Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 873
Filter
1.
Front Cell Infect Microbiol ; 14: 1423541, 2024.
Article in English | MEDLINE | ID: mdl-39233907

ABSTRACT

Background: Patients who were infected by the Human Immunodeficiency Virus (HIV) could have weakened immunity that is complicated by opportunistic infections, especially for Mycobacterium tuberculosis (MTB). Notably, the HIV-MTB co-infection will accelerate the course of disease progress and greatly increase the mortality of patients. Since the traditional diagnostic methods are time-consuming and have low sensitivity, we aim to investigate the performance of mNGS (metagenomic Next-Generation Sequencing) and mNPS (metagenomic NanoPore Sequencing) for the rapid diagnosis of tuberculosis in HIV-infected patients. Methods: The 122 HIV-infected patients were enrolled for the retrospective analysis. All of the patients underwent traditional microbiological tests, mNGS, and (or) mNPS tests. The clinical comprehensive diagnosis was used as the reference standard to compare the diagnostic performance of culture, mNGS, and mNPS on tuberculosis. We also investigate the diagnostic value of mNGS and mNPS on mixed-infection. Furthermore, the treatment adjustment directed by mNGS and mNPS was analyzed. Results: Compared with the composite reference standard, the culture showed 42.6% clinical sensitivity and 100% specificity, and the OMT(other microbiological testing) had 38.9% sensitivity and 100% specificity. The mNGS had 58.6% clinical sensitivity and 96.8% specificity, and the mNPS had 68.0% clinical sensitivity and 100% specificity. The proportion of mixed-infection cases (88.9%) in the TB group was higher than those in the non-TB group (54.8%) and the mNGS and mNPS are more competitive on mixed-infection diagnosis compared with the traditional methods. Furthermore, there are 63 patients (69.2%) and 36 patients (63.2%) achieved effective treatment after receiving the detection of mNPS and mNGS, respectively. Conclusion: Our study indicated that mNPS and mNGS have high sensitivity and specificity for TB diagnosis compared with the traditional methods, and mNPS seems to have better diagnostic performance than mNGS. Moreover, mNGS and mNPS showed apparent advantages in detecting mixed infection. The mNPS and mNGS-directed medication adjustment have effective treatment outcomes for HIV-infected patients who have lower immunity.


Subject(s)
Coinfection , HIV Infections , High-Throughput Nucleotide Sequencing , Metagenomics , Mycobacterium tuberculosis , Nanopore Sequencing , Sensitivity and Specificity , Tuberculosis , Humans , High-Throughput Nucleotide Sequencing/methods , Male , Tuberculosis/diagnosis , Tuberculosis/microbiology , Female , HIV Infections/complications , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Retrospective Studies , Adult , Middle Aged , Coinfection/diagnosis , Coinfection/microbiology , Coinfection/virology , Nanopore Sequencing/methods , Metagenomics/methods
4.
Brief Bioinform ; 25(5)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39226890

ABSTRACT

Nanopore selective sequencing allows the targeted sequencing of DNA of interest using computational approaches rather than experimental methods such as targeted multiplex polymerase chain reaction or hybridization capture. Compared to sequence-alignment strategies, deep learning (DL) models for classifying target and nontarget DNA provide large speed advantages. However, the relatively low accuracy of these DL-based tools hinders their application in nanopore selective sequencing. Here, we present a DL-based tool named ReadCurrent for nanopore selective sequencing, which takes electric currents as inputs. ReadCurrent employs a modified very deep convolutional neural network (VDCNN) architecture, enabling significantly lower computational costs for training and quicker inference compared to conventional VDCNN. We evaluated the performance of ReadCurrent across 10 nanopore sequencing datasets spanning human, yeasts, bacteria, and viruses. We observed that ReadCurrent achieved a mean accuracy of 98.57% for classification, outperforming four other DL-based selective sequencing methods. In experimental validation that selectively sequenced microbial DNA from human DNA, ReadCurrent achieved an enrichment ratio of 2.85, which was higher than the 2.7 ratio achieved by MinKNOW using the sequence-alignment strategy. In summary, ReadCurrent can rapidly classify target and nontarget DNA with high accuracy, providing an alternative in the toolbox for nanopore selective sequencing. ReadCurrent is available at https://github.com/Ming-Ni-Group/ReadCurrent.


Subject(s)
Nanopore Sequencing , Nanopore Sequencing/methods , Humans , Sequence Analysis, DNA/methods , Neural Networks, Computer , Nanopores , Software , Deep Learning , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods
5.
Vet Res ; 55(1): 106, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227887

ABSTRACT

Frequent RNA virus mutations raise concerns about evolving virulent variants. The purpose of this study was to investigate genetic variation in salmonid alphavirus-3 (SAV3) over the course of an experimental infection in Atlantic salmon and brown trout. Atlantic salmon and brown trout parr were infected using a cohabitation challenge, and heart samples were collected for analysis of the SAV3 genome at 2-, 4- and 8-weeks post-challenge. PCR was used to amplify eight overlapping amplicons covering 98.8% of the SAV3 genome. The amplicons were subsequently sequenced using the Nanopore platform. Nanopore sequencing identified a multitude of single nucleotide variants (SNVs) and deletions. The variation was widespread across the SAV3 genome in samples from both species. Mostly, specific SNVs were observed in single fish at some sampling time points, but two relatively frequent (i.e., major) SNVs were observed in two out of four fish within the same experimental group. Two other, less frequent (i.e., minor) SNVs only showed an increase in frequency in brown trout. Nanopore reads were de novo clustered using a 99% sequence identity threshold. For each amplicon, a number of variant clusters were observed that were defined by relatively large deletions. Nonmetric multidimensional scaling analysis integrating the cluster data for eight amplicons indicated that late in infection, SAV3 genomes isolated from brown trout had greater variation than those from Atlantic salmon. The sequencing methods and bioinformatics pipeline presented in this study provide an approach to investigate the composition of genetic diversity during viral infections.


Subject(s)
Alphavirus Infections , Alphavirus , Fish Diseases , Genetic Variation , Nanopore Sequencing , Salmo salar , Trout , Animals , Salmo salar/virology , Fish Diseases/virology , Alphavirus/genetics , Alphavirus Infections/veterinary , Alphavirus Infections/virology , Nanopore Sequencing/veterinary , Nanopore Sequencing/methods , Trout/virology
7.
Int J Mol Sci ; 25(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39273516

ABSTRACT

The contribution of splicing variants to molecular diagnostics of inherited diseases is reported to be less than 10%. This figure is likely an underestimation due to several factors including difficulty in predicting the effect of such variants, the need for functional assays, and the inability to detect them (depending on their locations and the sequencing technology used). The aim of this study was to assess the utility of Nanopore sequencing in characterizing and quantifying aberrant splicing events. For this purpose, we selected 19 candidate splicing variants that were identified in patients affected by inherited retinal dystrophies. Several in silico tools were deployed to predict the nature and estimate the magnitude of variant-induced aberrant splicing events. Minigene assay or whole blood-derived cDNA was used to functionally characterize the variants. PCR amplification of minigene-specific cDNA or the target gene in blood cDNA, combined with Nanopore sequencing, was used to identify the resulting transcripts. Thirteen out of nineteen variants caused aberrant splicing events, including cryptic splice site activation, exon skipping, pseudoexon inclusion, or a combination of these. Nanopore sequencing allowed for the identification of full-length transcripts and their precise quantification, which were often in accord with in silico predictions. The method detected reliably low-abundant transcripts, which would not be detected by conventional strategies, such as RT-PCR followed by Sanger sequencing.


Subject(s)
High-Throughput Nucleotide Sequencing , Nanopore Sequencing , Retinal Dystrophies , Humans , Retinal Dystrophies/genetics , Retinal Dystrophies/diagnosis , Nanopore Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Alternative Splicing/genetics , RNA Splicing/genetics , Exons/genetics
8.
Front Cell Infect Microbiol ; 14: 1397989, 2024.
Article in English | MEDLINE | ID: mdl-39258251

ABSTRACT

Background: Lung is the largest mucosal area of the human body and directly connected to the external environment, facing microbial exposure and environmental stimuli. Therefore, studying the internal microorganisms of the lung is crucial for a deeper understanding of the relationship between microorganisms and the occurrence and progression of lung cancer. Methods: Tumor and adjacent nontumor tissues were collected from 38 lung adenocarcinoma patients and used nanopore sequencing technology to sequence the 16s full-length sequence of bacteria, and combining bioinformatics methods to identify and quantitatively analyze microorganisms in tissues, as well as to enrich the metabolic pathways of microorganisms. Results: the microbial composition in lung adenocarcinoma tissues is highly similar to that in adjacent tissues, but the alpha diversity is significantly lower than that in adjacent tissues. The difference analysis results show that the bacterial communities of Streptococcaceae, Lactobacillaceae, and Neisseriales were significantly enriched in cancer tissues. The results of metabolic pathway analysis indicate that pathways related to cellular communication, transcription, and protein synthesis were significantly enriched in cancer tissue. In addition, clinical staging analysis of nicotine exposure and lung cancer found that Haemophilus, paralinfluenzae, Streptococcus gordonii were significantly enriched in the nicotine exposure group, while the microbiota of Cardiobactereae and Cardiobacterales were significantly enriched in stage II tumors. The microbiota significantly enriched in IA-II stages were Neisseriaeae, Enterobacteriales, and Cardiobacterales, respectively. Conclusion: Nanopore sequencing technology was performed on the full length 16s sequence, which preliminarily depicted the microbial changes and enrichment of microbial metabolic pathways in tumor and adjacent nontumor tissues. The relationship between nicotine exposure, tumor progression, and microorganisms was explored, providing a theoretical basis for the treatment of lung cancer through microbial targets.


Subject(s)
Adenocarcinoma of Lung , Bacteria , Lung Neoplasms , Microbiota , Nanopore Sequencing , Nicotine , Humans , Adenocarcinoma of Lung/microbiology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Microbiota/genetics , Nicotine/metabolism , Male , Female , Lung Neoplasms/microbiology , Lung Neoplasms/pathology , Middle Aged , Nanopore Sequencing/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Aged , RNA, Ribosomal, 16S/genetics , Lung/microbiology , Lung/pathology , Computational Biology/methods , Metabolic Networks and Pathways/genetics
9.
BMC Genomics ; 25(1): 842, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251911

ABSTRACT

BACKGROUND: DNA metabarcoding applies high-throughput sequencing approaches to generate numerous DNA barcodes from mixed sample pools for mass species identification and community characterisation. To date, however, most metabarcoding studies employ second-generation sequencing platforms like Illumina, which are limited by short read lengths and longer turnaround times. While third-generation platforms such as the MinION (Oxford Nanopore Technologies) can sequence longer reads and even in real-time, application of these platforms for metabarcoding has remained limited possibly due to the relatively high read error rates as well as the paucity of specialised software for processing such reads. RESULTS: We show that this is no longer the case by performing nanopore-based, cytochrome c oxidase subunit I (COI) metabarcoding on 34 zooplankton bulk samples, and benchmarking the results against conventional Illumina MiSeq sequencing. Nanopore R10.3 sequencing chemistry and super accurate (SUP) basecalling model reduced raw read error rates to ~ 4%, and consensus calling with amplicon_sorter (without further error correction) generated metabarcodes that were ≤ 1% erroneous. Although Illumina recovered a higher number of molecular operational taxonomic units (MOTUs) than nanopore sequencing (589 vs. 471), we found no significant differences in the zooplankton communities inferred between the sequencing platforms. Importantly, 406 of 444 (91.4%) shared MOTUs between Illumina and nanopore were also found to be free of indel errors, and 85% of the zooplankton richness could be recovered after just 12-15 h of sequencing. CONCLUSION: Our results demonstrate that nanopore sequencing can generate metabarcodes with Illumina-like accuracy, and we are the first study to show that nanopore metabarcodes are almost always indel-free. We also show that nanopore metabarcoding is viable for characterising species-rich communities rapidly, and that the same ecological conclusions can be obtained regardless of the sequencing platform used. Collectively, our study inspires confidence in nanopore sequencing and paves the way for greater utilisation of nanopore technology in various metabarcoding applications.


Subject(s)
DNA Barcoding, Taxonomic , High-Throughput Nucleotide Sequencing , Nanopores , DNA Barcoding, Taxonomic/methods , Animals , High-Throughput Nucleotide Sequencing/methods , INDEL Mutation , Nanopore Sequencing/methods , Electron Transport Complex IV/genetics , Zooplankton/genetics , Zooplankton/classification , Sequence Analysis, DNA/methods
10.
Sci Data ; 11(1): 959, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39242678

ABSTRACT

Sageretia thea, a notable species within the mock buckthorn genus, is recognized for its intriguing biogeographical distribution and diverse medicinal properties. Despite this significance, genomic studies on S. thea are still in the nascent stages. We present the first chromosome-level genome assembly of S. thea that was generated using a combination of Oxford Nanopore long-read and Illumina short-read sequencing technologies complemented by Pore-C chromatin conformation capture. The genome assembly had a size of 197.8 Mb with 12 chromosomal scaffolds and a scaffold N50 length of 15.9 Mb. A total of 25,434 protein-coding genes were identified and functionally annotated, and the gene model indicated 96.5% complete eukaryotic BUSCOs. Additionally, orthologous gene profiling and synteny analysis were performed to elucidate the evolutionary relationships within the Rhamnaceae family and Rosales. This high-quality chromosomal genome is the first genomic view of S. thea, which will serve as the basis for future studies on its biological and medicinal properties, and evolutionary history.


Subject(s)
Genome, Plant , Chromosomes, Plant/genetics , Nanopores , Nanopore Sequencing
11.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273363

ABSTRACT

MDM4 is upregulated in the majority of melanoma cases and has been described as a "key therapeutic target in cutaneous melanoma". Numerous isoforms of MDM4 exist, with few studies examining their specific expression in human tissues. The changes in splicing of MDM4 during human melanomagenesis are critical to p53 activity and represent potential therapeutic targets. Compounding this, studies relying on short reads lose "connectivity" data, so full transcripts are frequently only inferred from the presence of splice junction reads. To address this problem, long-read nanopore sequencing was utilized to read the entire length of transcripts. Here, MDM4 transcripts, both alternative and canonical, are characterized in a pilot cohort of human melanoma specimens. RT-PCR was first used to identify the presence of novel splice junctions in these specimens. RT-qPCR then quantified the expression of major MDM4 isoforms observed during sequencing. The current study both identifies and quantifies MDM4 isoforms present in melanoma tumor samples. In the current study, we observed high expression levels of MDM4-S, MDM4-FL, MDM4-A, and the previously undescribed Ensembl transcript MDM4-209. A novel transcript lacking both exons 6 and 9 is observed and named MDM4-A/S for its resemblance to both MDM4-A and MDM4-S isoforms.


Subject(s)
Melanoma , Protein Isoforms , Humans , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Alternative Splicing , Gene Expression Regulation, Neoplastic , Nanopore Sequencing/methods
12.
Microbiologyopen ; 13(4): e1432, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39166362

ABSTRACT

The long-read sequencing platform MinION, developed by Oxford Nanopore Technologies, enables the sequencing of bacterial genomes in resource-limited settings, such as field conditions or low- and middle-income countries. For this purpose, protocols for extracting high-molecular-weight DNA using nonhazardous, inexpensive reagents and equipment are needed, and some methods have been developed for gram-negative bacteria. However, we found that without modification, these protocols are unsuitable for gram-positive Streptococcus spp., a major threat to fish farming and food security in low- and middle-income countries. Multiple approaches were evaluated, and the most effective was an extraction method using lysozyme, sodium dodecyl sulfate, and proteinase K for lysis of bacterial cells and magnetic beads for DNA recovery. We optimized the method to consistently achieve sufficient yields of pure high-molecular-weight DNA with minimal reagents and time and developed a version of the protocol which can be performed without a centrifuge or electrical power. The suitability of the method was verified by MinION sequencing and assembly of 12 genomes of epidemiologically diverse fish-pathogenic Streptococcus iniae and Streptococcus agalactiae isolates. The combination of effective high-molecular-weight DNA extraction and MinION sequencing enabled the discovery of a naturally occurring 15 kb low-copy number mobilizable plasmid in S. iniae, which we name pSI1. We expect that our resource-limited settings-adapted protocol for high-molecular-weight DNA extraction could be implemented successfully for similarly recalcitrant-to-lysis gram-positive bacteria, and it represents a method of choice for MinION-based disease diagnostics in low- and middle-income countries.


Subject(s)
DNA, Bacterial , Nanopore Sequencing , Streptococcus , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , DNA, Bacterial/genetics , Nanopore Sequencing/methods , Animals , Genome, Bacterial/genetics , Molecular Weight , Sequence Analysis, DNA/methods , Fishes/microbiology , Fish Diseases/microbiology , Streptococcal Infections/microbiology , Resource-Limited Settings
13.
HLA ; 104(2): e15632, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39132735

ABSTRACT

Molecular HLA typing techniques are currently undergoing a rapid evolution. While real-time PCR is established as the standard method in tissue typing laboratories regarding allocation of solid organs, next generation sequencing (NGS) for high-resolution HLA typing is becoming indispensable but is not yet suitable for deceased donors. By contrast, high-resolution typing is essential for stem cell transplantation and is increasingly required for questions relating to various disease associations. In this multicentre clinical study, the TGS technique using nanopore sequencing is investigated applying NanoTYPE™ kit and NanoTYPER™ software (Omixon Biocomputing Ltd., Budapest, Hungary) regarding the concordance of the results with NGS and its practicability in diagnostic laboratories. The results of 381 samples show a concordance of 99.58% for 11 HLA loci, HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQA1, -DQB1, -DPA1 and -DPB1. The quality control (QC) data shows a very high quality of the sequencing performed in each laboratory, 34,926 (97.15%) QC values were returned as 'passed', 862 (2.4%) as 'inspect' and 162 (0.45%) as 'failed'. We show that an 'inspect' or 'failed' QC warning does not automatically lead to incorrect HLA typing. The advantages of nanopore sequencing are speed, flexibility, reusability of the flow cells and easy implementation in the laboratory. There are challenges, such as exon coverage and the handling of large amounts of data. Finally, nanopore sequencing presents potential for applications in basic research within the field of epigenetics and genomics and holds significance for clinical concerns.


Subject(s)
HLA Antigens , High-Throughput Nucleotide Sequencing , Histocompatibility Testing , Humans , Histocompatibility Testing/methods , High-Throughput Nucleotide Sequencing/methods , HLA Antigens/genetics , Software , Alleles , Genotype , Quality Control , Nanopore Sequencing/methods , Genotyping Techniques/methods
14.
Clin Epigenetics ; 16(1): 101, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095842

ABSTRACT

Adaptive nanopore sequencing as a diagnostic method for imprinting disorders and episignature analysis revealed an intragenic duplication of Exon 6 and 7 in UBE3A (NM_000462.5) in a patient with relatively mild Angelman-like syndrome. In an all-in-one nanopore sequencing analysis DNA hypomethylation of the SNURF:TSS-DMR, known contributing deletions on the maternal allele and point mutations in UBE3A could be ruled out as disease drivers. In contrast, breakpoints and orientation of the tandem duplication could clearly be defined. Segregation analysis in the family showed that the duplication derived de novo in the maternal grandfather. Our study shows the benefits of an all-in-one nanopore sequencing approach for the diagnostics of Angelman syndrome and other imprinting disorders.


Subject(s)
Angelman Syndrome , DNA Methylation , Gene Duplication , Nanopore Sequencing , Ubiquitin-Protein Ligases , Humans , Angelman Syndrome/genetics , Angelman Syndrome/diagnosis , Ubiquitin-Protein Ligases/genetics , Nanopore Sequencing/methods , DNA Methylation/genetics , Female , Gene Duplication/genetics , Male , Exons/genetics , Pedigree , Genomic Imprinting/genetics
15.
Nat Commun ; 15(1): 7148, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169028

ABSTRACT

We leverage machine learning approaches to adapt nanopore sequencing basecallers for nucleotide modification detection. We first apply the incremental learning (IL) technique to improve the basecalling of modification-rich sequences, which are usually of high biological interest. With sequence backbones resolved, we further run anomaly detection (AD) on individual nucleotides to determine their modification status. By this means, our pipeline promises the single-molecule, single-nucleotide, and sequence context-free detection of modifications. We benchmark the pipeline using control oligos, further apply it in the basecalling of densely-modified yeast tRNAs and E.coli genomic DNAs, the cross-species detection of N6-methyladenosine (m6A) in mammalian mRNAs, and the simultaneous detection of N1-methyladenosine (m1A) and m6A in human mRNAs. Our IL-AD workflow is available at: https://github.com/wangziyuan66/IL-AD .


Subject(s)
Adenosine , Escherichia coli , Machine Learning , Nanopore Sequencing , RNA, Messenger , RNA, Transfer , Nanopore Sequencing/methods , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , Escherichia coli/genetics , Saccharomyces cerevisiae/genetics , Animals
16.
Methods Mol Biol ; 2851: 75-85, 2024.
Article in English | MEDLINE | ID: mdl-39210172

ABSTRACT

A new nanopore sequencing-based method has been developed for the detection and identification of a wider range of microorganisms. This method uses universal primers to identify virtually all the bacterial or yeast/fungal species via the amplification and nucleotide sequencing of common ribosomal DNA regions. The simplicity of its protocol makes the method suitable for both small and large breweries.


Subject(s)
Bacteria , High-Throughput Nucleotide Sequencing , High-Throughput Nucleotide Sequencing/methods , Bacteria/genetics , Bacteria/isolation & purification , Fungi/genetics , Sequence Analysis, DNA/methods , Food Microbiology/methods , Beer/microbiology , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , Nanopore Sequencing/methods , DNA, Bacterial/genetics
17.
Commun Biol ; 7(1): 1038, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179660

ABSTRACT

Clinical metagenomics (CMg) Nanopore sequencing can facilitate infectious disease diagnosis. In China, sub-lineages ST11-KL64 and ST11-KL47 Carbapenem-resistant Klebsiella pneumoniae (CRKP) are widely prevalent. We propose PathoTracker, a specially compiled database and arranged method for strain feature identification in CMg samples and CRKP traceability. A database targeting high-prevalence horizontal gene transfer in CRKP strains and a ST11-only database for distinguishing two sub-lineages in China were created. To make the database user-friendly, facilitate immediate downstream strain feature identification from raw Nanopore metagenomic data, and avoid the need for phylogenetic analysis from scratch, we developed data analysis methods. The methods included pre-performed phylogenetic analysis, gene-isolate-cluster index and multilevel pan-genome database and reduced storage space by 10-fold and random-access memory by 52-fold compared with normal methods. PathoTracker can provide accurate and fast strain-level analysis for CMg data after 1 h Nanopore sequencing, allowing early warning of outbreaks. A user-friendly page ( http://PathoTracker.pku.edu.cn/ ) was developed to facilitate online analysis, including strain-level feature, species identifications and phylogenetic analyses. PathoTracker proposed in this study will aid in the downstream analysis of CMg.


Subject(s)
Disease Outbreaks , Klebsiella Infections , Klebsiella pneumoniae , Metagenomics , Phylogeny , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Metagenomics/methods , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Klebsiella Infections/diagnosis , China/epidemiology , Nanopore Sequencing/methods , Databases, Genetic , Genome, Bacterial
18.
Nat Commun ; 15(1): 7450, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198442

ABSTRACT

The increasing prevalence of gut colonization with CTX-M extended-spectrum ß-lactamase- and/or DHA plasmid-mediated AmpC-producing Escherichia coli is a concern. Here, we evaluate Nanopore-shotgun metagenomic sequencing (Nanopore-SMS) latest V14 chemistry to detect blaCTX-M and blaDHA genes from healthy stools. We test 25 paired samples characterized with culture-based methods (native and pre-enriched). Antimicrobial resistant genes (ARGs) are detected from reads and meta-assembled genomes (MAGs) to determine their associated genetic environments (AGEs). Sensitivity and specificity of native Nanopore-SMS are 61.1% and 100%, compared to 81.5% and 75% for pre-enriched Nanopore-SMS, respectively. Native Nanopore-SMS identifies only one sample with an AGE, whereas pre-enriched Nanopore-SMS recognizes 9/18 plasmids and 5/9 E. coli chromosomes. Pre-enriched Nanopore-SMS identifies more ARGs than native Nanopore-SMS (p < 0.001). Notably, blaCTX-Ms and blaDHAs AGEs (plasmid and chromosomes) are identified within 1 hour of sequencing. Furthermore, microbiota analyses show that pre-enriched Nanopore-SMS results in more E. coli classified reads (47% vs. 3.1%), higher differential abundance (5.69 log2 fold) and lower Shannon diversity index (p < 0.0001). Nanopore-SMS has the potential to be used for intestinal colonization screening. However, sample pre-enrichment is necessary to increase sensitivity. Further computational improvements are needed to reduce the turnaround time for clinical applications.


Subject(s)
Escherichia coli , Feces , Metagenomics , Nanopores , beta-Lactamases , Feces/microbiology , Escherichia coli/genetics , Escherichia coli/isolation & purification , Humans , beta-Lactamases/genetics , beta-Lactamases/metabolism , Metagenomics/methods , Escherichia coli Proteins/genetics , Plasmids/genetics , Nanopore Sequencing/methods , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Gastrointestinal Microbiome/genetics
19.
Genome Biol ; 25(1): 233, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198865

ABSTRACT

Non-coding RNAs (ncRNAs) are frequently documented RNA modification substrates. Nanopore Technologies enables the direct sequencing of RNAs and the detection of modified nucleobases. Ordinarily, direct RNA sequencing uses polyadenylation selection, studying primarily mRNA gene expression. Here, we present NERD-seq, which enables detection of multiple non-coding RNAs, excluded by the standard approach, alongside natively polyadenylated transcripts. Using neural tissues as a proof of principle, we show that NERD-seq expands representation of frequently modified non-coding RNAs, such as snoRNAs, snRNAs, scRNAs, srpRNAs, tRNAs, and rRFs. NERD-seq represents an RNA-seq approach to simultaneously study mRNA and ncRNA epitranscriptomes in brain tissues and beyond.


Subject(s)
Nanopore Sequencing , RNA, Untranslated , Sequence Analysis, RNA , RNA, Untranslated/genetics , Sequence Analysis, RNA/methods , Nanopore Sequencing/methods , Animals , Mice , Humans , RNA, Messenger/genetics , Brain/metabolism
20.
Sci Data ; 11(1): 864, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127718

ABSTRACT

Taxonomic classification is crucial in identifying organisms within diverse microbial communities when using metagenomics shotgun sequencing. While second-generation Illumina sequencing still dominates, third-generation nanopore sequencing promises improved classification through longer reads. However, extensive benchmarking studies on nanopore data are lacking. We systematically evaluated performance of bacterial taxonomic classification for metagenomics nanopore sequencing data for several commonly used classifiers, using standardized reference sequence databases, on the largest collection of publicly available data for defined mock communities thus far (nine samples), representing different research domains and application scopes. Our results categorize classifiers into three categories: low precision/high recall; medium precision/medium recall, and high precision/medium recall. Most fall into the first group, although precision can be improved without excessively penalizing recall with suitable abundance filtering. No definitive 'best' classifier emerges, and classifier selection depends on application scope and practical requirements. Although few classifiers designed for long reads exist, they generally exhibit better performance. Our comprehensive benchmarking provides concrete recommendations, supported by publicly available code for reassessment and fine-tuning by other scientists.


Subject(s)
Bacteria , Benchmarking , Metagenomics , Metagenomics/methods , Bacteria/genetics , Bacteria/classification , Nanopore Sequencing , Nanopores , Microbiota
SELECTION OF CITATIONS
SEARCH DETAIL