achieve a remarkable antiparkinsonian and antidepressant effect in diseased animals compared to both the uncoated TAN-NLCs and free TAN suspension as evidenced by the conducted behavioral tests and improved histopathological findings. Furthermore, biochemical evaluation of oxidative stress along with inflammatory markers, nuclear factor-kabba ß (NF-Kß) and cathepsin B further confirmed the potential of the CS-TAN-NLCs in enhancing brain delivery and hence the therapeutic effect of TAN of treatment of PD. Accordingly, CS-TAN-NLCs could be addressed as a promising nano-platform for the effective management of PD.


Subject(s)
Chitosan , Nanostructures , Parkinson Disease , Animals , Rats , Brain/metabolism , Cathepsin B/metabolism , Chitosan/chemistry , Drug Carriers/chemistry , Lipids/chemistry , Nanostructures/chemistry , NF-kappa B/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Particle Size , NF-kappa B p50 Subunit/metabolism
15.
Biochem Soc Trans ; 51(6): 2085-2092, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38095058

ABSTRACT

The nuclear factor-κB (NF-κB) transcription activation system involves disordered regions of both the NF-κB dimers and their inhibitors, the IκBs. The system is well-studied both at the cellular and biophysical levels affording a unique opportunity to compare and contrast the conclusions from both types of experiments. Through a combination of both experiments and theory, we have discovered that the RelA/p50 heterodimer and its inhibitor IκBα operate under kinetic control. Intrinsically disordered parts of both proteins are directly involved in temporal control and their folding and unfolding determines the rates of various processes. In this review, we show how the dynamic state of the intrinsically disordered sequences define the rates of intracellular processes.


Subject(s)
NF-kappa B p50 Subunit , NF-kappa B , NF-kappa B/metabolism , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Signal Transduction , Transcriptional Activation
16.
Curr Pharm Des ; 29(30): 2426-2437, 2023.
Article in English | MEDLINE | ID: mdl-37859325

ABSTRACT

BACKGROUND: The overexpression, accumulation, and cell-to-cell transmission of α-synuclein leads to the deterioration of Parkinson's disease (PD). Previous studies suggest that Baicalein (BAI) can bind to α-synuclein and inhibit α-synuclein aggregation and secretion. However, it is still unclear whether BAI can intervene with the pathogenic molecules in α-synuclein-mediated PD pathways beyond directly targeting α-synuclein per se. METHODS: This study aimed to systematically investigate BAI's potential targets in PD-related A53T mutant α-synuclein-mediated pathways by integrating data mining, network pharmacological analysis, and molecular docking simulation techniques. RESULTS: The results suggest that BAI may target genes that are dysregulated in synaptic transmission, vesicle trafficking, gene transcription, protein binding, extracellular matrix formation, and kinase activity in α-synucleinmediated pathways. NFKB1, STAT3, and CDKN1A are BAI's potential hub targets in these pathways. CONCLUSION: Our findings highlight BAI's potentiality to modulate α-synuclein-mediated pathways beyond directly targeting α-synuclein per se.


Subject(s)
Flavanones , Parkinson Disease , Humans , alpha-Synuclein/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Molecular Docking Simulation , Flavanones/pharmacology , NF-kappa B p50 Subunit/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , STAT3 Transcription Factor/metabolism
18.
Biomolecules ; 13(9)2023 08 26.
Article in English | MEDLINE | ID: mdl-37759710

ABSTRACT

Though originally characterized as an inactive or transcriptionally repressive factor, the NF-κB p50 homodimer has become appreciated as a physiologically relevant driver of specific target gene expression. By virtue of its low affinity for cytoplasmic IκB protein inhibitors, p50 accumulates in the nucleus of resting cells, where it is a binding target for the transcriptional co-activator IκBζ. In this study, we employed X-ray crystallography to analyze the structure of the p50 homodimer on κB DNA from the promoters of human interleukin-6 (IL-6) and neutrophil-gelatinase-associated lipocalin (NGAL) genes, both of which respond to IκBζ. The NF-κB p50 homodimer binds 11-bp on IL-6 κB DNA, while, on NGAL κB DNA, the spacing is 12-bp. This begs the question: what DNA binding mode is preferred by NF-κB p50 homodimer? To address this, we engineered a "Test" κB-like DNA containing the core sequence 5'-GGGGAATTCCCC-3' and determined its X-ray crystal structure in complex with p50. This revealed that, when presented with multiple options, NF-κB p50 homodimer prefers to bind 11-bp, which necessarily imposes asymmetry on the complex despite the symmetry inherent in both the protein and its target DNA, and that the p50 dimerization domain can contact DNA via distinct modes.


Subject(s)
Interleukin-6 , NF-kappa B p50 Subunit , NF-kappa B , Humans , Crystallography, X-Ray , DNA , Lipocalin-2 , X-Rays , NF-kappa B p50 Subunit/chemistry , NF-kappa B p50 Subunit/physiology
19.
Front Immunol ; 14: 1224603, 2023.
Article in English | MEDLINE | ID: mdl-37600787

ABSTRACT

We report the case of a patient with common variable immunodeficiency (CVID) presenting with short stature and treated with recombinant human growth hormone (rhGH). Whole exome sequencing revealed a novel single-nucleotide duplication in the NFKB1 gene (c.904dup, p.Ser302fs), leading to a frameshift and thus causing NFKB1 haploinsufficiency. The variant was considered pathogenic and was later found in the patient's mother, also affected by CVID. This is the first reported case of a patient with CVID due to NFKB1 mutation presenting with short stature. We analyzed the interconnection between NFKB1 and GH - IGF-1 pathways and we hypothesized a common ground for both CVID and short stature in our patient.


Subject(s)
Common Variable Immunodeficiency , Immunologic Deficiency Syndromes , Child , Humans , Female , Haploinsufficiency , Common Variable Immunodeficiency/diagnosis , Common Variable Immunodeficiency/genetics , Frameshift Mutation , Mothers , NF-kappa B p50 Subunit/genetics
20.
Kidney Int ; 104(5): 929-942, 2023 11.
Article in English | MEDLINE | ID: mdl-37652204

ABSTRACT

One of the most common causes of discontinued peritoneal dialysis is impaired peritoneal function. However, its molecular mechanisms remain unclear. Previously, by microarray analysis of mouse peritoneum, we showed that MMP (matrix metalloproteinase)-10 expression is significantly increased in mice with peritoneal fibrosis, but its function remains unknown. Chlorhexidine gluconate (CG) was intraperitoneally injected to wild-type and MMP-10 knockout mice to induce fibrosis to elucidate the role of MMP-10 on peritoneal injury. We also examined function of peritoneal macrophages and mesothelial cells obtained from wild-type and MMP-10 knockout mice, MMP-10-overexpressing macrophage-like RAW 264.7 cells and MeT-5A mesothelial cells, investigated MMP-10 expression on peritoneal biopsy specimens, and the association between serum proMMP-10 and peritoneal solute transfer rates determined by peritoneal equilibration test on patients. MMP-10 was expressed in cells positive for WT1, a mesothelial marker, and for MAC-2, a macrophage marker, in the thickened peritoneum of both mice and patients. Serum proMMP-10 levels were well correlated with peritoneal solute transfer rates. Peritoneal fibrosis, inflammation, and high peritoneal solute transfer rates induced by CG were all ameliorated by MMP-10 deletion, with reduction of CD31-positive vessels and VEGF-A-positive cells. Expression of inflammatory mediators and phosphorylation of NFκΒ subunit p65 at S536 were suppressed in both MMP-10 knockout macrophages and mesothelial cells in response to lipopolysaccharide stimulation. Overexpression of MMP-10 in RAW 264.7 and MeT-5A cells upregulated pro-inflammatory cytokines with phosphorylation of NFκΒ subunit p65. Thus, our results suggest that inflammatory responses induced by MMP-10 are mediated through the NFκΒ pathway, and that systemic deletion of MMP-10 ameliorates peritoneal inflammation and fibrosis caused by NFκΒ activation of peritoneal macrophages and mesothelial cells.


Subject(s)
Matrix Metalloproteinase 10 , Peritoneal Fibrosis , Peritonitis , Animals , Humans , Mice , Inflammation/metabolism , Matrix Metalloproteinase 10/genetics , Matrix Metalloproteinase 10/metabolism , Mice, Knockout , NF-kappa B p50 Subunit/metabolism , Peritoneal Fibrosis/genetics , Peritoneum/pathology , Peritonitis/etiology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL