Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.199
Filter
1.
Sci Prog ; 107(3): 368504241276771, 2024.
Article in English | MEDLINE | ID: mdl-39228317

ABSTRACT

Lung cancer (LC) is a highly lethal cancer worldwide. Research on the distribution and nature of extrachromosomal DNA molecules (EcDNAm) in early LC is scarce. In this study, after removing linear DNA and mitochondrial circular DNA, EcDNAm were extracted from two paired LC tissue samples and amplified using rolling circle amplification. High throughput extrachromosomal DNA (EcDNA) or RNA sequencing and bioinformatics analysis were subsequently utilized to explore the distribution and nature of the EcDNAm. Additionally, to elucidate the role of oncogenes with large EcDNAm sizes, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed. The RNA sequencing results revealed significant differences in certain genes between tumors and corresponding normal samples. At the same time, slight distinctions were observed between relapsed and non-relapsed tumor samples. The nature of the EcDNAm was compared between LC samples and matched normal samples. There was a tendency for the number of EcDNAm with longer size (EcDNA) and its containing driver oncogenes to be higher in cancer samples. Enrichment analysis of the cancer samples revealed enrichment in biological processes, such as positive regulation of protein localization, axon development, and in-utero embryonic development. This study highlights the universal distribution and characteristics of EcDNAm in early LC. Moreover, our work fills the investigation of the EcDNAm gap and future studies should focus on the application of EcDNA as a potential biomarker in patients with early LC.


Subject(s)
Lung Neoplasms , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Humans , Oncogenes/genetics , Biomarkers, Tumor/genetics , Computational Biology , DNA/genetics , DNA/analysis
2.
Diagn Pathol ; 19(1): 120, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237939

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) remains one of the most lethal urological malignancies even though a great number of improvements in diagnosis and management have achieved over the past few decades. Accumulated evidence revealed that histone deacetylases (HDACs) play vital role in cell proliferation, differentiation and apoptosis. Nevertheless, the biological functions of histone deacetylation modification related genes in ccRCC remains poorly understood. METHOD: Bulk transcriptomic data and clinical information of ccRCC patients were obtained from the TCGA database and collected from the Chinese PLA General Hospital. A total of 36 histone deacetylation genes were selected and studied in our research. Univariate cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression, random forest (RF) analysis, and protein-protein interaction (PPI) network analysis were applied to identify key genes affecting the prognosis of ccRCC. The 'oncoPredict' algorithm was utilized for drug-sensitive analysis. Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore the potential biological function. The ssGSEA algorithm was used for tumor immune microenvironment analysis. The expression levels of HDAC10 were validated by RT-PCR and immunohistochemistry (IHC). 5-ethynyl-2'-deoxyuridine (EdU assay), CCK-8 assay, cell transwell migration and invasion assay and colony formation assay were performed to detect the proliferation and invasion ability of ccRCC cells. A nomogram incorporating HDAC10 and clinicopathological characteristics was established to predict the prognosis of ccRCC patients. RESULT: Two machine learning algorithms and PPI analysis identified four histone deacetylation genes that have a significant association with the prognosis of ccRCC, with HDAC10 being the key gene among them. HDAC10 is highly expressed in ccRCC and its high expression is associated with poor prognosis for ccRCC patients. Pathway enrichment and the experiments of EdU staining, CCK-8 assay, cell transwell migration and invasion assay and colony formation assay demonstrated that HDAC10 mediated the proliferation and metastasis of ccRCC cells and involved in reshaping the tumor microenvironment (TME) of ccRCC. A clinically reliable prognostic predictive model was established by incorporating HDAC10 and other clinicopathological characteristics ( https://nomogramhdac10.shinyapps.io/HDAC10_Nomogram/ ). CONCLUSION: Our study found the increased expression of HDAC10 was closely associated with poor prognosis of ccRCC patients. HDAC10 showed a pro-tumorigenic effect on ccRCC and promote the proliferation and metastasis of ccRCC, which may provide new light on targeted therapy for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Proliferation , Histone Deacetylases , Kidney Neoplasms , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Cell Proliferation/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Male , Female , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Prognosis , Tumor Microenvironment/genetics , Cell Line, Tumor , Protein Interaction Maps , Oncogenes/genetics , Aged
3.
Bioinformatics ; 40(Suppl 2): ii37-ii44, 2024 09 01.
Article in English | MEDLINE | ID: mdl-39230704

ABSTRACT

MOTIVATION: Genomic instability is a hallmark of cancer, leading to many somatic alterations. Identifying which alterations have a system-wide impact is a challenging task. Nevertheless, this is an essential first step for prioritizing potential biomarkers. We developed CIBRA (Computational Identification of Biologically Relevant Alterations), a method that determines the system-wide impact of genomic alterations on tumor biology by integrating two distinct omics data types: one indicating genomic alterations (e.g. genomics), and another defining a system-wide expression response (e.g. transcriptomics). CIBRA was evaluated with genome-wide screens in 33 cancer types using primary and metastatic cancer data from the Cancer Genome Atlas and Hartwig Medical Foundation. RESULTS: We demonstrate the capability of CIBRA by successfully confirming the impact of point mutations in experimentally validated oncogenes and tumor suppressor genes (0.79 AUC). Surprisingly, many genes affected by structural variants were identified to have a strong system-wide impact (30.3%), suggesting that their role in cancer development has thus far been largely under-reported. Additionally, CIBRA can identify impact with only 10 cases and controls, providing a novel way to prioritize genomic alterations with a prominent role in cancer biology. Our findings demonstrate that CIBRA can identify cancer drivers by combining genomics and transcriptomics data. Moreover, our work shows an unexpected substantial system-wide impact of structural variants in cancer. Hence, CIBRA has the potential to preselect and refine current definitions of genomic alterations to derive more nuanced biomarkers for diagnostics, disease progression, and treatment response. AVAILABILITY AND IMPLEMENTATION: The R package CIBRA is available at https://github.com/AIT4LIFE-UU/CIBRA.


Subject(s)
Genomics , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/metabolism , Genomics/methods , Computational Biology/methods , Oncogenes , Biomarkers, Tumor/genetics , Genomic Instability
4.
Clin Respir J ; 18(8): e13801, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135128

ABSTRACT

BACKGROUND: circRNA NFIX has been shown to exist as an oncogene in glioma. But its expression and role in NSCLC (non-small cell lung cancer) are still unclear. This research aimed to discover the expression and function of circRNA NFIX in NSCLC. METHODS: In this research, qRT-PCR was utilized to investigate the expression levels of circRNA NFIX, miRNA-214-3p, and TRIAP1 in NSCLC tissues and cell lines. The binding sites between circRNA NFIX/TRIAP1 and miRNA-214-3p were predicted using the Starbase. These interactions were further validated using a double luciferase reporter assay. Cell proliferation and apoptosis were assessed through MTT and flow cytometry, respectively. The expression of apoptosis-related proteins was measured by western blot assay. RESULTS: miRNA-214-3p could link with circRNA NFIX. circRNA NFIX was upregulated, while miRNA-214-3p was downregulated in NSCLC cell lines and clinical samples. Besides, suppression of circRNA NFIX repressed cell proliferation and induced apoptosis in NSCLC cells by upregulating miRNA-214-3p expression. Besides, the data indicated that TRIAP1 was a target of miRNA-214-3p, and it was negatively regulated by miRNA-214-3p in NSCLC cells. The excessive expression of miRNA-214-3p suppressed NSCLC cell proliferation and increased apoptosis. In addition, overexpression of TRIAP1 significantly reversed the effects on NSCLC cells caused by miRNA-214-3p mimic. CONCLUSION: circRNA NFIX silencing repressed the proliferation of NSCLC cells and induced cell apoptosis by regulating the miR-214-3p/TRIAP1 axis, which was a potential diagnostic and therapeutic target for NSCLC.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , NFI Transcription Factors , RNA, Circular , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Proliferation/genetics , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism , Apoptosis/genetics , Cell Line, Tumor , Oncogenes/genetics , Up-Regulation , Intracellular Signaling Peptides and Proteins
5.
Genet Res (Camb) ; 2024: 9279653, 2024.
Article in English | MEDLINE | ID: mdl-39185021

ABSTRACT

Backgroundsand Aims. Colorectal cancer (CRC) represents a major global health challenge, necessitating comprehensive investigations into its underlying molecular mechanisms to enhance diagnostic and therapeutic strategies. This study focuses on elucidating the oncogenic role of Membrane-Associated Ring-CH-Type Finger 9 (MARCHF9), a RING-Type E3 ubiquitin transferase, in CRC. We aim to assess MARCHF9's clinical significance, functional impact on CRC progression, and its potential as a prognostic biomarker. Methods. We leveraged data from the Cancer Genome Atlas (TCGA) cohort to evaluate MARCHF9 expression profiles in CRC. In vitro experiments involved siRNA-mediated MARCHF9 knockdown in COAD cell lines (SW480 and LoVo). Cell proliferation and invasion assays were conducted to investigate MARCHF9's functional relevance. Survival analyses were performed to assess its prognostic role. Results. Our analysis revealed significantly elevated MARCHF9 expression in CRC tissues compared to normal colorectal tissues (P < 0.05). High MARCHF9 expression correlated with advanced clinical stages, distant metastases, and the presence of residual tumors in CRC patients. Survival analyses demonstrated that high MARCHF9 expression predicted unfavorable overall and disease-free survival outcomes (P < 0.05). In vitro experiments further supported its oncogenic potential, with MARCHF9 knockdown inhibiting COAD cell proliferation and invasion. Conclusions. This study unveils the oncogenic role of MARCHF9 in CRC, highlighting its clinical relevance as a potential biomarker and therapeutic target. MARCHF9's association with adverse clinicopathological features and its functional impact on cancer cell behavior underscore its significance in CRC progression. Further research is essential to elucidate precise mechanisms by which MARCHF9 enhances tumorigenesis and to explore its therapeutic potential in CRC management.


Subject(s)
Biomarkers, Tumor , Cell Proliferation , Colorectal Neoplasms , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Prognosis , Cell Proliferation/genetics , Cell Line, Tumor , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Male , Gene Expression Regulation, Neoplastic , Middle Aged , Membrane Proteins/genetics , Membrane Proteins/metabolism , Carcinogenesis/genetics , Oncogenes/genetics , Aged
6.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125905

ABSTRACT

Colorectal cancer (CRC) is one of the most frequent and mortality-causing neoplasia, with various distributions between populations. Strong hereditary predispositions are the causatives of a small percentage of CRC, and most cases have no transparent genetic background. This is a vast arena for exploring cancer low-susceptibility genetic variants. Nonetheless, the research that has been conducted to date has failed to deliver consistent conclusions and often features conflicting messages, causing chaos in this field. Therefore, we decided to organize the existing knowledge on this topic. We screened the PubMed and Google Scholar databases. We drew up markers by gene locus gathered by hallmark: oncogenes, tumor suppressor genes, genes involved in DNA damage repair, genes involved in metabolic pathways, genes involved in methylation, genes that modify the colonic microenvironment, and genes involved in the immune response. Low-penetration genetic variants increasing the risk of cancer are often population-specific, hence the urgent need for large-scale testing. Such endeavors can be successful only when financial decision-makers are united with social educators, medical specialists, genetic consultants, and the scientific community. Countries' policies should prioritize research on this subject regardless of cost because it is the best investment. In this review, we listed potential low-penetrance CRC susceptibility alleles whose role remains to be established.


Subject(s)
Colorectal Neoplasms , Genetic Predisposition to Disease , Penetrance , Humans , Colorectal Neoplasms/genetics , Genetic Variation , Oncogenes
7.
Cell Death Dis ; 15(8): 638, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217152

ABSTRACT

The major driver oncogenes MYC, mutant KRAS, and mutant TP53 often coexist and cooperate to promote human neoplasia, which results in anticancer therapeutic opportunities within their downstream molecular programs. However, little research has been conducted on whether redundancy and competition among oncogenes affect their programs and ability to drive neoplasia. By CRISPR‒Cas9-mediated downregulation we evaluated the downstream proteomics and transcriptomics programs of MYC, mutant KRAS, and mutant TP53 in a panel of cell lines with either one or three of these oncogenes activated, in cancers of the lung, colon and pancreas. Using RNAi screening of the commonly activated molecular programs, we found a signature of three proteins - RUVBL1, HSPA9, and XPO1, which could be efficiently targeted by novel drug combinations in the studied cancer types. Interestingly, the signature was controlled by the oncoproteins in a redundant or competitive manner rather than by cooperation. Each oncoprotein individually upregulated the target genes, while upon oncogene co-expression each target was controlled preferably by a dominant oncoprotein which reduced the influence of the others. This interplay was mediated by redundant routes of target gene activation - as in the case of mutant KRAS signaling to c-Jun/GLI2 transcription factors bypassing c-Myc activation, and by competition - as in the case of mutant p53 and c-Myc competing for binding to target promoters. The global transcriptomics data from the cell lines and patient samples indicate that the redundancy and competition of oncogenic programs are broad phenomena, that may constitute even a majority of the genes dependent on oncoproteins, as shown for mutant p53 in colon and lung cancer cell lines. Nevertheless, we demonstrated that redundant oncogene programs harbor targets for efficient anticancer drug combinations, bypassing the limitations for direct oncoprotein inhibition.


Subject(s)
Mutation , Proto-Oncogene Proteins c-myc , Proto-Oncogene Proteins p21(ras) , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Cell Line, Tumor , Mutation/genetics , Gene Expression Regulation, Neoplastic/drug effects , Oncogenes/genetics , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Signal Transduction/drug effects , HSP70 Heat-Shock Proteins , Mitochondrial Proteins
8.
Blood Cancer Discov ; 5(5): 303-317, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39093124

ABSTRACT

Although the study of leukemogenesis has traditionally focused on protein-coding genes, the role of enhancer dysregulation is becoming increasingly recognized. The advent of high-throughput sequencing, together with a better understanding of enhancer biology, has revealed how various genetic and epigenetic lesions produce oncogenic enhancers that drive transformation. These aberrations include translocations that lead to enhancer hijacking, point mutations that modulate enhancer activity, and copy number alterations that modify enhancer dosage. In this review, we describe these mechanisms in the context of leukemia and discuss potential therapeutic avenues to target these regulatory elements. Significance: Large-scale sequencing projects have uncovered recurrent gene mutations in leukemia, but the picture remains incomplete: some patients harbor no such aberrations, whereas others carry only a few that are insufficient to bring about transformation on their own. One of the missing pieces is enhancer dysfunction, which only recently has emerged as a critical driver of leukemogenesis. Knowledge of the various mechanisms of enhancer dysregulation is thus key for a complete understanding of leukemia and its causes, as well as the development of targeted therapies in the era of precision medicine.


Subject(s)
Enhancer Elements, Genetic , Leukemia , Humans , Leukemia/genetics , Leukemia/pathology , Enhancer Elements, Genetic/genetics , Oncogenes/genetics , Mutation , Epigenesis, Genetic , Animals , Carcinogenesis/genetics
9.
Sci Adv ; 10(32): eadl4043, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39110799

ABSTRACT

Sequencing-based mapping of ensemble pairwise interactions among regulatory elements support the existence of topological assemblies known as promoter-enhancer hubs or cliques in cancer. Yet, prevalence, regulators, and functions of promoter-enhancer hubs in individual cancer cells remain unclear. Here, we systematically integrated functional genomics, transcription factor screening, and optical mapping of promoter-enhancer interactions to identify key promoter-enhancer hubs, examine heterogeneity of their assembly, determine their regulators, and elucidate their role in gene expression control in individual triple negative breast cancer (TNBC) cells. Optical mapping of individual SOX9 and MYC alleles revealed the existence of frequent multiway interactions among promoters and enhancers within spatial hubs. Our single-allele studies further demonstrated that lineage-determining SOX9 and signaling-dependent NOTCH1 transcription factors compact MYC and SOX9 hubs. Together, our findings suggest that promoter-enhancer hubs are dynamic and heterogeneous topological assemblies, which are controlled by oncogenic transcription factors and facilitate subtype-restricted gene expression in cancer.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Promoter Regions, Genetic , SOX9 Transcription Factor , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Humans , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Cell Line, Tumor , Female , Transcription Factors/genetics , Transcription Factors/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Oncogenes , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
10.
Pathol Res Pract ; 262: 155547, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151250

ABSTRACT

Late diagnosis is considered one of the main reasons of high mortality rate among cancer patients that results in therapeutic failure and tumor relapse. Therefore, it is needed to evaluate the molecular mechanisms associated with tumor progression to introduce efficient markers for the early tumor detection among cancer patients. The remarkable stability of microRNAs (miRNAs) in body fluids makes them potential candidates to use as the non-invasive tumor biomarkers in cancer screening programs. MiR-135b has key roles in prognosis and survival of cancer patients by either stimulating or inhibiting cell proliferation, invasion, and angiogenesis. Therefore, in the present review we assessed the molecular biology of miR-135b during tumor progression to introduce that as a novel tumor marker in cancer patients. It has been reported that miR-135b mainly acts as an oncogene by regulation of transcription factors, signaling pathways, drug response, cellular metabolism, and autophagy. This review paves the way to suggest miR-135b as a tumor marker and therapeutic target in cancer patients following the further clinical trials and animal studies.


Subject(s)
Biomarkers, Tumor , Disease Progression , MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/genetics , Animals , Oncogenes/genetics , Signal Transduction/genetics
11.
Int J Biol Macromol ; 277(Pt 3): 134126, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39097044

ABSTRACT

DNA chains with sequential guanine (G) repeats can lead to the formation of G-quadruplexes (G4), which are found in functional DNA and RNA regions like telomeres and oncogene promoters. The development of molecules with adequate structural features to selectively stabilize G4 structures can counteract cell immortality, highly described for cancer cells, and also downregulate transcription events underlying cell apoptosis and/or senescence processes. We describe here, the efficiency of four highly charged porphyrins-phosphonium conjugates to act as G4 stabilizing agents. The spectrophotometric results allowed to select the conjugates P2-PPh3 and P3-PPh3 as the most promising ones to stabilize selectively G4 structures. Molecular dynamics simulation experiments were performed and support the preferential binding of P2-PPh3 namely to MYC and of P3-PPh3 to KRAS. The ability of both ligands to block the activity of Taq polymerase was confirmed and also their higher cytotoxicity against the two melanoma cell lines A375 and SK-MEL-28 than to immortalized skin keratinocytes. Both ligands present efficient cellular uptake, nuclear co-localization and high ability to generate 1O2 namely when interacting with G4 structure. The obtained data points the synthesized porphyrins as promising ligands to be used in a dual approach that can combine G4 stabilization and Photodynamic therapy (PDT).


Subject(s)
G-Quadruplexes , Porphyrins , Telomere , G-Quadruplexes/drug effects , Porphyrins/chemistry , Porphyrins/pharmacology , Humans , Telomere/chemistry , Cell Line, Tumor , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Molecular Dynamics Simulation , Ligands , Oncogenes
12.
PLoS Comput Biol ; 20(8): e1012400, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39213450

ABSTRACT

The identification of cancer driver genes (CDGs) poses challenges due to the intricate interdependencies among genes and the influence of measurement errors and noise. We propose a novel energy-constrained diffusion (ECD)-based model for identifying CDGs, termed ECD-CDGI. This model is the first to design an ECD-Attention encoder by combining the ECD technique with an attention mechanism. ECD-Attention encoder excels at generating robust gene representations that reveal the complex interdependencies among genes while reducing the impact of data noise. We concatenate topological embedding extracted from gene-gene networks through graph transformers to these gene representations. We conduct extensive experiments across three testing scenarios. Extensive experiments show that the ECD-CDGI model possesses the ability to not only be proficient in identifying known CDGs but also efficiently uncover unknown potential CDGs. Furthermore, compared to the GNN-based approach, the ECD-CDGI model exhibits fewer constraints by existing gene-gene networks, thereby enhancing its capability to identify CDGs. Additionally, ECD-CDGI is open-source and freely available. We have also launched the model as a complimentary online tool specifically crafted to expedite research efforts focused on CDGs identification.


Subject(s)
Computational Biology , Gene Regulatory Networks , Neoplasms , Humans , Computational Biology/methods , Gene Regulatory Networks/genetics , Neoplasms/genetics , Models, Genetic , Algorithms , Oncogenes/genetics , Genes, Neoplasm/genetics , Databases, Genetic
13.
Biol Open ; 13(9)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39177514

ABSTRACT

RUNX1::RUNX1T1 (R::RT1) acute myeloid leukaemia (AML) remains a clinical challenge, and further research is required to model and understand leukaemogenesis. Previous zebrafish R::RT1 models were hampered by embryonic lethality and low penetrance of the malignant phenotype. Here, we overcome this by developing an adult zebrafish model in which the human R::RT1 isoform 9a is co-expressed with the frequently co-occurring oncogenic NRASG12D mutation in haematopoietic stem and progenitor cells (HSPCs), using the Runx1+23 enhancer. Approximately 50% of F0 9a+NRASG12D transgenic zebrafish developed signs of haematological disease between 5 and 14 months, with 27% exhibiting AML-like pathology: myeloid precursor expansion, erythrocyte reduction, kidney marrow hypercellularity and the presence of blasts. Moreover, only 9a+NRASG12D transplant recipients developed leukaemia with high rates of mortality within 40 days, inferring the presence of leukaemia stem cells. These leukaemic features were rare or not observed in animals expressing either the NRAS or 9a oncogenes alone, suggesting 9a and NRAS cooperation drives leukaemogenesis. This novel adult AML zebrafish model provides a powerful new tool for investigating the basis of R::RT1 - NRAS cooperativity with the potential to uncover new therapeutic targets.


Subject(s)
Animals, Genetically Modified , Core Binding Factor Alpha 2 Subunit , Disease Models, Animal , Mutation , Protein Isoforms , Zebrafish , Animals , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid/genetics , Leukemia, Myeloid/etiology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/etiology , Oncogenes , Protein Isoforms/genetics , RUNX1 Translocation Partner 1 Protein/genetics , RUNX1 Translocation Partner 1 Protein/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
14.
Dis Model Mech ; 17(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38946472

ABSTRACT

Ras genes are important oncogenes that are frequently mutated in cancer. Human oncogenic variants exhibit functional distinctions in terms of their representation in different cancer types, impact on cellular targets and sensitivity to pharmacological treatments. However, how these distinct variants influence and respond to the cellular networks in which they are embedded is poorly understood. To identify novel participants in the complex interplay between Ras genotype and cell interaction networks in vivo, we have developed and tested an experimental framework using a simple vulva-development assay in the nematode C. elegans. Using this system, we evaluated a set of Ras oncogenic substitution changes at G12, G13 and Q61. We found that these variants fall into distinct groups based on phenotypic differences, sensitivity to gene dosage and inhibition of the downstream kinase MEK and their response to genetic modulators that influence Ras activity in a non-autonomous manner. Together, our results demonstrated that oncogenic C. elegans Ras variants exhibit clear distinctions in how they interface with the vulva-development network and showed that extracellular modulators yield variant-restricted effects in vivo.


Subject(s)
Caenorhabditis elegans , Vulva , ras Proteins , Caenorhabditis elegans/genetics , Animals , Vulva/pathology , Vulva/metabolism , ras Proteins/metabolism , ras Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Female , Phenotype , Mutation/genetics , Oncogenes/genetics , Humans
15.
Eur Thyroid J ; 13(4)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38984999

ABSTRACT

Objective: The American Thyroid Association (ATA) Pediatric Guidelines recommend selective, prophylactic central neck dissection (pCND) for patients with papillary thyroid carcinoma (PTC) based on tumor focality, tumor size, and the surgeon's experience. With the expansion of pre-surgical somatic oncogene testing and continued controversy over the benefits of pCND, oncogenic alteration data may provide an opportunity to stratify pCND. This study compared lymph node (LN) involvement in pediatric patients with PTC between tumors with low- and high-invasive-associated alterations to explore the potential utility of preoperative oncogenic alterations in the stratification of pCND. Methods: This is retrospective cohort study of pediatric patients who underwent somatic oncogene testing post thyroidectomy for PTC between July 2003 and July 2022. Results: Of 192 eligible PTC patients with postoperative somatic oncogene data, 19 tumors harbored somatic alterations associated with low-invasive disease (19/192, 10%), and 128 tumors harbored a BRAFV600E alteration (45/192, 23%) or an oncogenic fusion (83/192, 43%). Tumors with low-invasive alterations were less likely to present malignant preoperative cytology (2/18, 11%) than those with high-invasive alterations (97/124, 78%; P < 0.001). Twelve patients with low-invasive alterations had LNs dissected from the central neck (12/19, 63%) compared to 127 patients (127/128, 99%) with high-invasive alterations. LN metastasis was identified in two patients with low-invasive alterations (2/19, 11%) compared to 107 patients with high-invasive alterations (107/128, 84%; P < 0.001). Conclusion: Pediatric patients with low-invasive somatic oncogenic alterations are at low risk for metastasis to central neck LNs. Our findings suggest that preoperative knowledge of somatic oncogene alterations provides objective data to stratify pediatric patients who may not benefit from pCND.


Subject(s)
Lymphatic Metastasis , Neck Dissection , Oncogenes , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/surgery , Thyroid Cancer, Papillary/pathology , Male , Child , Female , Retrospective Studies , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/surgery , Adolescent , Lymphatic Metastasis/pathology , Lymphatic Metastasis/genetics , Oncogenes/genetics , Thyroidectomy , Proto-Oncogene Proteins B-raf/genetics , Child, Preschool
16.
Front Immunol ; 15: 1427200, 2024.
Article in English | MEDLINE | ID: mdl-38989284

ABSTRACT

Introduction: Glioma, a prevalent and deadly brain tumor, is marked by significant cellular heterogeneity and metabolic alterations. However, the comprehensive cell-of-origin and metabolic landscape in high-grade (Glioblastoma Multiforme, WHO grade IV) and low-grade (Oligoastrocytoma, WHO grade II) gliomas remains elusive. Methods: In this study, we undertook single-cell transcriptome sequencing of these glioma grades to elucidate their cellular and metabolic distinctions. Following the identification of cell types, we compared metabolic pathway activities and gene expressions between high-grade and low-grade gliomas. Results: Notably, astrocytes and oligodendrocyte progenitor cells (OPCs) exhibited the most substantial differences in both metabolic pathways and gene expression, indicative of their distinct origins. The comprehensive analysis identified the most altered metabolic pathways (MCPs) and genes across all cell types, which were further validated against TCGA and CGGA datasets for clinical relevance. Discussion: Crucially, the metabolic enzyme phosphodiesterase 8B (PDE8B) was found to be exclusively expressed and progressively downregulated in astrocytes and OPCs in higher-grade gliomas. This decreased expression identifies PDE8B as a metabolism-related oncogene in IDH-mutant glioma, marking its dual role as both a protective marker for glioma grading and prognosis and as a facilitator in glioma progression.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases , Brain Neoplasms , Glioma , Mutation , Humans , Astrocytes/metabolism , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Down-Regulation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/pathology , Isocitrate Dehydrogenase/genetics , Neoplasm Grading , Oligodendrocyte Precursor Cells/metabolism , Oncogenes , Single-Cell Analysis , Transcriptome , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
17.
Oncol Res ; 32(7): 1185-1195, 2024.
Article in English | MEDLINE | ID: mdl-38948024

ABSTRACT

Background: Long non-coding RNAs are important regulators in cancer biology and function either as tumor suppressors or as oncogenes. Their dysregulation has been closely associated with tumorigenesis. LINC00265 is upregulated in lung adenocarcinoma and is a prognostic biomarker of this cancer. However, the mechanism underlying its function in cancer progression remains poorly understood. Methods: Here, the regulatory role of LINC00265 in lung adenocarcinoma was examined using lung cancer cell lines, clinical samples, and xenografts. Results: We found that high levels of LINC00265 expression were associated with shorter overall survival rate of patients, whereas knockdown of LINC00265 inhibited proliferation of cancer cell lines and tumor growth in xenografts. Western blot and flow cytometry analyses indicated that silencing of LINC00265 induced autophagy and apoptosis. Moreover, we showed that LINC00265 interacted with and stabilized the transcriptional co-repressor Switch-independent 3a (SIN3A), which is a scaffold protein functioning either as a tumor repressor or as an oncogene in a context-dependent manner. Silencing of SIN3A also reduced proliferation of lung cancer cells, which was correlated with the induction of autophagy. These observations raise the possibility that LINC00265 functions to promote the oncogenic activity of SIN3A in lung adenocarcinoma. Conclusions: Our findings thus identify SIN3A as a LINC00265-associated protein and should help to understand the mechanism underlying LINC00265-mediated oncogenesis.


Subject(s)
Apoptosis , Autophagy , Cell Proliferation , Lung Neoplasms , RNA, Long Noncoding , Sin3 Histone Deacetylase and Corepressor Complex , Humans , RNA, Long Noncoding/genetics , Autophagy/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Apoptosis/genetics , Animals , Mice , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Repressor Proteins/genetics , Repressor Proteins/metabolism , Gene Expression Regulation, Neoplastic , Protein Stability , Gene Silencing , Oncogenes , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Xenograft Model Antitumor Assays
18.
Oncoimmunology ; 13(1): 2379062, 2024.
Article in English | MEDLINE | ID: mdl-39036370

ABSTRACT

Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.


Subject(s)
Immunologic Surveillance , Killer Cells, Natural , Mutation , Neoplasms , Tumor Microenvironment , Humans , Killer Cells, Natural/immunology , Neoplasms/immunology , Neoplasms/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Animals , Oncogenes/genetics
19.
Nat Commun ; 15(1): 6130, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033128

ABSTRACT

Cancer genomes are composed of many complex structural alterations on chromosomes and extrachromosomal DNA (ecDNA), making it difficult to identify non-coding enhancer regions that are hijacked to activate oncogene expression. Here, we describe a 3D genomics-based analysis called HAPI (Highly Active Promoter Interactions) to characterize enhancer hijacking. HAPI analysis of HiChIP data from 34 cancer cell lines identified enhancer hijacking events that activate both known and potentially novel oncogenes such as MYC, CCND1, ETV1, CRKL, and ID4. Furthermore, we found enhancer hijacking among multiple oncogenes from different chromosomes, often including MYC, on the same complex amplicons such as ecDNA. We characterized a MYC-ERBB2 chimeric ecDNA, in which ERBB2 heavily hijacks MYC's enhancers. Notably, CRISPRi of the MYC promoter led to increased interaction of ERBB2 with MYC enhancers and elevated ERBB2 expression. Our HAPI analysis tool provides a robust strategy to detect enhancer hijacking and reveals novel insights into oncogene activation.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Genomics , Oncogenes , Promoter Regions, Genetic , Proto-Oncogene Proteins c-myc , Receptor, ErbB-2 , Humans , Enhancer Elements, Genetic/genetics , Cell Line, Tumor , Promoter Regions, Genetic/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Genomics/methods , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology
20.
Nat Commun ; 15(1): 6139, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033140

ABSTRACT

Cancer driver genes can undergo positive selection for various types of genetic alterations, including gain-of-function or loss-of-function mutations and copy number alterations (CNA). We investigated the landscape of different types of alterations affecting driver genes in 17,644 cancer exomes and genomes. We find that oncogenes may simultaneously exhibit signatures of positive selection and also negative selection in different gene segments, suggesting a method to identify additional tumor types where an oncogene is a driver or a vulnerability. Next, we characterize the landscape of CNA-dependent selection effects, revealing a general trend of increased positive selection on oncogene mutations not only upon CNA gains but also upon CNA deletions. Similarly, we observe a positive interaction between mutations and CNA gains in tumor suppressor genes. Thus, two-hit events involving point mutations and CNA are universally observed regardless of the type of CNA and may signal new therapeutic opportunities. An analysis with focus on the somatic CNA two-hit events can help identify additional driver genes relevant to a tumor type. By a global inference of point mutation and CNA selection signatures and interactions thereof across genes and tissues, we identify 9 evolutionary archetypes of driver genes, representing different mechanisms of (in)activation by genetic alterations.


Subject(s)
DNA Copy Number Variations , Genes, Tumor Suppressor , Neoplasms , Oncogenes , Humans , Oncogenes/genetics , DNA Copy Number Variations/genetics , Neoplasms/genetics , Mutation , Point Mutation , Exome/genetics , Genome, Human
SELECTION OF CITATIONS
SEARCH DETAIL