Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.456
Filter
1.
Sci Total Environ ; 946: 174422, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38964400

ABSTRACT

Nitrogen oxides and sulfur oxides, as the dominant toxic gases in the atmosphere, can induce severe human health problems under the composite pollutant conditions. Currently the effect of nitrogen or sulfur oxides in atmospheric environment to the degradation and cytotoxicity of triphenyl phosphate (TPhP) on atmospheric particle surfaces still remain poorly understood. Hence, laboratory simulation methods were used in this study to investigate the effect and related mechanism. First, particle samples were prepared with the TPhP coated on MnSO4, CuSO4, FeSO4 and Fe2(SO4)3 surface. The results showed that, when nitrogen or sulfur oxides were present, more significant TPhP degradation on all samples can be observed under both light and dark conditions. The results proved nitrogen oxides and sulfur oxides were the vital influence factors to the degradation of TPhP, which mainly promoted the OH generation in the polluted atmosphere. The mechanism study indicated that diphenyl hydrogen phosphate (DPhP) and OH-DPhP were two main stable degradation products. These degradation products originated from the phenoxy bond cleavage and hydroxylation of TPhP caused by hydroxyl radicals. In addition, no TPhP related organosulfates (OSs) or organic nitrates (ON) formation were observed. Regarding the cytotoxicity, all the particles can induce more significant cellular injury and apoptosis of A549 cells, which may be relevant to the adsorbed nitrogen oxides or sulfur oxides on particles surfaces. The superfluous reactive oxygen species (ROS) generation was the possible reason of cytotoxicity. This research can supply a comprehensive understanding of the promoting effect of nitrogen and sulfur oxides to TPhP degradation and the composite cytotoxicity of atmospheric particles.


Subject(s)
Air Pollutants , Nitrogen Oxides , Organophosphates , Sulfur Oxides , Air Pollutants/toxicity , Humans , Sulfur Oxides/chemistry , Sulfur Oxides/toxicity , Organophosphates/toxicity , Organophosphates/chemistry , Nitrogen Oxides/toxicity , Transition Elements/chemistry , Transition Elements/toxicity , A549 Cells
2.
Commun Biol ; 7(1): 917, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080401

ABSTRACT

An extended action fostemsavir (FTR) lipid nanoparticle (LNP) formulation prevents human immunodeficiency virus type one (HIV-1) infection. This FTR formulation establishes a drug depot in monocyte-derived macrophages that extend the drug's plasma residence time. The LNP's physicochemical properties improve FTR's antiretroviral activities, which are linked to the drug's ability to withstand fluid flow forces and levels of drug cellular internalization. Each is, in measure, dependent on PEGylated lipid composition and flow rate ratios affecting the size, polydispersity, shape, zeta potential, stability, biodistribution, and antiretroviral efficacy. The FTR LNP physicochemical properties enable the drug-particle's extended actions.


Subject(s)
Morpholines , Nanoparticles , Organophosphates , Nanoparticles/chemistry , Humans , Organophosphates/pharmacology , Organophosphates/chemistry , Organophosphates/pharmacokinetics , Morpholines/pharmacology , Morpholines/pharmacokinetics , Morpholines/chemistry , Animals , HIV-1/drug effects , HIV Infections/drug therapy , HIV Infections/virology , Lipids/chemistry , Delayed-Action Preparations , Mice , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/pharmacology , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/chemistry , Tissue Distribution , Liposomes , Piperazines
3.
J Chromatogr A ; 1730: 465120, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38944984

ABSTRACT

The effectiveness of commonly used extractants for chromatographic separation of rare earth elements (REEs) was compared. Columns loaded with similar molar concentrations of tributyl phosphate (TBP), di-(2-ethylhexyl) phosphoric acid (HDEHP), and N-Methyl-N, N, N-tri-octyl-ammonium chloride (Aliquat-336), with mineral acid as eluent were evaluated. Retention factors were determined, and separation efficiency was assessed based on the resolution data of the REEs acquired under the same elution conditions for each column. HDEHP demonstrated the best separation efficiency for the entire REE series (mean Rs = 2.76), followed by TBP (mean Rs = 1.52), while Aliquat-336 exhibited the lowest performance (mean Rs = 1.42). The HDEHP-coated column was then used to optimize the extraction chromatographic separation of the REEs. The primary challenge was to completely elute the heavy REEs (Tb - Lu) while maintaining adequate separation of the light REEs (La - Gd) within a reasonably short time. The stepwise gradient elution procedure improved the resolution between adjacent REEs, allowing the complete separation of the entire REE series within 25 minutes. Better separation efficiency for light REEs was achieved at higher column temperatures and a mobile phase flow rate of 1.5 mL/min in the tested domain of 20-60 °C, and 0.5-2.0 mL/min, respectively, resulting in plate heights (H) ranging from 0.011 to 0.027 mm.


Subject(s)
Metals, Rare Earth , Metals, Rare Earth/isolation & purification , Metals, Rare Earth/chemistry , Metals, Rare Earth/analysis , Chromatography, High Pressure Liquid/methods , Quaternary Ammonium Compounds/chemistry , Organophosphates/isolation & purification , Organophosphates/analysis , Organophosphates/chemistry
4.
J Hazard Mater ; 475: 134834, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889460

ABSTRACT

Organophosphate esters (OPEs) are widely used commercial additives, but their environmental persistence and toxicity raise serious concerns necessitating associated remediation strategies. Although there are various existing technologies for OPE removal, comprehensive screening for them is urgently needed to guide further research. This review provides a comprehensive overview of the techniques used to remove OPEs from soil and water, including their related influencing factors, removal mechanisms/degradation pathways, and practical applications. Based on an analysis of the latest literature, we concluded that (1) methods used to decontaminate OPEs include adsorption, hydrolysis, photolysis, advanced oxidation processes (AOPs), activated sludge processes, and microbial degradation; (2) factors such as the quantity/characteristics of the catalysts/additives, pH value, inorganic ion concentration, and natural organic matter (NOM) affect OPE removal; (3) primary degradation mechanisms involve oxidation induced by reactive oxygen species (ROS) (including •OH and SO4•-) and degradation pathways include hydrolysis, hydroxylation, oxidation, dechlorination, and dealkylation; (5) interference from the pH value, inorganic ion and the presence of NOM may limit complete mineralization during the treatment, impacting practical application of OPE removal techniques. This review provides guidance on existing and potential OPE removal methods, providing a theoretical basis and innovative ideas for developing more efficient and environmentally friendly techniques to treat OPEs in soil and water.


Subject(s)
Environmental Restoration and Remediation , Esters , Organophosphates , Soil Pollutants , Water Pollutants, Chemical , Esters/chemistry , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry , Environmental Restoration and Remediation/methods , Organophosphates/chemistry , Organophosphates/toxicity , Water Purification/methods
5.
Sci Total Environ ; 945: 173927, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38901584

ABSTRACT

The ubiquity and persistence of organophosphate esters (OPEs) and heavy metal (HMs) pose global environmental risks. This study explored tris(2-chloroisopropyl)phosphate (TCPP) biomineralization coupled to lead (Pb2+) biostabilization driven by denitrifying bacteria (DNB). The domesticated DNB achieved synergistic bioremoval of TCPP and Pb2+ in the batch bioreactor (efficiency: 98 %).TCPP mineralized into PO43- and Cl-, and Pb2+ precipitated with PO43-. The TCPP-degrading/Pb2+-resistant DNB: Achromobacter, Pseudomonas, Citrobacter, and Stenotrophomonas, dominated the bacterial community, and synergized TCPP biomineralization and Pb2+ biostabilization. Metagenomics and metaproteomics revealed TCPP underwent dechlorination, hydrolysis, the TCA cycle-based dissimilation, and assimilation; Pb2+ was detoxified via bioprecipitation, bacterial membrane biosorption, EPS biocomplexation, and efflux out of cells. TCPP, as an initial donor, along with NO3-, as the terminal acceptor, formed a respiratory redox as the primary energy metabolism. Both TCPP and Pb2+ can stimulate phosphatase expression, which established the mutual enhancements between their bioconversions by catalyzing TCPP dephosphorylation and facilitating Pb2+ bioprecipitation. TCPP may alleviate the Pb2+-induced oxidative stress by aiding protein phosphorylation. 80 % of Pb2+ converted into crystalized pyromorphite. These results provide the mechanistic foundations and help develop greener strategies for synergistic bioremediation of OPEs and HMs.


Subject(s)
Biodegradation, Environmental , Environmental Pollutants , Lead , Organophosphates , Organophosphates/chemistry , Organophosphates/metabolism , Flame Retardants/metabolism , Environmental Pollutants/chemistry , Environmental Pollutants/metabolism , Denitrification , Lead/chemistry , Lead/metabolism , Achromobacter/metabolism , Pseudomonas/metabolism , Citrobacter/metabolism , Stenotrophomonas/metabolism , Metagenomics , Proteomics , Oxidative Stress
6.
Sci Total Environ ; 937: 173462, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38797399

ABSTRACT

Triphenyl phosphate (TPhP) and transition metal elements have been ubiquitously detected in the atmosphere, which can participate in atmospheric chemical reactions and induce damage to human health. Currently the understanding of TPhP degradation, transformation and cytotoxicity on atmospheric particles surface are still limited. Therefore, this study used laboratory simulation methods to investigate the influence of irradiation time, transition metal salts, relative humidity (RH) to TPhP degradation, transformation and relative cytotoxicity. TPhP was coated on particle surfaces of four transition metal salts (MnSO4, CuSO4, FeSO4 and Fe2(SO4)3) in the experiment. Within 12 h irradiation, the significant TPhP photodegradation can be observed on all particles surface. Among these influence factors, the irradiation and RH were the crucial aspects to TPhP degradation, which primarily affect the OH concentration in the atmosphere. The transition metal elements only exhibited slightly catalytic effect to TPhP degradation. The mechanism study indicated that the major degradation products of TPhP are diphenyl hydrogen phosphate (DPhP) and OH-DPhP, which originated from the phenoxy bond cleavage and hydroxylation of TPhP induced by OH. As for the cytotoxicity to A549 cells, all the transition metal particles coated with TPhP can cause cellular injury, which was chiefly induced by the transition metal salt. The possible cytotoxicity mechanism of these particles to A549 cells can be attributed to the excessive reactive oxygen species (ROS) production. This study may provide a further understanding of TPhP degradation and related cytotoxicity with the coexistent transition metal salts in the atmosphere.


Subject(s)
Air Pollutants , Atmosphere , Organophosphates , Transition Elements , Air Pollutants/toxicity , Air Pollutants/chemistry , Transition Elements/chemistry , Humans , Organophosphates/toxicity , Organophosphates/chemistry , Atmosphere/chemistry , A549 Cells , Salts/chemistry
7.
Int J Biol Macromol ; 271(Pt 1): 132395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761915

ABSTRACT

In this present study, characteristics and structure-function relationship of an organophosphate-degrading enzyme from Bacillus sp. S3wahi were described. S3wahi metallohydrolase, designated as S3wahi-MH (probable metallohydrolase YqjP), featured the conserved αß/ßα metallo-ß-lactamase-fold (MBL-fold) domain and a zinc bimetal at its catalytic site. The metal binding site of S3wahi-MH also preserves the H-X-H-X-D-H motif, consisting of specific amino acids at Zn1 (Asp69, His70, Asp182, and His230) and Zn2 (His65, His67, and His137). The multifunctionality of S3wahi-MH was demonstrated through a steady-state kinetic study, revealing its highest binding affinity (KM) and catalytic efficiency (kcat/KM) for OP compound, paraoxon, with values of 8.09 × 10-6 M and 4.94 × 105 M-1 s-1, respectively. Using OP compound, paraoxon, as S3wahi-MH native substrate, S3wahi-MH exhibited remarkable stability over a broad temperature range, 20 °C - 60 °C and a broad pH tolerance, pH 6-10. Corresponded to S3wahi-MH thermal stability characterization, the estimated melting temperature (Tm) was found to be 72.12 °C. S3wahi-MH was also characterized with optimum catalytic activity at 30 °C and pH 8. Additionally, the activity of purified S3wahi-MH was greatly enhanced in the presence of 1 mM and 5 mM of manganese (Mn2+), showing relative activities of 1323.68 % and 2073.68 %, respectively. The activity of S3wahi-MH was also enhanced in the presence of DMSO and DMF, showing relative activities of 270.37 % and 307.41 %, respectively. The purified S3wahi-MH retained >60 % residual activity after exposure to non-ionic Tween series surfactants. Nevertheless, the catalytic activity of S3wahi-MH was severely impacted by the treatment of SDS, even at low concentrations. Considering its enzymatic properties and promiscuity, S3wahi-MH emerges as a promising candidate as a bioremediation tool in wide industrial applications, including agriculture industry.


Subject(s)
Bacillus , beta-Lactamases , Bacillus/enzymology , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Kinetics , Substrate Specificity , Enzyme Stability , Hydrogen-Ion Concentration , Catalytic Domain , Amino Acid Sequence , Organophosphates/metabolism , Organophosphates/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Temperature
8.
Int J Biol Macromol ; 270(Pt 2): 132383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754667

ABSTRACT

Halogenated Organic Phosphate Esters (OPEs) are commonly found in plasticizers and flame retardants. However, they are one kind of persistent contaminants that can pose a significant threat to human health and ecosystem as new environmental estrogen. In this study, two representative halogenated OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCP) and tris(2,3-dibromopropyl) phosphate (TDBP), were selected as experimental subjects to investigate their interaction with human serum albumin (HSA). Despite having similar structures, the two ligands exhibited contrasting effects on enzyme activity of HSA, TDCP inhibiting enzyme activity and TDBP activating it. Furthermore, both TDCP and TDBP could bind to HSA at site I, interacted with Arg222 and other residues, and made the conformation of HSA unfolded. Thermodynamic parameters indicated the main driving forces between TDBP and HSA were hydrogen bonding and van der Waals forces, while TDCP was mainly hydrophobic force. Molecular simulations found that more hydrogen bonds of HSA-TDBP formed during the binding process, and the larger charge area of TDBP than TDCP could partially account for the differences observed in their binding abilities to HSA. Notably, the cytotoxicity of TDBP/TDCP was inversely proportional to their binding ability to HSA, implying a new method for determining the cytotoxicity of halogenated OPEs in vitro.


Subject(s)
Esters , Protein Binding , Serum Albumin, Human , Humans , Esters/chemistry , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Molecular Dynamics Simulation , Thermodynamics , Molecular Docking Simulation , Hydrogen Bonding , Organophosphates/chemistry , Organophosphates/metabolism , Binding Sites , Halogenation
9.
Environ Sci Pollut Res Int ; 31(27): 39120-39137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809409

ABSTRACT

Organophosphorus esters (OPEs), exemplified by tris (2-chloroethyl) phosphate (TCEP), find extensive application in diverse industries such as construction materials, textiles, chemical manufacturing, and electronics, consequently resulting in an increased concentration of these compounds in industrial wastewater. The fundamental objective of this investigation was to examine the degradation of TCEP through the implementation of US/Fenton oxidation techniques in a solution. The findings revealed that the US/Fenton system effectively facilitated the degradation of TCEP, with the Chan kinetic model precisely elucidating the degradation process. Under optimized reaction conditions, the degradation efficiency of TCEP reached an impressive 93.18%. However, the presence of common co-existing aqueous substrates such as Cl-, HCO3-, H2PO4-, and HA hindered the degradation process. Bursting tests and electron paramagnetic resonance (EPR) studies affirmed ∙OH oxidation as the principal mechanism underlying TCEP degradation. Detailed degradation pathways for TCEP were established through the utilization of density-functional theory (DFT) calculations and GC/MS tests. Moreover, the ecotoxicological evaluation of TCEP and its intermediates was conducted using the Toxicity Estimation Software Tool (T.E.S.T.).


Subject(s)
Organophosphates , Organophosphates/chemistry , Organophosphates/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Oxidation-Reduction , Hydrogen Peroxide/chemistry , Iron/chemistry , Density Functional Theory
10.
J Am Soc Mass Spectrom ; 35(5): 829-833, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38564189

ABSTRACT

A new approach using orthogonal analytical techniques is developed for chemical identification. High resolution mass spectrometry and infrared ion spectroscopy are applied through a 5-level confidence paradigm to demonstrate the effectiveness of nontargeted workflow for the identification of hazardous organophosphates. Triphenyl phosphate is used as a surrogate organophosphate for occupational exposure, and silicone wristbands are used to represent personal samplers. Spectral data of a target compound is combined with spectral data of the sodium adduct and quantum chemical calculations to achieve a confirmed identification. Here, we demonstrate a nontargeted workflow that identifies organophosphate exposure and provides a mechanism for selecting validated methods for quantitative analyses.


Subject(s)
Occupational Exposure , Silicones , Spectrophotometry, Infrared , Workflow , Occupational Exposure/analysis , Silicones/chemistry , Humans , Spectrophotometry, Infrared/methods , Mass Spectrometry/methods , Environmental Monitoring/methods , Organophosphates/analysis , Organophosphates/chemistry
11.
Ecotoxicol Environ Saf ; 270: 115924, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38171103

ABSTRACT

As a typical organophosphorus flame retardant, tris(2-chloroethyl) phosphate (TCEP) is refractory in aqueous environment. The application of TAP is a promising method for removing pollutants. Herein, the removal of TCEP using TAP was rigorously investigated, and the effects of some key variables were optimized by the one-factor-at-a-time approach. To further evaluate the interactions among variables, the response surface methodology (RSM) based on central composite design was employed. Under optimized conditions (pH 5, [PS]0: [TCEP]0 = 500:1), the maximum removal efficiency (RE) of TCEP reached up to 90.6%. In real-world waters, the RE of TCEP spanned the range of 56%- 65% in river water, pond water, lake water and sanitary sewage. The low-concentration Cl- (0.1 mM) promoted TCEP degradation, but the contrary case occurred when the high-concentration Cl-, NO3-, CO32-, HCO3-, HPO42-, H2PO4-, NH4+ and humic acid were present owing to their prominently quenching effects on SO4•-. Both EPR and scavenger experiments revealed that the main radicals in the TAP system were SO4•- and •OH, in which SO4•- played the most crucial role in TCEP degradation. GC-MS/MS analysis disclosed that two degradation products appeared, sourcing from the replacement, oxidation, hydroxylation and water-molecule elimination reactions. The other two products were inferred from the comprehensive literature. As for acute toxicity to fish, daphnid and green algae, product A displayed the slightly higher toxicity, whereas other three products exhibited the declining toxicity as compared to their parent molecule. These findings offer a theoretical/practical reference for high-efficiency removal of TCEP and its ecotoxicological risk evaluation.


Subject(s)
Flame Retardants , Phosphines , Water Pollutants, Chemical , Flame Retardants/toxicity , Tandem Mass Spectrometry , Organophosphorus Compounds , Organophosphates/toxicity , Organophosphates/chemistry , Oxidation-Reduction , Water , Phosphates , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry
12.
Proteins ; 92(1): 96-105, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37646471

ABSTRACT

Methyl parathion hydrolase (MPH) is an enzyme of the metallo-ß-lactamase superfamily, which hydrolyses a wide range of organophosphates (OPs). Recently, MPH has attracted attention as a promising enzymatic bioremediator. The crystal structure of MPH enzyme shows a dimeric form, with each subunit containing a binuclear metal ion center. MPH also demonstrates metal ion-dependent selectivity patterns. The origins of these patterns remain unclear but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. We aimed to investigate and compare the binding of different OP pesticides to MPH with cobalt(II) metal ions. In this study, MPH was modeled from Ochrobactrum sp. with different OP pesticides bound, including methyl paraoxon and dichlorvos and profenofos. The docked structures for each substrate optimized by DFT calculation were selected and subjected to atomistic molecular dynamics simulations for 500 ns. It was found that alpha metal ions did not coordinate with all the pesticides. Rather, the pesticides coordinated with less buried beta metal ions. It was also observed that the coordination of beta metal ions was perturbed to accommodate the pesticides. The binding free energy calculations and structure-based pharmacophore model revealed that all the three substrates could bind well at the active site. However, profenofos exhibit a stronger binding affinity to MPH in comparison to the other two substrates. Therefore, our findings provide molecular insight on the binding of different OP pesticides which could help us design the enzyme for OP pesticides degradation.


Subject(s)
Methyl Parathion , Ochrobactrum , Pesticides , Methyl Parathion/metabolism , Organophosphates/chemistry , Organophosphates/metabolism , Hydrolases , Ochrobactrum/metabolism , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Metals/chemistry , Ions
13.
Int J Mol Sci ; 24(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37834267

ABSTRACT

The most favorable targets for retrospectively determining human exposure to organophosphorus pesticides, insecticides, retardants, and other industrial organophosphates (OPs) are adducts of OPs with blood plasma butyrylcholinesterase (BChE) and human serum albumin (HSA). One of the methods for determining OP exposure is the reactivation of modified BChE using a concentrated solution of KF in an acidic medium. It is known that under the action of fluoride ion, OPs or their fluoroanhydrides can be released not only from BChE adducts but also from the adducts with albumin; however, the contribution of albumin to the total pool of released OPs after plasma treatment with KF has not yet been studied. The efficiency of OP release can be affected by many factors associated with the experimental technique, but first, the structure of the adduct must be taken into account. We report a comparative analysis of the structure and conformation of organophosphorus adducts on HSA and BChE using molecular modeling methods and the mechanism of OP release after fluoride ion exposure. The conformational analysis of the organophosphorus adducts on HSA and BChE was performed, and the interaction of fluoride ions with modified proteins was studied by molecular dynamics simulation. The geometric and energy characteristics of the studied adducts and their complexes with fluoride ion were calculated using molecular mechanics and semiempirical approaches. The structural features of modified HSA and BChE that can affect the efficiency of OP release after fluoride ion exposure were revealed. Using the proposed approach, the expediency of using KF for establishing exposure to different OPs, depending on their structure, can be assessed.


Subject(s)
Butyrylcholinesterase , Environmental Exposure , Organophosphates , Pesticides , Serum Albumin, Human , Humans , Butyrylcholinesterase/chemistry , Fluorides , Organophosphates/chemistry , Organophosphates/toxicity , Pesticides/chemistry , Pesticides/toxicity , Serum Albumin, Human/chemistry , Computer Simulation
14.
Parasitol Res ; 122(10): 2267-2278, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37493957

ABSTRACT

The current work evaluated the efficacy of 10 commercial acaricides in different pHs (4.5, 5.5, and 6.5) in laboratory (adult immersion tests (AIT), pH evaluation over time) and field assays (tick counts and efficacy). In the AIT (n=70), higher efficacies were obtained when the acaricide emulsion had a more acidic pH (4.5), mainly for two combinations of pyrethroids + organophosphate (acaricide 3 and acaricide 9). For amidine, a higher pH (6.5) showed a higher efficacy. Over time, there was a trend in the pH of these emulsions increasing. When the efficacy of chlorpyrifos + cypermethrin + piperonyl butoxide (acaricide 3) at different pHs was evaluated over time (0, 6, 12, and 24h) by AIT, the less acidic pH (6.5) showed a strongly variation in the acaricide efficacy range. The mean pH of the water samples from different regions of Brazil was 6.5. In the field, the association of pyrethroid + organophosphates (acaricide 9) with pH of 4.5 and 5.5 were more effective in tick control than the emulsion prepared with this same spray formulation at pH 6.5. The pH of the acaricide emulsions is an important point of attention and is recommended that the veterinary industry start to develop/share information regarding how the pH can affect the acaricide efficacy.


Subject(s)
Acaricides , Rhipicephalus , Tick Control , Animals , Cattle , Hydrogen-Ion Concentration , Acaricides/chemistry , Acaricides/pharmacology , Emulsions , Tick Control/methods , Pyrethrins/chemistry , Pyrethrins/pharmacology , Organophosphates/chemistry , Organophosphates/pharmacology , Rhipicephalus/drug effects
15.
Toxicology ; 494: 153588, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37419273

ABSTRACT

The uncharged 3-hydroxy-2-pyridine aldoximes with protonatable tertiary amines are studied as antidotes in toxic organophosphates (OP) poisoning. Due to some of their specific structural features, we hypothesize that these compounds could exert diverse biological activity beyond their main scope of application. To examine this further, we performed an extensive cell-based assessment to determine their effects on human cells (SH-SY5Y, HEK293, HepG2, HK-2, myoblasts and myotubes) and possible mechanism of action. As our results indicated, aldoxime having a piperidine moiety did not induce significant toxicity up to 300 µM within 24 h, while those with a tetrahydroisoquinoline moiety, in the same concentration range, showed time-dependent effects and stimulated mitochondria-mediated activation of the intrinsic apoptosis pathway through ERK1/2 and p38-MAPK signaling and subsequent activation of initiator caspase 9 and executive caspase 3 accompanied with DNA damage as observed already after 4 h exposure. Mitochondria and fatty acid metabolism were also likely targets of 3-hydroxy-2-pyridine aldoximes with tetrahydroisoquinoline moiety, due to increased phosphorylation of acetyl-CoA carboxylase. In silico analysis predicted kinases as their most probable target class, while pharmacophores modeling additionally predicted the inhibition of a cytochrome P450cam. Overall, if the absence of significant toxicity for piperidine bearing aldoxime highlights the potential of its further studies in medical counter-measures, the observed biological activity of aldoximes with tetrahydroisoquinoline moiety could be indicative for future design of compounds either in a negative context in OP antidotes design, or in a positive one for design of compounds for the treatment of other phenomena like cell proliferating malignancies.


Subject(s)
Neuroblastoma , Tetrahydroisoquinolines , Humans , Antidotes/chemistry , HEK293 Cells , Oximes/toxicity , Oximes/chemistry , Organophosphates/chemistry , Pyridines , Apoptosis , Signal Transduction , Piperidines , Tetrahydroisoquinolines/toxicity
16.
Environ Sci Pollut Res Int ; 30(23): 64662-64672, 2023 May.
Article in English | MEDLINE | ID: mdl-37071351

ABSTRACT

In order to explore the environmental behavior of organophosphate esters (OPEs) in aquatic environment, the accumulation and distribution of OPEs in water, sediment, and plant were investigated. In this study, watermifoil (Myriophyllum aquaticum) were exposed with ten OPEs for concentrations of 200 ng/g, 500 ng/g, 1000 ng/g, and 2000 ng/g, respectively. The concentrations of Σ10OPEs in rhizosphere sediment were higher than those in non-rhizosphere sediment, demonstrating that rhizosphere processes tend to transport OPEs into the rhizosphere sediment. Most of the selected OPEs were not in equilibrium between water and sediment, and trend to retain in sediment. In addition, OPEs with relatively higher hydrophobicity had trend to retained in Myriophyllum aquaticum roots, whereas OPEs with lower hydrophobicity were more likely transported to shoots. In this study, octanol-water partition coefficient (KOW) had significantly positive correlations with organic carbon-normalized soil-water partition coefficients (KOC) and root-water concentration factors (RWCFs), but KOW was negatively correlated with translocation factors (TFs). Moreover, the substituent types and initial levels of OPEs also have impacts on the plant uptake and accumulation. These observations will improve our understanding of the distribution and translocation of OPEs in aquatic environment.


Subject(s)
Flame Retardants , Water Pollutants, Chemical , Ecosystem , Esters , Water Pollutants, Chemical/analysis , Organophosphates/chemistry , Water/chemistry , China , Environmental Monitoring
17.
Anal Chim Acta ; 1239: 340727, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36628772

ABSTRACT

The highly sensitive, selective, easy-to-prepare, aqueous media based on two novel probes 2-(pyren-1-yl)imidazo[1,2-a]pyridine (IMP-Py) and (2-(pyren-1-yl)imidazo[1,2-a]pyridin-3-yl)methanol (IMP-Py-OH) are synthesized for the detection of toxic chemical warfare nerve agent mimic diethylcyanochlorophosphonate (DCNP). Both probes are found effective in the detection of DCNP but comparatively, IMP-Py shows better properties in terms of instantaneous response, specificity, selectivity and a low detection limit of 16.9 nM. A significant enhancement of fluorescence intensity of IMP-Py due to aggregation-induced emission enhancement (AIEE) and photoinduced electron transfer (PET) phenomenon was inhibited due to phosphorylation of the hydroxy group of IMP-Py-OH in presence of DCNP has been observed. Taking the advantages of good sensitivity and fast response, probe IMP-Py has been fabricated into a viable paper strips portable product, tested for its potential for the detection of DCNP in tap water as well as with its vapor and response is visible under a UV lamp of 365 nm wavelength.


Subject(s)
Chemical Warfare Agents , Fluorescent Dyes , Fluorescent Dyes/chemistry , Organophosphates/chemistry , Chemical Warfare Agents/analysis , Water , Positron-Emission Tomography
18.
Chemosphere ; 307(Pt 4): 135915, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35977577

ABSTRACT

Tri(2-chloroisopropyl) phosphate (TCPP), a common organophosphate flame retardant, was frequently detected in the environment and posed threats to human health. In this work, the main component of ilmenite FeTiO3 was synthesized by the sol-gel method and employed as the catalyst for the degradation of TCPP by activating persulfate (PS) under UV irradiation. The degradation processes were fitted by the pseudo-first-order kinetic. The kobs value in UV/FeTiO3/PS system was up to 0.0056 min-1 and much higher than that in UV/PS (0.0014 min-1), UV/FeTiO3 (0.0012 min-1) and FeTiO3/PS (0.0016 min-1) systems, demonstrating a distinct synergistic effect in TCPP removal. The degradation efficiency of TCPP increased with the increase of UV intensity, PS concentration and catalyst dosage, and with the decrease of pH. By quenching experiment and EPR analysis, ·OH was confirmed to be the dominant radical in the reaction of the UV/FeTiO3/PS system. The possible degradation pathways of TCPP were dechlorination, dealkylation, and further oxidation of alkyl groups based on the theoretical calculation of frontier molecular orbits. The toxicity of degradation intermediates evaluated by luminescence inhibition rate of photoluminescence was higher than TCPP. Thus, TCPP can be degraded in the UV/FeTiO3/PS system effectively at the premise of introducing controlling measures to reduce the toxicity of degradation intermediates.


Subject(s)
Flame Retardants , Water Pollutants, Chemical , Flame Retardants/analysis , Humans , Iron , Organophosphates/chemistry , Oxidation-Reduction , Phosphates/chemistry , Titanium , Ultraviolet Rays , Water Pollutants, Chemical/analysis
19.
Chem Rec ; 22(11): e202200141, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35832010

ABSTRACT

The cleavage of RNA phosphodiester bonds by RNase A and hammerhead ribozyme at neutral pH fundamentally differs from the spontaneous reactions of these bonds under the same conditions. While the predominant spontaneous reaction is isomerization of the 3',5'-phosphodiester linkages to their 2',5'-counterparts, this reaction has never been reported to compete with the enzymatic cleavage reaction, not even as a minor side reaction. Comparative kinetic measurements with structurally modified di-nucleoside monophosphates and oligomeric phosphodiesters have played an important role in clarification of mechanistic details of the buffer-independent and buffer-catalyzed reactions. More recently, heavy atom isotope effects and theoretical calculations have refined the picture. The primary aim of all these studies has been to form a solid basis for mechanistic analyses of the action of more complicated catalytic machineries. In other words, to contribute to conception of a plausible unified picture of RNA cleavage by biocatalysts, such as RNAse A, hammerhead ribozyme and DNAzymes. In addition, structurally modified trinucleoside monophosphates as transition state models for Group I and II introns have clarified some features of the action of large ribozymes.


Subject(s)
RNA, Catalytic , RNA , RNA/chemistry , Ribonuclease, Pancreatic/genetics , RNA, Catalytic/chemistry , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , Catalysis , Kinetics , Organophosphates/chemistry , Nucleic Acid Conformation
20.
Biol Reprod ; 107(3): 858-868, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35596243

ABSTRACT

The endocrine disruptive effects of bisphenol A (BPA) and brominated flame retardants (BDE-47) have led to restrictions on their use and increased the pressure to identify safe replacements for these chemicals. Although there is evidence that some of these alternatives may be toxic to spermatogonial and Leydig cells, little is known about the toxicity of emerging replacements on Sertoli cells. We used high-content imaging to compare the effects of legacy chemicals, BPA and BDE-47, to their corresponding replacements. TM4 Sertoli cells were exposed for 48 h to each chemical (0.001-100 µM) followed by cytotoxicity and phenotypic endpoint assessment. The benchmark concentration potency ranking for bisphenols based on cytotoxicity was BPTMC > bisphenol M > BPAF>BPF > BPS > BPA. Human administered equivalent dose (AED) determination ranked BPS as the most potent alternative replacement. The benchmark concentration potency ranking of BDE-47 and organophosphate esters based on cytotoxicity was TDtBPP>BDMPP>TBOEP>TDCPP>TMPP>TPHP>BDE47>IPPP=BPDP=TCPP. Additionally, TM4 cell exposure to BDE-47 increased Calcein intensity (57.9 µM) and affected lysosomes (21.6 µM), while exposure to TPHP and TMPP resulted in cellular oxidative stress changes at benchmark concentration values as low as 0.01 and 0.4 µM, respectively. Overall bioactivity considerations of the chemicals on TM4 via ToxPi analyses and AED modeling further validated emerging replacements as highly potent chemicals in comparison to BPA and BDE-47. These findings demonstrate that many bisphenol and flame retardant replacements are more potent in Sertoli cells than the legacy chemical they are replacing and that phenotypic parameter assessment is an effective tool in chemical toxicity assessment.


Subject(s)
Flame Retardants , Sertoli Cells , Animals , Benzhydryl Compounds/toxicity , Esters , Flame Retardants/toxicity , Halogenated Diphenyl Ethers , Humans , Male , Mice , Organophosphates/chemistry , Organophosphates/toxicity , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL