Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Sci Data ; 11(1): 662, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909031

ABSTRACT

Recent conservation efforts to protect rare and endangered aquatic species have intensified. Nevertheless, the ornate spiny lobster (Panulirus ornatus), which is prevalent in the Indo-Pacific waters, has been largely ignored. In the absence of a detailed genomic reference, the conservation and population genetics of this crustacean are poorly understood. Here, We assembled a comprehensive chromosome-level genome for P. ornatus. This genome-among the most detailed for lobsters-spans 2.65 Gb with a contig N50 of 51.05 Mb, and 99.11% of the sequences with incorporated to 73 chromosomes. The ornate spiny lobster genome comprises 65.67% repeat sequences and 22,752 protein-coding genes with 99.20% of the genes functionally annotated. The assembly of the P. ornatus genome provides valuable insights into comparative crustacean genomics and endangered species conservation, and lays the groundwork for future research on the speciation, ecology, and evolution of the ornate spiny lobster.


Subject(s)
Chromosomes , Genome , Palinuridae , Animals , Palinuridae/genetics , Endangered Species
2.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256143

ABSTRACT

Cytochrome P450s (CYP450s) are a versatile superfamily of enzymes known to undergo rapid evolution. They have important roles across growth and development pathways in crustaceans, although it is difficult to characterise orthologs between species due to their sequence diversity. Conserved CYP450s enzymes in crustaceans are those associated with ecdysteroidogenesis: synthesising and breaking down the active moult hormone, 20-hydroxyecdysone. The complex life cycle of the ornate spiny lobster, Panulirus ornatus, relies on moulting in order to grow and develop. Many of these diverse life stages have been analysed to establish a comprehensive transcriptomic database for this species. The transcripts putatively encoding for CYP450s were mapped using transcriptomic analysis and identified across growth and development stages. With the aid of phylogeny, 28 transcripts of 42 putative P. ornatus CYP450s were annotated, including the well conserved Halloween genes, which are involved in ecdysteroidogenesis. Expression patterns across the life stages determined that only a subset of the CYP450s can be detected in each life stage or tissue. Four Shed transcripts show overlapping expression between metamorphosis and adult tissues, suggesting pleotropic functions of the multiple Shed orthologs within P. ornatus.


Subject(s)
Palinuridae , Animals , Palinuridae/genetics , Cytochrome P-450 Enzyme System/genetics , Molting , Metamorphosis, Biological/genetics , Databases, Factual
3.
Mar Environ Res ; 193: 106253, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979403

ABSTRACT

Knowledge about connectivity between populations is essential for the fisheries management of commercial species. The lobster Jasus frontalis inhabits two oceanic island groups, the Juan Fernández Archipelago and the Desventuradas Islands, separated by 800 km. Since this species is primarily exploited in the Juan Fernández Archipelago, knowledge of the connectivity patterns among islands is foundational for species management. Here, we used variability at single-nucleotide polymorphisms (SNPs) and individual-based modeling (IBM) to estimate the genetic structure and connectivity between J. frontalis populations in these island groups. The variability at 9090 SNPs suggests two genetic populations, one in the Juan Fernández Archipelago and one in the Desventuradas Islands. Furthermore, IBM suggests an asymmetric connectivity pattern, with particles moving from the Juan Fernández Archipelago to the Desventuradas Islands but not vice versa. Since the IBM analysis suggests asymmetric larval movement between the islands, and the genetic analysis indicates isolation between the Juan Fernández Archipelago and the Desventuradas Islands, larval retention mechanisms such as small-scale oceanographic processes or behavior could hinder larval movement between islands. This study highlights the importance of using more than one methodology to estimate population connectivity.


Subject(s)
Palinuridae , Animals , Palinuridae/genetics , Islands , Metagenomics , Genetics, Population , Oceans and Seas
4.
BMC Genomics ; 23(1): 750, 2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36368918

ABSTRACT

BACKGROUND: Evolutionary divergence and speciation often occur at a slower rate in the marine realm due to the higher potential for long-distance reproductive interaction through larval dispersal. One common evolutionary pattern in the Indo-Pacific, is divergence of populations and species at the peripheries of widely-distributed organisms. However, the evolutionary and demographic histories of such divergence are yet to be well understood. Here we address these issues by coupling genome-wide SNP data with mitochondrial DNA sequences to test the patterns of genetic divergence and possible secondary contact among geographically distant populations of the highly valuable spiny lobster Panulirus homarus species complex, distributed widely through the Indo-Pacific, from South Africa to the Marquesas Islands. RESULT: After stringent filtering, 2020 SNPs were used for population genetic and demographic analyses, revealing strong regional structure (FST = 0.148, P < 0001), superficially in accordance with previous analyses. However, detailed demographic analyses supported a much more complex evolutionary history of these populations, including a hybrid origin of a North-West Indian Ocean (NWIO) population, which has previously been discriminated morphologically, but not genetically. The best-supported demographic models suggested that the current genetic relationships among populations were due to a complex series of past divergences followed by asymmetric migration in more recent times. CONCLUSION: Overall, this study suggests that alternating periods of marine divergence and gene flow have driven the current genetic patterns observed in this lobster and may help explain the observed wider patterns of marine species diversity in the Indo-Pacific.


Subject(s)
Palinuridae , Animals , Palinuridae/genetics , Nephropidae/genetics , Polymorphism, Single Nucleotide , Genome , Gene Flow , DNA, Mitochondrial/genetics , Phylogeny , Genetic Variation
5.
Int J Mol Sci ; 23(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36233053

ABSTRACT

RNA interference (RNAi) has been widely utilised in many invertebrate models since its discovery, and in a majority of instances presents as a highly efficient and potent gene silencing mechanism. This is emphasized in crustaceans with almost all taxa having the capacity to trigger effective silencing, with a notable exception in the spiny lobsters where repeated attempts at dsRNA induced RNAi have demonstrated extremely ineffective gene knockdown. A comparison of the core RNAi machinery in transcriptomic data from spiny lobsters (Panulirus ornatus) and the closely related slipper lobsters (Thenus australiensis, where silencing is highly effective) revealed that both lobsters possess all proteins involved in the small interfering and microRNA pathways, and that there was little difference at both the sequence and domain architecture level. Comparing the expression of these genes however demonstrated that T. australiensis had significantly higher expression in the transcripts encoding proteins which directly interact with dsRNA when compared to P. ornatus, validated via qPCR. These results suggest that low expression of the core RNAi genes may be hindering the silencing response in P. ornatus, and suggest that it may be critical to enhance the expression of these genes to induce efficient silencing in spiny lobsters.


Subject(s)
Decapoda , MicroRNAs , Palinuridae , Animals , Palinuridae/genetics , RNA Interference , Transcriptome
6.
Pak J Biol Sci ; 25(6): 501-508, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36098185

ABSTRACT

<b>Background and Objective:</b> In the puerulus phase, which is not pigmented, identification of lobster species based on morphological characteristics is still difficult identity, so it is necessary to identify based on molecular characters. This study aimed to analyze the mitochondrial subunit I cytochrome oxidase (COI) gene characters of the puerulus of lobster species. <b>Materials and Methods:</b> The data can be useful for developing lobster seed identification methods based on DNA characteristics. Location of lobster sampling in Staring Bay, coastal waters of Moramo District, South Konawe Regency, Indonesia. The molecular characterization method is carried out in several stages, namely specific primer design, DNA preparation, PCR with specific primers, DNA sequencing and DNA sequence analysis. Characteristics of COI gene fragments were analyzed using BLAST analysis, restriction enzyme analysis and phylogenetic tree analysis. <b>Results:</b> The results showed that DNA was successfully isolated with a high level of purity. The results of the amplification of the COI gene fragment showed thick and firm bands and formed a single band measuring 751 bp with 249 amino acids. Based on the BLAST analysis shows that the COI gene fragment has 99% similarity with <i>Panulirus homarus</i>. Based restriction enzyme analysis shows that the site of recognition and restriction enzyme cutting position in the <i>Panulirus</i> COI gene fragment is the same as <i>Panulirus homarus</i> in Genebank, the <i>Ase</i>I enzyme in position 392 and <i>Psi </i>I in positions 47 and 106. <b>Conclusion:</b> Based on phylogenetic tree analysis, the COI gene fragment is in one group with <i>Panulirus homarus</i> and has a bootstrap value of 100% which shows that the nucleotide sequence is stable. The three analyzes show that the DNA source organism is the same species as <i>Panulirus homarus</i>.


Subject(s)
Electron Transport Complex IV , Palinuridae , Animals , Base Sequence , DNA , Electron Transport Complex IV/genetics , Palinuridae/genetics , Phylogeny
7.
Biol Open ; 11(5)2022 05 15.
Article in English | MEDLINE | ID: mdl-35452506

ABSTRACT

Vitellogenin is an essential protein involved in ovary maturation in many animals. Detection of this protein correlated with reproductive capacity may be important if carried out on marine organisms such as the red spiny lobster Palinurus elephas, a crustacean that is an economically important crop from wild fish catches. Moreover, in recent years, vitellogenin has assumed an important role as a possible biomarker of marine environmental pollution, as its expression levels can be influenced by the presence of similar estrogen pollutants and can affect the reproductive sphere of marine organisms such as crustaceans. The P. elephas vitellogenin protein and its coding gene have never been isolated, so there is little information about its presence in this lobster. The aim of the present study was to develop a molecular strategy to create, for the first time, an antibody for the detection and quantization of vitellogenin in P. elephas.


Subject(s)
Palinuridae , Animals , Crustacea/genetics , Female , Palinuridae/genetics , Peptides , RNA, Messenger , Vitellogenins/genetics
8.
Virus Res ; 311: 198713, 2022 04 02.
Article in English | MEDLINE | ID: mdl-35176328

ABSTRACT

The Caribbean spiny lobster, Panulirus argus (Latreille, 1804) supports important fisheries in the Caribbean region. This species is affected by a deadly virus, Panulirus argus Virus 1 (PaV1), the only known pathogenic virus for this species. As infection progresses, the effects of PaV1 on its host become systemic, with far reaching impacts on the host's physiology, including structural injuries to its gastrointestinal organs, such as the hepatopancreas and the gut. This last one becomes highly compromised in the last stages of infection. Since the gut is a key organ for the physiological stability of lobsters, we compared the transcriptomic changes in the gut of juvenile individuals of Panulirus argus naturally infected with PaV1. In the RNA-Seq analysis, we obtained a total of 485 × 106 raw reads. After cleaning, reads were de novo assembled into 68,842 transcripts and 50,257 unigenes. The length of unigenes ranged from 201 bp to 28,717 bp, with a N50 length of 2079, and a GC content of 40.61%. In the differential gene expression analysis, we identified a total of 3405 non redundant differential transcripts, of which 1920 were up-regulated and 1485 were down-regulated. We found alterations in transcripts encoding for proteins involved in transcriptional regulation, splicing, postraductional regulation, protein signaling, transmembrane transport, cytoskeletal regulation, and proteolysis, among others. This is the first insight into the transcriptomic regulation of PaV1-P. argus interaction. The information generated can help to unravel the molecular mechanisms that may intervene in the gut during PaV1 infection.


Subject(s)
Decapoda , Palinuridae , Viruses, Unclassified , Animals , Caribbean Region , Humans , Palinuridae/genetics , Transcriptome
9.
PeerJ ; 10: e12744, 2022.
Article in English | MEDLINE | ID: mdl-35047236

ABSTRACT

To date, 19 species of spiny lobsters from the genus Panulirus have been discovered, of which only P. japonicus, P. penicilatus, P. stimpsoni, and P. versicolor have been documented in South Korean waters. In this study, we aimed to identify and update the current list of spiny lobster species that inhabit South Korean waters based on the morphological features and the phylogenetic profile of cytochrome oxidase I (COI) of mitochondrial DNA (mtDNA). Spiny lobsters were collected from the southern and eastern coasts of Jeju Island, South Korea. Phylogenetic analyses were performed using neighbor-joining (NJ), maximum likelihood (ML), and Bayesian inference (BI) methods. The ML tree was used to determine the spiny lobster lineages, thereby clustering the 17 specimens collected in this study into clades A, B, C, and D, which were reciprocally monophyletic with P. japonicus, P. homarus homarus, P. longipes, and P. stimpsoni, respectively. These clades were also supported by morphological examinations. Interestingly, morphological variations, including the connected pleural and transverse groove at the third abdominal somite, were observed in four specimens that were genetically confirmed as P. japonicus. This finding is novel within the P. japonicus taxonomical reports. Additionally, this study updates the documentation of spiny lobsters inhabiting South Korean waters as P. longipes and P. homarus homarus were recorded for the first time in this region.


Subject(s)
Palinuridae , Animals , Palinuridae/genetics , Phylogeny , Nephropidae/genetics , Bayes Theorem , DNA Barcoding, Taxonomic , DNA, Mitochondrial/genetics
10.
Sci Rep ; 11(1): 21780, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741113

ABSTRACT

Partial mtDNA cytochrome oxidase subunit I (COI) fragments and near entire stretch of 12S rDNA (12S) and control region (Dloop) of the Japanese spiny lobster (Panulirus japonicus) (n = 3) were amplified by PCR and used for direct nucleotide sequencing and for clone library-based nucleotide sequence analysis. Nucleotide sequences of a total of 75 clones in COI, 77 in 12S and 92 in Dloop were determined. Haplotypes of the clones matched with those obtained by direct sequencing were determined to be genuine mtDNA sequence of the individual. Phylogenetic analysis revealed several distinct groups of haplotypes in all three regions. Genuine mtDNA sequences were observed to form a group with their closely related variables, and most of these variables may be due to amplification error but a few to be heteroplasmy. Haplotypes determined as nuclear mitochondrial pseudogenes (NUMTs) formed distinct groups. Nucleotide sequence divergence (K2P distance) between genuine haplotypes and NUMTs were substantial (7.169-23.880% for COI, 1.336-23.434% for 12S, and 7.897-71.862% for Dloop). These values were comparable to or smaller than those between species of the genus Panulirus, indicating that integration of mtDNA into the nuclear genome is a continuous and dynamic process throughout pre- and post-speciation events. Double peaks in electropherograms obtained by direct nucleotide sequencing were attributed to common nucleotides shared by multiple NUMTs. Information on the heteroplasmy and NUMTs would be very important for addressing their impact on direct nucleotide sequencing and for quality control of nucleotide sequences obtained.


Subject(s)
DNA, Mitochondrial , Heteroplasmy , Palinuridae/genetics , Pseudogenes , Animals , Phylogeny
11.
BMC Genomics ; 21(1): 882, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33297960

ABSTRACT

BACKGROUND: Whole mitogenomes or short fragments (i.e., 300-700 bp of the cox1 gene) are the markers of choice for revealing within- and among-species genealogies. Protocols for sequencing and assembling mitogenomes include 'primer walking' or 'long PCR' followed by Sanger sequencing or Illumina short-read low-coverage whole genome (LC-WGS) sequencing with or without prior enrichment of mitochondrial DNA. The aforementioned strategies assemble complete and accurate mitochondrial genomes but are time consuming and/or expensive. In this study, I first tested whether mitogenomes can be sequenced from long-read nanopore sequencing data exclusively. Second, I explored the accuracy of the long-read assembled genomes by comparing them to a 'gold' standard reference mitogenome retrieved from the same individual using Illumina sequencing. Third and lastly, I tested if the long-read assemblies are useful for mitophylogenomics and barcoding research. To accomplish these goals, I used the Caribbean spiny lobster Panulirus argus, an ecologically relevant species in shallow water coral reefs and target of the most lucrative fishery in the greater Caribbean region. RESULTS: LC-WGS using a MinION ONT device and various de-novo and reference-based assembly pipelines retrieved a complete and highly accurate mitogenome for the Caribbean spiny lobster Panulirus argus. Discordance between each of the long-read assemblies and the reference mitogenome was mostly due to indels at the flanks of homopolymer regions. Although not 'perfect', phylogenetic analyses using entire mitogenomes or a fragment of the cox1 gene demonstrated that mitogenomes assembled using long reads reliably identify the sequenced specimen as belonging to P. argus and distinguish it from other related species in the same genus, family, and superorder. CONCLUSIONS: This study serves as a proof-of-concept for the future implementation of in-situ surveillance protocols using the MinION to detect mislabeling in P. argus across its supply chain. Mislabeling detection will improve fishery management in this overexploited lobster. This study will additionally aid in decreasing costs for exploring meta-population connectivity in the Caribbean spiny lobster and will aid with the transfer of genomics technology to low-income countries.


Subject(s)
Nanopore Sequencing , Nanopores , Palinuridae , Animals , Caribbean Region , Palinuridae/genetics , Phylogeny
12.
Genes (Basel) ; 11(10)2020 09 29.
Article in English | MEDLINE | ID: mdl-33003631

ABSTRACT

Sexual development involves the successive and overlapping processes of sex determination, sexual differentiation, and ultimately sexual maturation, enabling animals to reproduce. This provides a mechanism for enriched genetic variation which enables populations to withstand ever-changing environments, selecting for adapted individuals and driving speciation. The molecular mechanisms of sexual development display a bewildering diversity, even in closely related taxa. Many sex determination mechanisms across animals include the key family of "doublesex- and male abnormal3-related transcription factors" (Dmrts). In a few exceptional species, a single Dmrt residing on a sex chromosome acts as the master sex regulator. In this study, we provide compelling evidence for this model of sex determination in the ornate spiny lobster Panulius ornatus, concurrent with recent reports in the eastern spiny lobster Sagmariasus verreauxi. Using a multi-tissue transcriptomic database established for P. ornatus, we screened for the key factors associated with sexual development (by homology search and using previous knowledge of these factors from related species), providing an in-depth understanding of sexual development in decapods. Further research has the potential to close significant gaps in our understanding of reproductive development in this ecologically and commercially significant order.


Subject(s)
Arthropod Proteins/genetics , Gene Expression Regulation, Developmental , Palinuridae/genetics , Sexual Development , Transcriptome , Animals , Gene Expression Profiling , Palinuridae/growth & development
13.
Int J Mol Sci ; 21(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971953

ABSTRACT

RNA interference (RNAi) has become a widely utilized method for studying gene function, yet despite this many of the mechanisms surrounding RNAi remain elusive. The core RNAi machinery is relatively well understood, however many of the systemic mechanisms, particularly double-stranded RNA (dsRNA) transport, are not. Here, we demonstrate that dsRNA binding proteins in the serum contribute to systemic RNAi and may be the limiting factor in RNAi capacity for species such as spiny lobsters, where gene silencing is not functional. Incubating sera from a variety of species across phyla with dsRNA led to a gel mobility shift in species in which systemic RNAi has been observed, with this response being absent in species in which systemic RNAi has never been observed. Proteomic analysis suggested lipoproteins may be responsible for this phenomenon and may transport dsRNA to spread the RNAi signal systemically. Following this, we identified the same gel shift in the slipper lobster Thenus australiensis and subsequently silenced the insulin androgenic gland hormone, marking the first time RNAi has been performed in any lobster species. These results pave the way for inducing RNAi in spiny lobsters and for a better understanding of the mechanisms of systemic RNAi in Crustacea, as well as across phyla.


Subject(s)
Arthropod Proteins , Palinuridae , RNA Interference , RNA, Double-Stranded , RNA-Binding Proteins , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Humans , Palinuridae/genetics , Palinuridae/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
14.
BMC Genomics ; 21(1): 649, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32962631

ABSTRACT

BACKGROUND: Crustaceans express several classes of receptor genes in their antennules, which house olfactory sensory neurons (OSNs) and non-olfactory chemosensory neurons. Transcriptomics studies reveal that candidate chemoreceptor proteins include variant Ionotropic Receptors (IRs) including both co-receptor IRs and tuning IRs, Transient Receptor Potential (TRP) channels, Gustatory Receptors, epithelial sodium channels, and class A G-protein coupled receptors (GPCRs). The Caribbean spiny lobster, Panulirus argus, expresses in its antennules nearly 600 IRs, 17 TRP channels, 1 Gustatory Receptor, 7 epithelial sodium channels, 81 GPCRs, 6 G proteins, and dozens of enzymes in signaling pathways. However, the specific combinatorial expression patterns of these proteins in single sensory neurons are not known for any crustacean, limiting our understanding of how their chemosensory systems encode chemical quality. RESULTS: The goal of this study was to use transcriptomics to describe expression patterns of chemoreceptor genes in OSNs of P. argus. We generated and analyzed transcriptomes from 7 single OSNs, some of which were shown to respond to a food odor, as well as an additional 7 multicell transcriptomes from preparations containing few (2-4), several (ca. 15), or many (ca. 400) OSNs. We found that each OSN expressed the same 2 co-receptor IRs (IR25a, IR93a) but not the other 2 antennular coIRs (IR8a, IR76b), 9-53 tuning IRs but only one to a few in high abundance, the same 5 TRP channels plus up to 5 additional TRPs, 12-17 GPCRs including the same 5 expressed in every single cell transcriptome, the same 3 G proteins plus others, many enzymes in the signaling pathways, but no Gustatory Receptors or epithelial sodium channels. The greatest difference in receptor expression among the OSNs was the identity of the tuning IRs. CONCLUSIONS: Our results provide an initial view of the combinatorial expression patterns of receptor molecules in single OSNs in one species of decapod crustacean, including receptors directly involved in olfactory transduction and others likely involved in modulation. Our results also suggest differences in receptor expression in OSNs vs. other chemosensory neurons.


Subject(s)
Chemoreceptor Cells/metabolism , Palinuridae/genetics , Transcriptome , Animals , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Palinuridae/metabolism , RNA-Seq , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Ionotropic Glutamate/genetics , Receptors, Ionotropic Glutamate/metabolism , Single-Cell Analysis , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
15.
Article in English | MEDLINE | ID: mdl-32607762

ABSTRACT

Diverse animals use Earth's magnetic field to guide their movements, but the neural and molecular mechanisms underlying the magnetic sense remain enigmatic. One hypothesis is that particles of the mineral magnetite (Fe3O4) provide the basis of magnetoreception. Here we examined gene expression in the central nervous system of a magnetically sensitive invertebrate, the Caribbean spiny lobster (Panulirus argus), after applying a magnetic pulse known to alter magnetic orientation behavior. Numerous genes were differentially expressed in response to the pulse, including 647 in the brain, 1256 in the subesophageal ganglion, and 712 in the thoracic ganglia. Many such genes encode proteins linked to iron regulation, oxidative stress, and immune response, consistent with possible impacts of a magnetic pulse on magnetite-based magnetoreceptors. Additionally, however, altered expression also occurred for numerous genes with no apparent link to magnetoreception, including genes encoding proteins linked to photoreception, carbohydrate and hormone metabolism, and other physiological processes. Overall, the results are consistent with the magnetite hypothesis of magnetoreception, yet also reveal that in spiny lobsters, a strong pulse altered expression of > 10% of all expressed genes, including many seemingly unrelated to sensory processes. Thus, caution is required when interpreting the effects of magnetic pulses on animal behavior.


Subject(s)
Palinuridae/radiation effects , Animals , Behavior, Animal/radiation effects , Caribbean Region , Central Nervous System/metabolism , Central Nervous System/radiation effects , Gene Expression Profiling , Magnetic Fields , Orientation/physiology , Palinuridae/genetics , Palinuridae/metabolism , Transcriptome/radiation effects
16.
Gen Comp Endocrinol ; 296: 113528, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32526328

ABSTRACT

Insulin and related peptides play important roles in the regulation of growth and reproduction. Until recently three different types of insulin-related peptides had been identified from decapod crustaceans. The identification of two novel insulin-related peptides from Sagmariasus verreauxi and Cherax quadricarinatus suggested that there might a fourth type. Publicly available short read archives show that orthologs of these peptides are commonly present in these animals. Most decapods have two genes coding such peptides, but Penaeus species have likely only one and some palaemonids have three. Interestingly, expression levels can vary more than thousand-fold in the gonads of Portunus trituberculatus, where gonadulin 1 is expressed by the testis and gonadulin 2 by the ovary. Although these peptides are also expressed in other tissues, the occasionally very high expression in the gonads led to them being called gonadulins.


Subject(s)
Astacoidea/metabolism , Insulin/metabolism , Palinuridae/metabolism , Amino Acid Sequence , Animals , Astacoidea/genetics , Female , Gene Expression Regulation , Insulin/chemistry , Insulin/genetics , Male , Palinuridae/genetics , Phylogeny
17.
Gen Comp Endocrinol ; 294: 113496, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32360560

ABSTRACT

Neuropeptides are ancient endocrine components which have evolved to regulate many aspects of biology across the animal kingdom including behaviour, development and metabolism. To supplement current knowledge, we have utilized a transcriptome series describing larval development in the ornate spiny lobster, Panulirus ornatus. The biology of this animal has been leveraged to provide insights into the roles of molting, metamorphosis and metabolism across the neuropeptide family. We report an extensive list of neuropeptides across three distinct life phases of the animal. We show distinct groups of neuropeptides with differential expression between larval phases, indicating phase-specific roles for these peptides. For selected neuropeptides, we describe and discuss expression profiles throughout larval development and report predicted peptide cleavage sites and mature peptide sequences. We also report the neuropeptide nesfatin for the first time in a crustacean, and report secondary peptide products with a level of evolutionary conservation similar to the conventional mature peptide nesfatin-1, indicating a conserved role in these secondary products which are widely regarded as biologically inactive. In addition, we report a trend of downregulation in the neuropeptides as the animal undergoes extensive neural remodelling in fulfillment of metamorphosis. We suggest that this downregulation in neuropeptides relates to the brief, yet dramatic changes in morphology experienced by the central nervous system in the process of metamorphosis.


Subject(s)
Neurons/metabolism , Neuropeptides/metabolism , Palinuridae/metabolism , Amino Acid Sequence , Animals , Larva/genetics , Larva/metabolism , Molting/genetics , Neuropeptides/genetics , Palinuridae/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics , Up-Regulation/genetics
18.
Mar Genomics ; 54: 100783, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32414680

ABSTRACT

The spiny lobster, Panulirus argus, is an ecologically relevant species in shallow water coral reefs and a target of the most lucrative fishery in the greater Caribbean region. This study reports, for the first time, the heart + hemolymph transcriptome of the Caribbean spiny lobster Panulirus argus assembled from short Illumina 150bp PE raw reads. A total of 80,152,094 raw reads were assembled using the Oyster River Protocol pipeline. The assembly resulted in a total of 254,773 transcripts. Functional gene annotation was conducted using the software package 'dammit'. Lastly, gene enrichment analyses were conducted using the Gene Ontology (GO) and KEGG pathway (Kaas) databases. This resource will be of utmost importance in future research aiming at exploring the effect of local and regional anthropogenic disturbances, as well as global climate change on the molecular physiology of this overexploited species.


Subject(s)
Hemolymph/metabolism , Palinuridae/genetics , Transcriptome , Animals , Female , Florida , Heart , Myocardium/metabolism
19.
BMC Genomics ; 20(1): 531, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31253104

ABSTRACT

BACKGROUND: The Crustacea are an evolutionarily diverse taxon which underpins marine food webs and contributes significantly to the global economy. However, our knowledge of crustacean endocrinology and development is far behind that of terrestrial arthropods. Here we present a unique insight into the molecular pathways coordinating crustacean metamorphosis, by reconciling nuclear receptor (NR) gene activity from a 12-stage, 3-replicate transcriptome in the ornate spiny lobster (Panulirus ornatus) during larval development. RESULTS: We annotated 18 distinct nuclear receptor genes, including three novel NRs which are upregulated prior to metamorphosis and have hence been named the "molt-associated receptors" (MARs). We also demonstrate the ecdysone-responsive expression of several known molt-related NRs including ecdysone receptor, fushi-tarazu-F1 and E75. Phylogenetic analysis of the curated NR family confirmed gene annotations and suggested that the MARs are a recent addition to the crustacean superfamily, occurring across the Malacostraca from the Stomatopoda to the Decapoda. The ligand-binding domain of these receptors appears to be less conserved than that of typical group-1 NRs. Expression data from two other crustacean species was utilized to examine MAR expression. The Y-organ of the tropical land crab showed a decline in expression of all MARs from intermolt to post-molt. Tissue distributions showed gonad-enriched expression in the Eastern rock lobster and antennal gland-enriched expression in the tropical land crab, although expression was evident across most tissues. CONCLUSION: By mining transcriptome data, we have curated an extensive list of NR genes expressed during the metamorphic molts of P. ornatus, including three novel crustacean NRs which appear to play a role in the molting process. Divergence of the E-region of these new receptors indicates that they may have adopted a function that is unconventional for NRs. Based on expression patterns, we can confirm that a number of NRs play a role in the ecdysone cassette which regulates molting in crustaceans. This study describes in detail the molecular events surrounding crustacean molting and metamorphosis by taking advantage of the distinctive life history unique to achelatan crustaceans.


Subject(s)
Gene Expression Profiling , Metamorphosis, Biological/genetics , Palinuridae/growth & development , Palinuridae/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Molting/genetics , Sequence Homology, Nucleic Acid , Species Specificity
20.
Sci Rep ; 9(1): 7100, 2019 05 08.
Article in English | MEDLINE | ID: mdl-31068625

ABSTRACT

The assessment of the mechanisms and patterns of larval connectivity between geographically separated populations leads to a better understanding of benthic marine population dynamics, especially in commercially valuable species. This study investigated for the first time the fine-scale temporal genetic variability of new settlers and their origins in a benthic marine organism with one of the longest pelagic larval phases, the Caribbean spiny lobster (Panulirus argus). We genotyped newly settled postlarvae in the Florida Keys and adults of spiny lobster from the Florida Keys and throughout the Caribbean Sea. We identified strong larval connectivity between Dominican Republic, Belize, Nicaragua, the Florida Keys, and West-Florida. The larval dispersal modeling suggests that Florida's lobster population could receive recruits from within and from other areas outside its state and national maritime boundaries. The genetic analyses refine the oceanographic model indicating that the connectivity patterns described could also result from unknown parental populations sourcing adults and postlarvae in different spawning seasons to the Florida Keys. We discuss the importance of small temporal scales to identify patterns in larval export. Our findings are significant on two levels. From the larval dispersal perspective, genetic results and biophysical modeling identify patterns of gene flow enhancing persistence of local populations. From an economic and fishery perspective, P. argus is the most important commercial species in the Caribbean and our results inform how considering larval source and sink dynamics across international boundaries could improve management plans at local, national, and regional levels.


Subject(s)
Gene Flow , Larva/genetics , Marine Biology/methods , Palinuridae/genetics , Animals , Caribbean Region , Fisheries/economics , Florida , Genetic Loci , Genetic Variation , Genotype , Genotyping Techniques , Models, Biological , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL