Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 603
Filter
1.
Viruses ; 16(9)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39339835

ABSTRACT

The COVID-19 pandemic saw the emergence of various Variants of Concern (VOCs) that took the world by storm, often replacing the ones that preceded them. The characteristic mutant constellations of these VOCs increased viral transmissibility and infectivity. Their origin and evolution remain puzzling. With the help of data mining efforts and the GISAID database, a chronology of 22 haplotypes described viral evolution up until 23 July 2023. Since the three-dimensional atomic structures of proteins corresponding to the identified haplotypes are not available, ab initio methods were here utilized. Regions of intrinsic disorder proved to be important for viral evolution, as evidenced by the targeted change to the nucleocapsid (N) protein at the sequence, structure, and biochemical levels. The linker region of the N-protein, which binds to the RNA genome and self-oligomerizes for efficient genome packaging, was greatly impacted by mutations throughout the pandemic, followed by changes in structure and intrinsic disorder. Remarkably, VOC constellations acted co-operatively to balance the more extreme effects of individual haplotypes. Our strategy of mapping the dynamic evolutionary landscape of genetically linked mutations to the N-protein structure demonstrates the utility of ab initio modeling and deep learning tools for therapeutic intervention.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Haplotypes , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/chemistry , Humans , COVID-19/virology , COVID-19/epidemiology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/chemistry , Mutation , Evolution, Molecular , Models, Molecular , Seasons , Phosphoproteins/genetics , Phosphoproteins/chemistry , Protein Conformation , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/chemistry
2.
Int J Biol Macromol ; 279(Pt 3): 135352, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39242012

ABSTRACT

Coronaviruses pose serious threats to human and animal health worldwide, of which their structural nucleocapsid (N) proteins play multiple key roles in viral replication. However, the structures of animal coronavirus N proteins are poorly understood, posing challenges for research on their functions and pathogenic mechanisms as well as the development of N protein-based antiviral drugs. Therefore, N proteins must be further explored as potential antiviral targets. We determined the structure of the NNTD of feline infectious peritonitis virus (FIPV) and identified 3,6-dihydroxyflavone (3,6- DHF) as an effective N protein inhibitor. 3,6-DHF successfully inhibited FIPV replication in CRFK cells, showing broad-spectrum activity and effectiveness against drugresistant strains. Our study provides important insights for developing novel broadspectrum anti-coronavirus drugs and treating infections caused by drug-resistant mutant strains.


Subject(s)
Antiviral Agents , Coronavirus, Feline , Nucleocapsid Proteins , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Animals , Nucleocapsid Proteins/chemistry , Coronavirus, Feline/drug effects , Virus Replication/drug effects , Cats , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Cell Line , Protein Domains , Drug Resistance, Viral/drug effects
3.
Cell ; 187(20): 5587-5603.e19, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39293445

ABSTRACT

Filoviruses, including the Ebola and Marburg viruses, cause hemorrhagic fevers with up to 90% lethality. The viral nucleocapsid is assembled by polymerization of the nucleoprotein (NP) along the viral genome, together with the viral proteins VP24 and VP35. We employed cryo-electron tomography of cells transfected with viral proteins and infected with model Ebola virus to illuminate assembly intermediates, as well as a 9 Å map of the complete intracellular assembly. This structure reveals a previously unresolved third and outer layer of NP complexed with VP35. The intrinsically disordered region, together with the C-terminal domain of this outer layer of NP, provides the constant width between intracellular nucleocapsid bundles and likely functions as a flexible tether to the viral matrix protein in the virion. A comparison of intracellular nucleocapsids with prior in-virion nucleocapsid structures reveals that the nucleocapsid further condenses vertically in the virion. The interfaces responsible for nucleocapsid assembly are highly conserved and offer targets for broadly effective antivirals.


Subject(s)
Ebolavirus , Electron Microscope Tomography , Nucleocapsid , Virus Assembly , Ebolavirus/ultrastructure , Ebolavirus/chemistry , Ebolavirus/metabolism , Ebolavirus/physiology , Nucleocapsid/metabolism , Nucleocapsid/ultrastructure , Nucleocapsid/chemistry , Humans , Cryoelectron Microscopy/methods , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/ultrastructure , Nucleoproteins/chemistry , Nucleoproteins/metabolism , Nucleoproteins/ultrastructure , Animals , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Models, Molecular , Virion/ultrastructure , Virion/metabolism , Hemorrhagic Fever, Ebola/virology , Chlorocebus aethiops
4.
Int J Biol Macromol ; 279(Pt 2): 135201, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39216563

ABSTRACT

BACKGROUND: The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW: Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION: This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE: Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , COVID-19 Vaccines/immunology , Vaccine Development , Phosphoproteins/metabolism , Phosphoproteins/immunology , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/chemistry
5.
Sci Adv ; 10(31): eaax2323, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093972

ABSTRACT

The nucleocapsid protein of severe acute respiratory syndrome coronavirus 2 encapsidates the viral genome and is essential for viral function. The central disordered domain comprises a serine-arginine-rich (SR) region that is hyperphosphorylated in infected cells. This modification regulates function, although mechanistic details remain unknown. We use nuclear magnetic resonance to follow structural changes occurring during hyperphosphorylation by serine arginine protein kinase 1, glycogen synthase kinase 3, and casein kinase 1, that abolishes interaction with RNA. When eight approximately uniformly distributed sites have been phosphorylated, the SR domain binds the same interface as single-stranded RNA, resulting in complete inhibition of RNA binding. Phosphorylation by protein kinase A does not prevent RNA binding, indicating that the pattern resulting from physiologically relevant kinases is specific for inhibition. Long-range contacts between the RNA binding, linker, and dimerization domains are abrogated, phenomena possibly related to genome packaging and unpackaging. This study provides insight into the recruitment of specific host kinases to regulate viral function.


Subject(s)
Coronavirus Nucleocapsid Proteins , Protein Binding , RNA, Viral , SARS-CoV-2 , Phosphorylation , SARS-CoV-2/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Humans , RNA, Viral/metabolism , RNA, Viral/chemistry , Protein Conformation , COVID-19/virology , COVID-19/metabolism , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/chemistry , Models, Molecular , Binding Sites , Phosphoproteins
6.
J Virol ; 98(8): e0092624, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39082816

ABSTRACT

The swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused significant disruptions in porcine breeding and raised concerns about potential human infection. The nucleocapsid (N) protein of SADS-CoV plays a vital role in viral assembly and replication, but its structure and functions remain poorly understood. This study utilized biochemistry, X-ray crystallography, and immunization techniques to investigate the N protein's structure and function in SADS-CoV. Our findings revealed distinct domains within the N protein, including an RNA-binding domain, two disordered domains, and a dimerization domain. Through biochemical assays, we confirmed that the N-terminal domain functions as an RNA-binding domain, and the C-terminal domain is involved in dimerization, with the crystal structure analysis providing visual evidence of dimer formation. Immunization experiments demonstrated that the disordered domain 2 elicited a significant antibody response. These identified domains and their interactions are crucial for viral assembly. This comprehensive understanding of the N protein in SADS-CoV enhances our knowledge of its assembly and replication mechanisms, enabling the development of targeted interventions and therapeutic strategies. IMPORTANCE: SADS-CoV is a porcine coronavirus that originated from a bat HKU2-related coronavirus. It causes devastating swine diseases and poses a high risk of spillover to humans. The coronavirus N protein, as the most abundant viral protein in infected cells, likely plays a key role in viral assembly and replication. However, the structure and function of this protein remain unclear. Therefore, this study employed a combination of biochemistry and X-ray crystallography to uncover distinct structural domains in the N protein, including RNA-binding domains, two disordered domains, and dimerization domains. Additionally, we made the novel discovery that the disordered domain elicited a significant antibody response. These findings provide new insights into the structure and functions of the SADS-CoV N protein, which have important implications for future studies on SADS-CoV diagnosis, as well as the development of vaccines and anti-viral drugs.


Subject(s)
Nucleocapsid Proteins , Protein Multimerization , Animals , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Crystallography, X-Ray , Swine , Epitopes/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Protein Binding , Antibodies, Viral/immunology , Humans , Protein Domains , Models, Molecular
7.
Viruses ; 16(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39066193

ABSTRACT

Puumala orthohantavirus (PUUV) is an emerging zoonotic virus endemic to Europe and Russia that causes nephropathia epidemica, a mild form of hemorrhagic fever with renal syndrome (HFRS). There are limited options for treatment and diagnosis of orthohantavirus infection, making the search for potential immunogenic candidates crucial. In the present work, various bioinformatics tools were employed to design conserved immunogenic peptides containing multiple epitopes of PUUV nucleocapsid protein. Eleven conserved peptides (90% conservancy) of the PUUV nucleocapsid protein were identified. Three conserved peptides containing multiple T and B cell epitopes were selected using a consensus epitope prediction algorithm. Molecular docking using the HPEP dock server demonstrated strong binding interactions between the epitopes and HLA molecules (ten alleles for each class I and II HLA). Moreover, an analysis of population coverage using the IEDB database revealed that the identified peptides have over 90% average population coverage across six continents. Molecular docking and simulation analysis reveal a stable interaction with peptide constructs of chosen immunogenic peptides and Toll-like receptor-4. These computational analyses demonstrate selected peptides' immunogenic potential, which needs to be validated in different experimental systems.


Subject(s)
Molecular Docking Simulation , Nucleocapsid Proteins , Peptides , Puumala virus , Puumala virus/immunology , Puumala virus/genetics , Peptides/immunology , Peptides/chemistry , Humans , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/chemistry , Hemorrhagic Fever with Renal Syndrome/immunology , Hemorrhagic Fever with Renal Syndrome/virology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/chemistry , Computational Biology , Conserved Sequence , Amino Acid Sequence , Protein Binding
8.
Talanta ; 278: 126494, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38955100

ABSTRACT

The spread of the SARS-CoV-2 virus has had an unprecedented impact, both by posing a serious risk to human health and by amplifying the burden on the global economy. The rapid identification of the SARS-CoV-2 virus has been crucial to preventing and controlling the spread of SARS-CoV-2 infections. In this study, we propose a multilayered plasmonic nanotrap (MPNT) device for the rapid identification of single particles of SARS-CoV-2 virus in ultra-high sensitivity by surface-enhanced Raman scattering (SERS). The MPNT device is composed of arrays of concentric cylindrical cavities with Ag/SiO2/Ag multilayers deposited on the top and at the bottom. By varying the diameter of the cylinders and the thickness of the multilayers, the resonant optical absorption and local electric field were optimized. The SERS enhancement factors of the proposed device are of the order of 108, which enable the rapid identification of SARS-CoV-2 N protein in concentrations as low as 1.25 × 10-15-12.5 × 10-15 g mL-1 within 1 min. The developed MPNT SERS device provides a label-free and rapid detection platform for SARS-CoV-2 virus. The general nature of the device makes it equally suitable to detect other infectious viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Silver , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , SARS-CoV-2/isolation & purification , Silver/chemistry , Humans , COVID-19/diagnosis , COVID-19/virology , Coronavirus Nucleocapsid Proteins/analysis , Silicon Dioxide/chemistry , Phosphoproteins/analysis , Phosphoproteins/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Nucleocapsid Proteins/chemistry
9.
Int J Biol Macromol ; 273(Pt 2): 133167, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38885868

ABSTRACT

The Nucleocapsid (N) protein of SARS-CoV-2 plays a crucial role in viral replication and pathogenesis, making it an attractive target for developing antiviral therapeutics. In this study, we used differential scanning fluorimetry to establish a high-throughput screening method for identifying high-affinity ligands of N-terminal domain of the N protein (N-NTD). We screened an FDA-approved drug library of 1813 compounds and identified 102 compounds interacting with N-NTD. The screened compounds were further investigated for their ability to inhibit the nucleic-acid binding activity of the N protein using electrophoretic mobility-shift assays. We have identified three inhibitors, Ceftazidime, Sennoside A, and Tannic acid, that disrupt the N protein's interaction with RNA probe. Ceftazidime and Sennoside A exhibited nano-molar range binding affinities with N protein, determined through surface plasmon resonance. The binding sites of Ceftazidime and Sennoside A were investigated using [1H, 15N]-heteronuclear single quantum coherence (HSQC) NMR spectroscopy. Ceftazidime and Sennoside A bind to the putative RNA binding site of the N protein, thus providing insights into the inhibitory mechanism of these compounds. These findings will contribute to the development of novel antiviral agents targeting the N protein of SARS-CoV-2.


Subject(s)
Antiviral Agents , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/metabolism , Binding Sites , Humans , Protein Binding , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/antagonists & inhibitors , Tannins/chemistry , Tannins/pharmacology , COVID-19 Drug Treatment , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/antagonists & inhibitors , Nucleocapsid Proteins/metabolism
10.
Sci Rep ; 14(1): 14099, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890308

ABSTRACT

We report the first cryoEM structure of the Hendra henipavirus nucleoprotein in complex with RNA, at 3.5 Å resolution, derived from single particle analysis of a double homotetradecameric RNA-bound N protein ring assembly exhibiting D14 symmetry. The structure of the HeV N protein adopts the common bi-lobed paramyxoviral N protein fold; the N-terminal and C-terminal globular domains are bisected by an RNA binding cleft containing six RNA nucleotides and are flanked by the N-terminal and C-terminal arms, respectively. In common with other paramyxoviral nucleocapsids, the lateral interface between adjacent Ni and Ni+1 protomers involves electrostatic and hydrophobic interactions mediated primarily through the N-terminal arm and globular domains with minor contribution from the C-terminal arm. However, the HeV N multimeric assembly uniquely identifies an additional protomer-protomer contact between the Ni+1 N-terminus and Ni-1 C-terminal arm linker. The model presented here broadens the understanding of RNA-bound paramyxoviral nucleocapsid architectures and provides a platform for further insight into the molecular biology of HeV, as well as the development of antiviral interventions.


Subject(s)
Cryoelectron Microscopy , Hendra Virus , Nucleocapsid , Nucleoproteins , Hendra Virus/chemistry , Nucleoproteins/chemistry , Nucleoproteins/ultrastructure , Nucleoproteins/metabolism , Nucleocapsid/chemistry , Nucleocapsid/ultrastructure , Nucleocapsid/metabolism , Models, Molecular , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA, Viral/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/ultrastructure , Nucleocapsid Proteins/metabolism
11.
Elife ; 132024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941236

ABSTRACT

Genetic diversity is a hallmark of RNA viruses and the basis for their evolutionary success. Taking advantage of the uniquely large genomic database of SARS-CoV-2, we examine the impact of mutations across the spectrum of viable amino acid sequences on the biophysical phenotypes of the highly expressed and multifunctional nucleocapsid protein. We find variation in the physicochemical parameters of its extended intrinsically disordered regions (IDRs) sufficient to allow local plasticity, but also observe functional constraints that similarly occur in related coronaviruses. In biophysical experiments with several N-protein species carrying mutations associated with major variants, we find that point mutations in the IDRs can have nonlocal impact and modulate thermodynamic stability, secondary structure, protein oligomeric state, particle formation, and liquid-liquid phase separation. In the Omicron variant, distant mutations in different IDRs have compensatory effects in shifting a delicate balance of interactions controlling protein assembly properties, and include the creation of a new protein-protein interaction interface in the N-terminal IDR through the defining P13L mutation. A picture emerges where genetic diversity is accompanied by significant variation in biophysical characteristics of functional N-protein species, in particular in the IDRs.


Like other types of RNA viruses, the genetic material of SARS-CoV-2 (the agent responsible for COVID-19) is formed of an RNA molecule which is prone to accumulating mutations. This gives SARS-CoV-2 the ability to evolve quickly, and often to remain one step ahead of treatments. Understanding how these mutations shape the behavior of RNA viruses is therefore crucial to keep diseases such as COVID-19 under control. The gene that codes for the protein that 'packages' the genetic information inside SARS-CoV-2 is particularly prone to mutations. This nucleocapsid (N) protein participates in many key processes during the life cycle of the virus, including potentially interfering with the immune response. Exactly how the physical properties of the N-Protein are impacted by the mutations in its genetic sequence remains unclear. To investigate this question, Nguyen et al. predicted the various biophysical properties of different regions of the N-protein based on a computer-based analysis of SARS-CoV-2 genetic databases. This allowed them to determine if specific protein regions were positively or negatively charged in different mutants. The analyses showed that some domains exhibited great variability in their charge between protein variants ­ reflecting the fact that the corresponding genetic sequences showed high levels of plasticity. Other regions remained conserved, however, including across related coronaviruses. Nguyen et al. also conducted biochemical experiments on a range of N-proteins obtained from clinically relevant SARS-CoV-2 variants. Their results highlighted the importance of protein segments with no fixed three-dimensional structure. Mutations in the related sequences created high levels of variation in the physical properties of these 'intrinsically disordered' regions, which had wide-ranging consequences. Some of these genetic changes even gave individual N-proteins the ability to interact with each other in a completely new way. These results shed new light on the relationship between genetic mutations and the variable physical properties of RNA virus proteins. Nguyen et al. hope that this knowledge will eventually help to develop more effective treatments for viral infections.


Subject(s)
Coronavirus Nucleocapsid Proteins , Mutation , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , COVID-19/virology , COVID-19/genetics , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/chemistry , Thermodynamics , Protein Stability
12.
J Biol Chem ; 300(6): 107354, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718862

ABSTRACT

The nucleocapsid protein (N) of SARS-CoV-2 is essential for virus replication, genome packaging, evading host immunity, and virus maturation. N is a multidomain protein composed of an independently folded monomeric N-terminal domain that is the primary site for RNA binding and a dimeric C-terminal domain that is essential for efficient phase separation and condensate formation with RNA. The domains are separated by a disordered Ser/Arg-rich region preceding a self-associating Leu-rich helix. Phosphorylation in the Ser/Arg region in infected cells decreases the viscosity of N:RNA condensates promoting viral replication and host immune evasion. The molecular level effect of phosphorylation, however, is missing from our current understanding. Using NMR spectroscopy and analytical ultracentrifugation, we show that phosphorylation destabilizes the self-associating Leu-rich helix 30 amino-acids distant from the phosphorylation site. NMR and gel shift assays demonstrate that RNA binding by the linker is dampened by phosphorylation, whereas RNA binding to the full-length protein is not significantly affected presumably due to retained strong interactions with the primary RNA-binding domain. Introducing a switchable self-associating domain to replace the Leu-rich helix confirms the importance of linker self-association to droplet formation and suggests that phosphorylation not only increases solubility of the positively charged elongated Ser/Arg region as observed in other RNA-binding proteins but can also inhibit self-association of the Leu-rich helix. These data highlight the effect of phosphorylation both at local sites and at a distant self-associating hydrophobic helix in regulating liquid-liquid phase separation of the entire protein.


Subject(s)
Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Arginine/chemistry , Arginine/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , COVID-19/virology , COVID-19/metabolism , Magnetic Resonance Spectroscopy , Nucleocapsid/metabolism , Nucleocapsid/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/chemistry , Phase Separation , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphorylation , Protein Binding , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Serine/metabolism , Serine/chemistry
13.
Protein Expr Purif ; 221: 106506, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38772430

ABSTRACT

Influenza poses a substantial health risk, with infants and the elderly being particularly susceptible to its grave impacts. The primary challenge lies in its rapid genetic evolution, leading to the emergence of new Influenza A strains annually. These changes involve punctual mutations predominantly affecting the two main glycoproteins: Hemagglutinin (HA) and Neuraminidase (NA). Our existing vaccines target these proteins, providing short-term protection, but fall short when unexpected pandemics strike. Delving deeper into Influenza's genetic makeup, we spotlight the nucleoprotein (NP) - a key player in the transcription, replication, and packaging of RNA. An intriguing characteristic of the NP is that it is highly conserved across all Influenza A variants, potentially paving the way for a more versatile and broadly protective vaccine. We designed and synthesized a novel NP-Hoc fusion protein combining Influenza A nucleoprotein and T4 phage Hoc, cloned using Gibson assembly in E. coli, and purified via ion affinity chromatography. Simultaneously, we explore the T4 coat protein Hoc, typically regarded as inconsequential in controlled viral replication. Yet, it possesses a unique ability: it can link with another protein, showcasing it on the T4 phage coat. Fusing these concepts, our study designs, expresses, and purifies a novel fusion protein named NP-Hoc. We propose this protein as the basis for a new generation of vaccines, engineered to guard broadly against Influenza A. The excitement lies not just in the immediate application, but the promise this holds for future pandemic resilience, with NP-Hoc marking a significant leap in adaptive, broad-spectrum influenza prevention.


Subject(s)
Bacteriophage T4 , Escherichia coli , Recombinant Fusion Proteins , Bacteriophage T4/genetics , Bacteriophage T4/chemistry , Bacteriophage T4/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Influenza A virus/genetics , Influenza A virus/metabolism , Influenza Vaccines/genetics , Influenza Vaccines/biosynthesis , Influenza Vaccines/immunology , Influenza Vaccines/chemistry , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/isolation & purification
14.
Nucleic Acids Res ; 52(11): 6647-6661, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38587193

ABSTRACT

The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-)protein into ribonucleoprotein particles (RNPs), 38 ± 10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to ancestral and mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining nucleocapsid protein variants in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multivalent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.


Subject(s)
Coronavirus Nucleocapsid Proteins , Protein Multimerization , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , Protein Binding , Binding Sites , Ribonucleoproteins/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Virus Assembly/genetics , Humans , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Models, Molecular , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphoproteins/genetics , COVID-19/virology
15.
J Virol ; 98(4): e0197223, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38470155

ABSTRACT

The coordinated packaging of the segmented genome of the influenza A virus (IAV) into virions is an essential step of the viral life cycle. This process is controlled by the interaction of packaging signals present in all eight viral RNA (vRNA) segments and the viral nucleoprotein (NP), which binds vRNA via a positively charged binding groove. However, mechanistic models of how the packaging signals and NP work together to coordinate genome packaging are missing. Here, we studied genome packaging in influenza A/SC35M virus mutants that carry mutated packaging signals as well as specific amino acid substitutions at the highly conserved lysine (K) residues 184 and 229 in the RNA-binding groove of NP. Because these lysines are acetylated and thus neutrally charged in infected host cells, we replaced them with glutamine to mimic the acetylated, neutrally charged state or arginine to mimic the non-acetylated, positively charged state. Our analysis shows that the coordinated packaging of eight vRNAs is influenced by (i) the charge state of the replacing amino acid and (ii) its location within the RNA-binding groove. Accordingly, we propose that lysine acetylation induces different charge states within the RNA-binding groove of NP, thereby supporting the activity of specific packaging signals during coordinated genome packaging. IMPORTANCE: Influenza A viruses (IAVs) have a segmented viral RNA (vRNA) genome encapsidated by multiple copies of the viral nucleoprotein (NP) and organized into eight distinct viral ribonucleoprotein complexes. Although genome segmentation contributes significantly to viral evolution and adaptation, it requires a highly sophisticated genome-packaging mechanism. How eight distinct genome complexes are incorporated into the virion is poorly understood, but previous research suggests an essential role for both vRNA packaging signals and highly conserved NP amino acids. By demonstrating that the packaging process is controlled by charge-dependent interactions of highly conserved lysine residues in NP and vRNA packaging signals, our study provides new insights into the sophisticated packaging mechanism of IAVs.


Subject(s)
Influenza A virus , Nucleocapsid Proteins , Viral Genome Packaging , Animals , Dogs , Humans , Amino Acid Substitution , Cell Line , Genome, Viral , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza A virus/metabolism , Lysine/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , Viral Genome Packaging/genetics , Virion/chemistry , Virion/genetics , Virion/metabolism , Mutation , Static Electricity
16.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 113-122, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38265877

ABSTRACT

Phenuiviridae nucleoprotein is the main structural and functional component of the viral cycle, protecting the viral RNA and mediating the essential replication/transcription processes. The nucleoprotein (N) binds the RNA using its globular core and polymerizes through the N-terminus, which is presented as a highly flexible arm, as demonstrated in this article. The nucleoprotein exists in an `open' or a `closed' conformation. In the case of the closed conformation the flexible N-terminal arm folds over the RNA-binding cleft, preventing RNA adsorption. In the open conformation the arm is extended in such a way that both RNA adsorption and N polymerization are possible. In this article, single-crystal X-ray diffraction and small-angle X-ray scattering were used to study the N protein of Toscana virus complexed with a single-chain camelid antibody (VHH) and it is shown that in the presence of the antibody the nucleoprotein is unable to achieve a functional assembly to form a ribonucleoprotein complex.


Subject(s)
Nucleoproteins , Sandfly fever Naples virus , Nucleoproteins/chemistry , Sandfly fever Naples virus/genetics , Sandfly fever Naples virus/metabolism , Nucleocapsid Proteins/chemistry , Models, Molecular , RNA, Viral/chemistry , RNA, Viral/metabolism
17.
Nucleic Acids Res ; 52(5): 2609-2624, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38153183

ABSTRACT

The SARS-CoV-2 Nucleocapsid (N) protein is responsible for condensation of the viral genome. Characterizing the mechanisms controlling nucleic acid binding is a key step in understanding how condensation is realized. Here, we focus on the role of the RNA binding domain (RBD) and its flanking disordered N-terminal domain (NTD) tail, using single-molecule Förster Resonance Energy Transfer and coarse-grained simulations. We quantified contact site size and binding affinity for nucleic acids and concomitant conformational changes occurring in the disordered region. We found that the disordered NTD increases the affinity of the RBD for RNA by about 50-fold. Binding of both nonspecific and specific RNA results in a modulation of the tail configurations, which respond in an RNA length-dependent manner. Not only does the disordered NTD increase affinity for RNA, but mutations that occur in the Omicron variant modulate the interactions, indicating a functional role of the disordered tail. Finally, we found that the NTD-RBD preferentially interacts with single-stranded RNA and that the resulting protein:RNA complexes are flexible and dynamic. We speculate that this mechanism of interaction enables the Nucleocapsid protein to search the viral genome for and bind to high-affinity motifs.


Subject(s)
Coronavirus Nucleocapsid Proteins , RNA, Viral , SARS-CoV-2 , Humans , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , COVID-19/virology , Nucleocapsid Proteins/chemistry , Protein Binding , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
18.
J Med Virol ; 95(12): e29270, 2023 12.
Article in English | MEDLINE | ID: mdl-38047459

ABSTRACT

Coronavirus disease 2019 (COVID-19) pathogenesis is influenced by reactive oxygen species (ROS). Nevertheless, the precise mechanisms implicated remain poorly understood. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the main driver for this condition, is a structural protein indispensable for viral replication and assembly, and its role in ROS production has not been reported. This study shows that SARS-CoV-2 N protein expression enhances mitochondrial ROS level. Bulk RNA-sequencing suggests of aberrant redox state of the electron transport chain. Accordingly, this protein hinders ATP production but simultaneously augments the activity of complexes I and III, and most mitochondrially encoded complex I and III proteins are upregulated by it. Mechanistically, N protein of SARS-CoV-2 shows significant mitochondrial localization. It interacts with mitochondrial transcription components and stabilizes them. Moreover, it also impairs the activity of antioxidant enzymes with or without detectable interaction.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Reactive Oxygen Species , Nucleocapsid Proteins/chemistry , Virus Replication
19.
Microbiol Mol Biol Rev ; 87(4): e0008223, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37750733

ABSTRACT

SUMMARYNegative and ambisense RNA viruses are the causative agents of important human diseases such as influenza, measles, Lassa fever, and Ebola hemorrhagic fever. The viral genome of these RNA viruses consists of one or more single-stranded RNA molecules that are encapsidated by viral nucleocapsid proteins to form a ribonucleoprotein complex (RNP). This RNP acts as protection, as a scaffold for RNA folding, and as the context for viral replication and transcription by a viral RNA polymerase. However, the roles of the viral nucleoproteins extend beyond these functions during the viral infection cycle. Recent advances in structural biology techniques and analysis methods have provided new insights into the formation, function, dynamics, and evolution of negative sense virus nucleocapsid proteins, as well as the role that they play in host innate immune responses against viral infection. In this review, we discuss the various roles of nucleocapsid proteins, both in the context of RNPs and in RNA-free states, as well as the open questions that remain.


Subject(s)
RNA Viruses , Virus Diseases , Humans , RNA Viruses/genetics , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , RNA, Viral/chemistry , Virus Replication/physiology , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism
20.
J Virol ; 97(9): e0004023, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37695057

ABSTRACT

The human immunodeficiency virus-1 (HIV-1) nucleocapsid protein (NCp7) is a nucleic acid chaperone protein with two highly conserved zinc fingers. To exert its key roles in the viral cycle, NCp7 interacts with several host proteins. Among them, the human NoL12 protein (hNoL12) was previously identified in genome wide screens as a potential partner of NCp7. hNoL12 is a highly conserved 25 kDa nucleolar RNA-binding protein implicated in the 5'end processing of ribosomal RNA in the nucleolus and thus in the assembly and maturation of ribosomes. In this work, we confirmed the NCp7/hNoL12 interaction in cells by Förster resonance energy transfer visualized by Fluorescence Lifetime Imaging Microscopy and co-immunoprecipitation. The interaction between NCp7 and hNoL12 was found to strongly depend on their both binding to RNA, as shown by the loss of interaction when the cell lysates were pretreated with RNase. Deletion mutants of hNoL12 were tested for their co-immunoprecipitation with NCp7, leading to the identification of the exonuclease domain of hNoL12 as the binding domain for NCp7. Finally, the interaction with hNoL12 was found to be specific of the mature NCp7 and to require NCp7 basic residues. IMPORTANCE HIV-1 mature nucleocapsid (NCp7) results from the maturation of the Gag precursor in the viral particle and is thus mostly abundant in the first phase of the infection which ends with the genomic viral DNA integration in the cell genome. Most if not all the nucleocapsid partners identified so far are not specific of the mature form. We described here the specific interaction in the nucleolus between NCp7 and the human nucleolar protein 12, a protein implicated in ribosomal RNA maturation and DNA damage response. This interaction takes place in the cell nucleolus, a subcellular compartment where NCp7 accumulates. The absence of binding between hNoL12 and Gag makes hNoL12 one of the few known specific cellular partners of NCp7.


Subject(s)
HIV-1 , Nuclear Proteins , Nucleocapsid Proteins , RNA-Binding Proteins , gag Gene Products, Human Immunodeficiency Virus , Humans , Capsid Proteins/chemistry , Capsid Proteins/metabolism , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/metabolism , HIV-1/genetics , HIV-1/metabolism , Nuclear Proteins/metabolism , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , RNA, Ribosomal/metabolism , RNA-Binding Proteins/metabolism , Zinc Fingers , Fluorescence Resonance Energy Transfer , Protein Binding , Immunoprecipitation
SELECTION OF CITATIONS
SEARCH DETAIL