Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.165
Filter
2.
Nature ; 634(8032): 210-219, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39358519

ABSTRACT

The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1,2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5-a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6-10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.


Subject(s)
Brain , Computer Simulation , Connectome , Drosophila melanogaster , Feedback, Sensory , Feeding Behavior , Grooming , Models, Neurological , Animals , Female , Male , Brain/physiology , Brain/cytology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Feeding Behavior/physiology , Grooming/physiology , Motor Neurons/physiology , Optogenetics , Synapses/physiology , Taste/physiology , Models, Anatomic , Neural Pathways/cytology , Neural Pathways/physiology , Neurotransmitter Agents/metabolism , Reproducibility of Results , Neurons/classification , Neurons/physiology , Appetitive Behavior/physiology , Arthropod Antennae , Feedback, Sensory/physiology
3.
Nature ; 634(8032): 124-138, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39358518

ABSTRACT

Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative1-6, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses7 between 139,255 neurons reconstructed from an adult female Drosophila melanogaster8,9. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities10-12. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome-a map of projections between regions-from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.


Subject(s)
Brain , Connectome , Drosophila melanogaster , Neural Pathways , Neurons , Animals , Female , Brain/cytology , Brain/physiology , Drosophila melanogaster/physiology , Drosophila melanogaster/cytology , Efferent Pathways/physiology , Efferent Pathways/cytology , Neural Pathways/physiology , Neural Pathways/cytology , Neurons/classification , Neurons/cytology , Neurons/physiology , Neurotransmitter Agents/metabolism , Optic Lobe, Nonmammalian/cytology , Optic Lobe, Nonmammalian/physiology , Photoreceptor Cells, Invertebrate/physiology , Photoreceptor Cells, Invertebrate/cytology , Synapses/metabolism , Feedback, Sensory/physiology
4.
Nature ; 634(8032): 191-200, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39358520

ABSTRACT

Walking is a complex motor programme involving coordinated and distributed activity across the brain and the spinal cord. Halting appropriately at the correct time is a critical component of walking control. Despite progress in identifying neurons driving halting1-6, the underlying neural circuit mechanisms responsible for overruling the competing walking state remain unclear. Here, using connectome-informed models7-9 and functional studies, we explain two fundamental mechanisms by which Drosophila implement context-appropriate halting. The first mechanism ('walk-OFF') relies on GABAergic neurons that inhibit specific descending walking commands in the brain, whereas the second mechanism ('brake') relies on excitatory cholinergic neurons in the nerve cord that lead to an active arrest of stepping movements. We show that two neurons that deploy the walk-OFF mechanism inhibit distinct populations of walking-promotion neurons, leading to differential halting of forward walking or turning. The brake neurons, by constrast, override all walking commands by simultaneously inhibiting descending walking-promotion neurons and increasing the resistance at the leg joints. We characterized two behavioural contexts in which the distinct halting mechanisms were used by the animal in a mutually exclusive manner: the walk-OFF mechanism was engaged for halting during feeding and the brake mechanism was engaged for halting and stability during grooming.


Subject(s)
Brain , Connectome , Drosophila melanogaster , Neural Pathways , Walking , Animals , Female , Brain/physiology , Brain/cytology , Cholinergic Neurons/physiology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Feeding Behavior/physiology , GABAergic Neurons/physiology , Grooming/physiology , Models, Neurological , Neural Pathways/cytology , Neural Pathways/physiology , Spinal Cord/cytology , Spinal Cord/physiology , Walking/physiology
5.
Nature ; 634(8032): 153-165, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39358527

ABSTRACT

Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections1-3, offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations4,5, and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex ( https://codex.flywire.ai ) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.


Subject(s)
Brain , Connectome , Drosophila melanogaster , Nerve Net , Neural Pathways , Neurons , Animals , Female , Brain/physiology , Brain/cytology , Brain/anatomy & histology , Drosophila melanogaster/physiology , Drosophila melanogaster/anatomy & histology , Internet , Models, Neurological , Nerve Net/physiology , Nerve Net/anatomy & histology , Nerve Net/cytology , Neural Pathways/anatomy & histology , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/cytology , Neurons/physiology , Neuropil/physiology , Neuropil/cytology , Neurotransmitter Agents/analysis , Neurotransmitter Agents/metabolism , Synapses/physiology
6.
Nature ; 634(8032): 201-209, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39358526

ABSTRACT

A goal of neuroscience is to obtain a causal model of the nervous system. The recently reported whole-brain fly connectome1-3 specifies the synaptic paths by which neurons can affect each other, but not how strongly they do affect each other in vivo. To overcome this limitation, we introduce a combined experimental and statistical strategy for efficiently learning a causal model of the fly brain, which we refer to as the 'effectome'. Specifically, we propose an estimator for a linear dynamical model of the fly brain that uses stochastic optogenetic perturbation data to estimate causal effects and the connectome as a prior to greatly improve estimation efficiency. We validate our estimator in connectome-based linear simulations and show that it recovers a linear approximation to the nonlinear dynamics of more biophysically realistic simulations. We then analyse the connectome to propose circuits that dominate the dynamics of the fly nervous system. We discover that the dominant circuits involve only relatively small populations of neurons-thus, neuron-level imaging, stimulation and identification are feasible. This approach also re-discovers known circuits and generates testable hypotheses about their dynamics. Overall, we provide evidence that fly whole-brain dynamics are generated by a large collection of small circuits that operate largely independently of each other. This implies that a causal model of a brain can be feasibly obtained in the fly.


Subject(s)
Brain , Connectome , Drosophila melanogaster , Neural Pathways , Neurons , Animals , Female , Brain/anatomy & histology , Brain/cytology , Brain/physiology , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Linear Models , Models, Neurological , Neurons/cytology , Neurons/physiology , Optogenetics , Reproducibility of Results , Stochastic Processes , Neural Pathways/anatomy & histology , Neural Pathways/cytology , Neural Pathways/physiology
7.
J Comp Neurol ; 532(8): e25666, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39235159

ABSTRACT

We have investigated the hippocampal connectivity of the marmoset presubiculum (PreS) and reported that major connections of PreS in the rat were conserved in the marmoset. Moreover, our results indicated the presence of several additional projections that were almost absent in the rat brain, but abundant in the marmoset, such as direct projections from CA1 to PreS. However, little is known about the connectivity between the frontal brain regions and PreS or hippocampal formation. Therefore, we investigated the distribution of cells of the origins and terminals of the presubicular and hippocampal projections in the marmoset frontal brain regions using the retrograde and anterograde tracer cholera toxin B subunit. In cases of tracer injections into all layers of PreS, many neurons and terminals were labeled in the claustrum-endopiriform (Cl-En) complex almost entirely along the rostrocaudal axis. Even in cases where the injection site involved the superficial (not deep) layers of PreS, labeled neurons and terminals were distributed over a wide rostrocaudal range of the Cl-En complex, but their number and density were significantly lower than the whole-layer injection cases. In cases where the injection site was confined to the hippocampal formation, labeled cells and terminals were localized at a restricted portion of the Cl-En complex. Here, we demonstrate for what we believe to be the first time the strong, reciprocal connections of the Cl-En complex with PreS and projections from the Cl-En complex to the hippocampal regions (CA1 and the subiculum) in the marmoset. Our findings indicate that the Cl-En complex may exert a strong influence on the cortical and subcortical outputs from PreS and, in turn, the entire memory circuitry in the marmoset brain.


Subject(s)
Callithrix , Claustrum , Hippocampus , Neural Pathways , Animals , Callithrix/anatomy & histology , Hippocampus/anatomy & histology , Hippocampus/cytology , Neural Pathways/anatomy & histology , Neural Pathways/cytology , Male , Claustrum/anatomy & histology , Claustrum/physiology , Female , Neurons/cytology , Cholera Toxin/metabolism
8.
Trends Neurosci ; 47(9): 667-668, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39142912

ABSTRACT

The maturation of cerebral cortical networks during early life involves a major reorganization of long-range axonal connections. In a recent study, Bragg-Gonzalo, Aguilera, et al. discovered that in mice, the interhemispheric connections sent by S1L4 callosal projection neurons are pruned via the tight control of their ipsilateral synaptic integration, which relies on the early activity of specific interneurons.


Subject(s)
Cerebral Cortex , Neural Inhibition , Animals , Mice , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Corpus Callosum/cytology , Corpus Callosum/physiology , Interneurons/physiology , Nerve Net/cytology , Nerve Net/physiology , Neural Inhibition/physiology , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/physiology
9.
Neurosci Lett ; 836: 137894, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38997083

ABSTRACT

Reciprocal connections between the thalamus and the cortex are one of the most characteristic features of forebrain organization in mammals. To date, this circuit has been documented only in turtles. However, reptiles, including turtles, have an additional path from the dorsal thalamus to the telencephalon. This terminates in a pallial structure known as the dorsal ventricular ridge. Yet, no reciprocal connection from the dorsal ventricular ridge to thalamic nuclei has been uncovered. Since axons from the thalamus pass through the basal nuclei on route to the dorsal ventricular ridge, the basal nuclei might be a source of reciprocal connections. Accordingly, the location and distribution of neurons after retrograde tracer placement into the dorsal thalamus were examined. Retrogradely labeled neurons in the basal nuclei were indeed found. One possibility to explain this observation is that connections with the dorsal ventricular ridge are present during development but later pruned during embryogenesis.


Subject(s)
Neural Pathways , Turtles , Animals , Turtles/anatomy & histology , Neural Pathways/anatomy & histology , Neural Pathways/cytology , Thalamic Nuclei/anatomy & histology , Thalamic Nuclei/cytology , Neurons , Thalamus/anatomy & histology
10.
J Comp Neurol ; 532(7): e25652, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962882

ABSTRACT

Although the mammalian cerebral cortex is most often described as a hexalaminar structure, there are cortical areas (primary motor cortex) and species (elephants, cetaceans, and hippopotami), where a cytoarchitecturally indistinct, or absent, layer 4 is noted. Thalamocortical projections from the core, or first order, thalamic system terminate primarily in layers 4/inner 3. We explored the termination sites of core thalamocortical projections in cortical areas and in species where there is no cytoarchitecturally distinct layer 4 using the immunolocalization of vesicular glutamate transporter 2, a known marker of core thalamocortical axon terminals, in 31 mammal species spanning the eutherian radiation. Several variations from the canonical cortical column outline of layer 4 and core thalamocortical inputs were noted. In shrews/microchiropterans, layer 4 was present, but many core thalamocortical projections terminated in layer 1 in addition to layers 4 and inner 3. In primate primary visual cortex, the sublaminated layer 4 was associated with a specialized core thalamocortical projection pattern. In primate primary motor cortex, no cytoarchitecturally distinct layer 4 was evident and the core thalamocortical projections terminated throughout layer 3. In the African elephant, cetaceans, and river hippopotamus, no cytoarchitecturally distinct layer 4 was observed and core thalamocortical projections terminated primarily in inner layer 3 and less densely in outer layer 3. These findings are contextualized in terms of cortical processing, perception, and the evolutionary trajectory leading to an indistinct or absent cortical layer 4.


Subject(s)
Axons , Neocortex , Neural Pathways , Thalamus , Animals , Thalamus/cytology , Thalamus/anatomy & histology , Neocortex/cytology , Neocortex/anatomy & histology , Neural Pathways/cytology , Neural Pathways/anatomy & histology , Axons/physiology , Mammals/anatomy & histology , Vesicular Glutamate Transport Protein 2/metabolism , Species Specificity
11.
J Comp Neurol ; 532(6): e25629, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031887

ABSTRACT

In the brain, connectivity determines function. Neurons in the parabrachial nucleus (PB) relay diverse information to widespread brain regions, but the connections and functions of PB neurons that express Nps (neuropeptide S, NPS) remain mysterious. Here, we use Cre-dependent anterograde tracing and whole-brain analysis to map their output connections. While many other PB neurons project ascending axons through the central tegmental tract, NPS axons reach the forebrain via distinct periventricular and ventral pathways. Along the periventricular pathway, NPS axons target the tectal longitudinal column and periaqueductal gray, then continue rostrally to target the paraventricular nucleus of the thalamus. Along the ventral pathway, NPS axons blanket much of the hypothalamus but avoid the ventromedial and mammillary nuclei. They also project prominently to the ventral bed nucleus of the stria terminalis, A13 cell group, and magnocellular subparafasciular nucleus. In the hindbrain, NPS axons have fewer descending projections, targeting primarily the superior salivatory nucleus, nucleus of the lateral lemniscus, and periolivary region. Combined with what is known already about NPS and its receptor, the output pattern of Nps-expressing neurons in the PB region predicts roles in threat response and circadian behavior.


Subject(s)
Parabrachial Nucleus , Animals , Parabrachial Nucleus/physiology , Parabrachial Nucleus/cytology , Mice , Efferent Pathways/cytology , Efferent Pathways/physiology , Mice, Transgenic , Neurons/metabolism , Male , Neuropeptides/metabolism , Neural Pathways/cytology
12.
Nature ; 631(8020): 360-368, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926570

ABSTRACT

A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC)1, which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines2 and X-ray holographic nanotomography3. With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour.


Subject(s)
Connectome , Drosophila melanogaster , Motor Neurons , Nerve Tissue , Neural Pathways , Synapses , Animals , Female , Datasets as Topic , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Drosophila melanogaster/ultrastructure , Extremities/physiology , Extremities/innervation , Holography , Microscopy, Electron , Motor Neurons/cytology , Motor Neurons/physiology , Motor Neurons/ultrastructure , Movement , Muscles/innervation , Muscles/physiology , Nerve Tissue/anatomy & histology , Nerve Tissue/cytology , Nerve Tissue/physiology , Nerve Tissue/ultrastructure , Neural Pathways/cytology , Neural Pathways/physiology , Neural Pathways/ultrastructure , Synapses/physiology , Synapses/ultrastructure , Tomography, X-Ray , Wings, Animal/innervation , Wings, Animal/physiology
13.
Nature ; 631(8020): 369-377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926579

ABSTRACT

Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles1. MN activity is coordinated by complex premotor networks that facilitate the contribution of individual muscles to many different behaviours2-6. Here we use connectomics7 to analyse the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. By contrast, wing premotor networks lack proportional synaptic connectivity, which may enable more flexible recruitment of wing steering muscles. Through comparison of the architecture of distinct motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.


Subject(s)
Connectome , Drosophila melanogaster , Extremities , Motor Neurons , Neural Pathways , Synapses , Wings, Animal , Animals , Female , Male , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Extremities/innervation , Extremities/physiology , Motor Neurons/physiology , Movement/physiology , Muscles/innervation , Muscles/physiology , Nerve Net/anatomy & histology , Nerve Net/cytology , Nerve Net/physiology , Neural Pathways/anatomy & histology , Neural Pathways/cytology , Neural Pathways/physiology , Synapses/physiology , Wings, Animal/innervation , Wings, Animal/physiology
14.
Sheng Li Xue Bao ; 76(2): 233-246, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658373

ABSTRACT

The high-order cognitive and executive functions are necessary for an individual to survive. The densely bidirectional innervations between the medial prefrontal cortex (mPFC) and the mediodorsal thalamus (MD) play a vital role in regulating high-order functions. Pyramidal neurons in mPFC have been classified into several subclasses according to their morphological and electrophysiological properties, but the properties of the input-specific pyramidal neurons in mPFC remain poorly understood. The present study aimed to profile the morphological and electrophysiological properties of mPFC pyramidal neurons innervated by MD. In the past, the studies for characterizing the morphological and electrophysiological properties of neurons mainly relied on the electrophysiological recording of a large number of neurons and their morphologic reconstructions. But, it is a low efficient method for characterizing the circuit-specific neurons. The present study combined the advantages of traditional morphological and electrophysiological methods with machine learning to address the shortcomings of the past method, to establish a classification model for the morphological and electrophysiological properties of mPFC pyramidal neurons, and to achieve more accurate and efficient identification of the properties from a small size sample of neurons. We labeled MD-innervated pyramidal neurons of mPFC using the trans-synaptic neural circuitry tracing method and obtained their morphological properties using whole-cell patch-clamp recording and morphologic reconstructions. The results showed that the classification model established in the present study could predict the electrophysiological properties of MD-innervated pyramidal neurons based on their morphology. MD-innervated pyramidal neurons exhibit larger basal dendritic length but lower apical dendrite complexity compared to non-MD-innervated neurons in the mPFC. The morphological characteristics of the two subtypes (ET-1 and ET-2) of mPFC pyramidal neurons innervated by MD are different, with the apical dendrites of ET-1 neurons being longer and more complex than those of ET-2 neurons. These results suggest that the electrophysiological properties of MD- innervated pyramidal neurons within mPFC correlate with their morphological properties, indicating that the different roles of these two subclasses in local circuits within PFC, as well as in PFC-cortical/subcortical brain region circuits.


Subject(s)
Prefrontal Cortex , Pyramidal Cells , Pyramidal Cells/physiology , Pyramidal Cells/cytology , Prefrontal Cortex/physiology , Prefrontal Cortex/cytology , Animals , Rats , Mediodorsal Thalamic Nucleus/physiology , Mediodorsal Thalamic Nucleus/cytology , Male , Electrophysiological Phenomena , Neural Pathways/physiology , Neural Pathways/cytology , Machine Learning , Rats, Sprague-Dawley , Patch-Clamp Techniques
15.
Nature ; 624(7991): 355-365, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092919

ABSTRACT

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Subject(s)
Brain , Epigenomics , Neural Pathways , Neurons , Animals , Mice , Amygdala , Brain/cytology , Brain/metabolism , Consensus Sequence , Datasets as Topic , Gene Expression Profiling , Hypothalamus/cytology , Mesencephalon/cytology , Neural Pathways/cytology , Neurons/metabolism , Neurotransmitter Agents/metabolism , Regulatory Sequences, Nucleic Acid , Rhombencephalon/cytology , Single-Cell Analysis , Thalamus/cytology , Transcription Factors/metabolism
16.
Nature ; 624(7990): 130-137, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993711

ABSTRACT

The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.


Subject(s)
Appetite Regulation , Brain Stem , Eating , Feedback, Physiological , Food , Satiation , Stomach , Appetite Regulation/physiology , Brain Stem/cytology , Brain Stem/physiology , Eating/physiology , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/metabolism , Prolactin-Releasing Hormone/metabolism , Satiation/physiology , Solitary Nucleus/cytology , Solitary Nucleus/physiology , Stomach/physiology , Taste/physiology , Time Factors , Animals , Mice
17.
Science ; 378(6626): 1336-1343, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36548429

ABSTRACT

The primary motor cortex (M1) is involved in the control of voluntary movements and is extensively mapped in this capacity. Although the M1 is implicated in modulation of pain, the underlying circuitry and causal underpinnings remain elusive. We unexpectedly unraveled a connection from the M1 to the nucleus accumbens reward circuitry through a M1 layer 6-mediodorsal thalamus pathway, which specifically suppresses negative emotional valence and associated coping behaviors in neuropathic pain. By contrast, layer 5 M1 neurons connect with specific cell populations in zona incerta and periaqueductal gray to suppress sensory hypersensitivity without altering pain affect. Thus, the M1 employs distinct, layer-specific pathways to attune sensory and aversive-emotional components of neuropathic pain, which can be exploited for purposes of pain relief.


Subject(s)
Motor Cortex , Neural Pathways , Neuralgia , Motor Cortex/cytology , Motor Cortex/physiology , Neural Pathways/cytology , Neural Pathways/physiology , Neuralgia/physiopathology , Neurons/physiology , Periaqueductal Gray/cytology , Periaqueductal Gray/physiology , Thalamus/cytology , Thalamus/physiology , Animals , Mice
18.
Nature ; 607(7919): 521-526, 2022 07.
Article in English | MEDLINE | ID: mdl-35794480

ABSTRACT

The direct and indirect pathways of the basal ganglia are classically thought to promote and suppress action, respectively1. However, the observed co-activation of striatal direct and indirect medium spiny neurons2 (dMSNs and iMSNs, respectively) has challenged this view. Here we study these circuits in mice performing an interval categorization task that requires a series of self-initiated and cued actions and, critically, a sustained period of dynamic action suppression. Although movement produced the co-activation of iMSNs and dMSNs in the sensorimotor, dorsolateral striatum (DLS), fibre photometry and photo-identified electrophysiological recordings revealed signatures of functional opponency between the two pathways during action suppression. Notably, optogenetic inhibition showed that DLS circuits were largely engaged to suppress-and not promote-action. Specifically, iMSNs on a given hemisphere were dynamically engaged to suppress tempting contralateral action. To understand how such regionally specific circuit function arose, we constructed a computational reinforcement learning model that reproduced key features of behaviour, neural activity and optogenetic inhibition. The model predicted that parallel striatal circuits outside the DLS learned the action-promoting functions, generating the temptation to act. Consistent with this, optogenetic inhibition experiments revealed that dMSNs in the associative, dorsomedial striatum, in contrast to those in the DLS, promote contralateral actions. These data highlight how opponent interactions between multiple circuit- and region-specific basal ganglia processes can lead to behavioural control, and establish a critical role for the sensorimotor indirect pathway in the proactive suppression of tempting actions.


Subject(s)
Corpus Striatum , Models, Neurological , Neural Inhibition , Neural Pathways , Neurons , Animals , Computer Simulation , Corpus Striatum/cytology , Corpus Striatum/physiology , Mice , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/cytology , Neurons/physiology , Optogenetics
19.
J Neurosci ; 42(6): 1068-1089, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34903572

ABSTRACT

The reuniens nucleus (RE) is situated at the most ventral position of the midline thalamus. In rats and mice RE is distinguished by bidirectional connections with the hippocampus and medial prefrontal cortex (mPFC) and a role in memory and cognition. In primates, many foundational questions pertaining to RE remain unresolved. We addressed these issues by investigating the composition of the rhesus monkey RE in both sexes by labeling for GABA, a marker of inhibitory neurons, and for the calcium-binding proteins parvalbumin (PV), calbindin (CB), and calretinin (CR), which label thalamic excitatory neurons that project to cortex. As in rats and mice, the macaque RE was mostly populated by CB and CR neurons, characteristic of matrix-dominant nuclei, and had bidirectional connections with hippocampus and mPFC area 25 (A25). Unlike rodents, we found GABAergic neurons in the monkey RE and a sparser but consistent population of core-associated thalamocortical PV neurons. RE had stronger connections with the basal amygdalar complex than in rats or mice. Amygdalar terminations were enriched with mitochondria and frequently formed successive synapses with the same postsynaptic structures, suggesting an active and robust pathway to RE. Significantly, hippocampal pathways formed multisynaptic complexes that uniquely involved excitatory projection neurons and dendrites of local inhibitory neurons in RE, extending this synaptic principle beyond sensory to high-order thalamic nuclei. Convergent pathways from hippocampus, A25, and amygdala in RE position it to flexibly coordinate activity for memory, cognition, and emotional context, which are disrupted in several psychiatric and neurologic diseases in humans.SIGNIFICANCE STATEMENT The primate RE is a central node for memory and cognition through connections with the hippocampus and mPFC. As in rats or mice, the primate RE is a matrix-dominant thalamic nucleus, suggesting signal traffic to the upper cortical layers. Unlike rats or mice, the primate RE contains inhibitory neurons, synaptic specializations with the hippocampal pathway, and robust connections with the amygdala, suggesting unique adaptations. Convergence of hippocampal, mPFC, and amygdalar pathways in RE may help unravel a circuit basis for binding diverse signals for conscious flexible behaviors and the synthesis of memory with affective significance in primates, whereas disruption of distinct circuit nodes may occur in psychiatric disorders in humans.


Subject(s)
Cognition/physiology , Emotions/physiology , Midline Thalamic Nuclei/physiology , Neural Pathways/physiology , Amygdala/cytology , Amygdala/physiology , Animals , Axons/ultrastructure , Female , Hippocampus/cytology , Hippocampus/physiology , Macaca mulatta , Male , Midline Thalamic Nuclei/cytology , Neural Pathways/cytology
20.
J Neurosci ; 42(5): 749-761, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34887319

ABSTRACT

Neuronal remodeling after brain injury is essential for functional recovery. After unilateral cortical lesion, axons from the intact cortex ectopically project to the denervated midbrain, but the molecular mechanisms remain largely unknown. To address this issue, we examined gene expression profiles in denervated and intact mouse midbrains after hemispherectomy at early developmental stages using mice of either sex, when ectopic contralateral projection occurs robustly. The analysis showed that various axon growth-related genes were upregulated in the denervated midbrain, and most of these genes are reportedly expressed by glial cells. To identify the underlying molecules, the receptors for candidate upregulated molecules were knocked out in layer 5 projection neurons in the intact cortex, using the CRISPR/Cas9-mediated method, and axonal projection from the knocked-out cortical neurons was examined after hemispherectomy. We found that the ectopic projection was significantly reduced when integrin subunit ß three or neurotrophic receptor tyrosine kinase 2 (also known as TrkB) was knocked out. Overall, the present study suggests that denervated midbrain-derived glial factors contribute to lesion-induced remodeling of the cortico-mesencephalic projection via these receptors.SIGNIFICANCE STATEMENT After brain injury, compensatory neural circuits are established that contribute to functional recovery. However, little is known about the intrinsic mechanism that underlies the injury-induced remodeling. We found that after unilateral cortical ablation expression of axon-growth promoting factors is elevated in the denervated midbrain and is involved in the formation of ectopic axonal projection from the intact cortex. Evidence further demonstrated that these factors are expressed by astrocytes and microglia, which are activated in the denervated midbrain. Thus, our present study provides a new insight into the mechanism of lesion-induced axonal remodeling and further therapeutic strategies after brain injury.


Subject(s)
Brain Injuries/metabolism , Cerebral Cortex/metabolism , Hemispherectomy/trends , Mesencephalon/metabolism , Neuronal Plasticity/physiology , Animals , Brain Injuries/genetics , Brain Injuries/pathology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cerebral Cortex/chemistry , Cerebral Cortex/cytology , Denervation/trends , Gene Knockout Techniques/methods , Mesencephalon/chemistry , Mesencephalon/cytology , Mice , Mice, Inbred ICR , Nerve Regeneration/physiology , Neural Pathways/cytology , Neural Pathways/metabolism , Organ Culture Techniques , Receptor, trkB/analysis , Receptor, trkB/genetics , Receptor, trkB/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL