Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.122
Filter
2.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928510

ABSTRACT

The decline in the function and mass of skeletal muscle during aging or other pathological conditions increases the incidence of aging-related secondary diseases, ultimately contributing to a decreased lifespan and quality of life. Much effort has been made to surmise the molecular mechanisms underlying muscle atrophy and develop tools for improving muscle function. Enhancing mitochondrial function is considered critical for increasing muscle function and health. This study is aimed at evaluating the effect of an aqueous extract of Gloiopeltis tenax (GTAE) on myogenesis and muscle atrophy caused by dexamethasone (DEX). The GTAE promoted myogenic differentiation, accompanied by an increase in peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) expression and mitochondrial content in myoblast cell culture. In addition, the GTAE alleviated the DEX-mediated myotube atrophy that is attributable to the Akt-mediated inhibition of the Atrogin/MuRF1 pathway. Furthermore, an in vivo study using a DEX-induced muscle atrophy mouse model demonstrated the efficacy of GTAE in protecting muscles from atrophy and enhancing mitochondrial biogenesis and function, even under conditions of atrophy. Taken together, this study suggests that the GTAE shows propitious potential as a nutraceutical for enhancing muscle function and preventing muscle wasting.


Subject(s)
Dexamethasone , Muscle Development , Muscular Atrophy , Plant Extracts , Animals , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Dexamethasone/adverse effects , Dexamethasone/pharmacology , Muscle Development/drug effects , Mice , Plant Extracts/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Cell Differentiation/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Cell Line , Muscle Proteins/metabolism , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Mice, Inbred C57BL , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Rhodophyta
3.
Physiol Rep ; 12(12): e16117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898524

ABSTRACT

This study aimed to investigate how intermittent hyperoxic exposure (three cycles of 21% O2 [10 min] and 30% O2 [15 min]) affects exercise performance in mice. Three hours after the acute exposure, there was an observed increase in mRNA levels of phosphofructokinase (Bayes factor [BF] ≥ 10), mitochondrial transcription factor-A (BF ≥10), PPAR-α (BF ≥3), and PPAR-γ (BF ≥3) in the red gastrocnemius muscle (Gr). Four weeks of exercise training under intermittent (INT), but not continuous (HYP), hyperoxia significantly (BF ≥30) increased maximal exercise capacity compared to normoxic exercise-trained (ET) group. INT group exhibited significantly higher activity levels of 3-hydroxyacyl-CoA-dehydrogenase (HAD) in Gr (BF = 7.9) compared to ET group. Pyruvate dehydrogenase complex activity levels were significantly higher in INT group compared to ET group in white gastrocnemius, diaphragm, and left ventricle (BF ≥3). NT-PGC1α protein levels in Gr (BF = 7.7) and HAD activity levels in Gr (BF = 6.9) and soleus muscles (BF = 3.3) showed a significant positive correlation with maximal work values. These findings suggest that exercise training under intermittent hyperoxia is a beneficial strategy for enhancing endurance performance by improving fatty acid and pyruvic acid utilization.


Subject(s)
Muscle, Skeletal , Physical Conditioning, Animal , Physical Endurance , Animals , Male , Muscle, Skeletal/metabolism , Mice , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Physical Endurance/physiology , Mice, Inbred C57BL , Hyperoxia/metabolism , Hyperoxia/physiopathology , PPAR alpha/metabolism , PPAR alpha/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Phosphofructokinases/metabolism , Phosphofructokinases/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins , Mitochondrial Proteins
4.
Mol Biol (Mosk) ; 58(1): 78-87, 2024.
Article in Russian | MEDLINE | ID: mdl-38943581

ABSTRACT

Stress can play a significant role in arterial hypertension and many other complications of cardiovascular diseases. Considerable attention is paid to the study of the molecular mechanisms involved in the body response to stressful influences, but there are still many blank spots in understanding the details. ISIAH rats model the stress-sensitive form of arterial hypertension. ISIAH rats are characterized by genetically determined enhanced activities of the hypothalamic-pituitary-adrenocortical and sympathetic-adrenomedullary systems, suggesting a functional state of increased stress reactivity. For the first time, the temporal expression patterns of Fos and several related genes were studied in the hypothalamus of adult male hypertensive ISIAH rats after a single exposure to restraint stress for 30, 60, or 120 min. Fos transcription was activated and peaked 1 h after the start of restraint stress. The time course of Fos activation coincided with that of blood pressure increase after stress. Activation of hypothalamic neurons also alters the transcription levels of several transcription factor genes (Jun, Nr4a3, Jdp2, and Ppargc1a), which are associated with the development of cardiovascular diseases. Because Fos induction is a marker of brain neuron activation, activation of hypothalamic neurons and an increase in blood pressure were concluded to accompany increased stress reactivity of the hypothalamic-pituitary-adrenocortical and sympathoadrenal systems in hypertensive ISIAH rats during short-term restraint.


Subject(s)
Gene Expression Regulation , Hypertension , Hypothalamus , Animals , Hypertension/metabolism , Hypertension/genetics , Hypertension/pathology , Rats , Hypothalamus/metabolism , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/biosynthesis , Restraint, Physical , Stress, Psychological/metabolism , Stress, Psychological/genetics , Stress, Psychological/physiopathology , Blood Pressure/genetics , Stress, Physiological/genetics , Neurons/metabolism , Neurons/pathology
5.
BMC Genomics ; 25(1): 592, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867146

ABSTRACT

BACKGROUND: Intramuscular fat content is an important index reflecting the quality of mutton, which directly affects the flavor and tenderness of mutton. Livestock and poultry intramuscular fat content is influenced by genetics, nutritional level, and environmental factors. Key regulatory factors play a crucial role in intramuscular fat deposition. However, there is a limited amount of research on the identification and function of key genes involved in intramuscular fat content deposition specifically in sheep. RESULTS: Histological differences in the longest dorsal muscle of the small-tailed frigid sheep increased in diameter and decreased in several muscle fibers with increasing monthly age; The intramuscular fat content of the longest dorsal muscle of the small-tailed cold sheep varied with age, with a minimum of 1 month of age, a maximum of 6 months of age, and a minimum of 12 months of age. Transcriptomic sequencing and bioinformatics analysis revealed a large number of differential genes in the longest dorsal muscles of little-tailed billy goats of different months of age, which were enriched in multiple GO entries and KEGG pathways. Among them, the pathway associated with intramuscular fat was the AMPK signaling pathway, and the related genes were PPARGC1A and ADIPOQ; Immunohistochemical studies showed that PPARGC1A and ADIPOQ proteins were expressed in connective tissues, cell membranes, and, to a lesser extent, the cytoplasm of the longest dorsal muscle of the little-tailed frigid sheep; Real-time PCR and Western Blot validation showed that PPARGC1A and ADIPOQ were both expressed in the longest dorsal muscle of the little-tailed frigid sheep at different ages, and there were age differences in the amount of expression. The ADIPOQ gene was negatively correlated with the intramuscular fat content of the longest dorsal muscle, and the PPARGC1A gene was positively correlated with the intramuscular fat content of the longest dorsal muscle; As inferred from the above results, the ADIPOQ gene was negatively correlated with the intramuscular fat content of the longest dorsal muscle (r = -0.793, P < 0.05); and the PPARGC1A gene was positively correlated with the intramuscular fat content of the longest dorsal muscle r = 0.923, P < 0.05). CONCLUSIONS: Based on the above results, it can be inferred that the ADIPOQ gene is negatively correlated with the intramuscular fat content of the longest back muscle (r = -0.793, P < 0.05); the PPARGC1A gene is positively correlated with the intramuscular fat content of the longest back muscle (r = 0.923, P < 0.05).


Subject(s)
Adipose Tissue , Muscle, Skeletal , Animals , Sheep/genetics , Sheep/metabolism , Muscle, Skeletal/metabolism , Adipose Tissue/metabolism , Adiponectin/metabolism , Adiponectin/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Gene Expression Profiling , Transcriptome
6.
Redox Biol ; 74: 103230, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875959

ABSTRACT

α-Ketoglutarate (AKG), a crucial intermediate in the tricarboxylic acid cycle, has been demonstrated to mitigate hyperlipidemia-induced dyslipidemia and endothelial damage. While hyperlipidemia stands as a major trigger for non-alcoholic fatty liver disease, the protection of AKG on hyperlipidemia-induced hepatic metabolic disorders remains underexplored. This study aims to investigate the potential protective effects and mechanisms of AKG against hepatic lipid metabolic disorders caused by acute hyperlipidemia. Our observations indicate that AKG effectively alleviates hepatic lipid accumulation, mitochondrial dysfunction, and loss of redox homeostasis in P407-induced hyperlipidemia mice, as well as in palmitate-injured HepG2 cells and primary hepatocytes. Mechanistic insights reveal that the preventive effects are mediated by activating the AMPK-PGC-1α/Nrf2 pathway. In conclusion, our findings shed light on the role and mechanism of AKG in ameliorating abnormal lipid metabolic disorders in hyperlipidemia-induced fatty liver, suggesting that AKG, an endogenous mitochondrial nutrient, holds promising potential for addressing hyperlipidemia-induced fatty liver conditions.


Subject(s)
AMP-Activated Protein Kinases , Hyperlipidemias , Ketoglutaric Acids , NF-E2-Related Factor 2 , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Signal Transduction , Animals , Hyperlipidemias/metabolism , Hyperlipidemias/drug therapy , Hyperlipidemias/complications , Mice , Oxidative Stress/drug effects , Humans , NF-E2-Related Factor 2/metabolism , AMP-Activated Protein Kinases/metabolism , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Signal Transduction/drug effects , Hep G2 Cells , Mitochondria/metabolism , Mitochondria/drug effects , Male , Lipid Metabolism/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Fatty Liver/metabolism , Fatty Liver/etiology , Fatty Liver/drug therapy , Fatty Liver/prevention & control , Fatty Liver/pathology , Disease Models, Animal , Liver/metabolism , Liver/drug effects , Liver/pathology
7.
Sci Adv ; 10(26): eadn4508, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38924407

ABSTRACT

Once considered as a "metabolic waste," lactate is now recognized as a major fuel for tricarboxylic acid (TCA) cycle. Our metabolic flux analysis reveals that skeletal muscle mainly uses lactate to fuel TCA cycle. Lactate is transported through the cell membrane via monocarboxylate transporters (MCTs) in which MCT1 is highly expressed in the muscle. We analyzed how MCT1 affects muscle functions using mice with specific deletion of MCT1 in skeletal muscle. MCT1 deletion enhances running performance, increases oxidative fibers while decreasing glycolytic fibers, and enhances flux of glucose to TCA cycle. MCT1 deficiency increases the expression of mitochondrial proteins, augments cell respiration rate, and elevates mitochondrial activity in the muscle. Mechanistically, the protein level of PGC-1α, a master regulator of mitochondrial biogenesis, is elevated upon loss of MCT1 via increases in cellular NAD+ level and SIRT1 activity. Collectively, these results demonstrate that MCT1-mediated lactate shuttle plays a key role in regulating muscle functions by modulating mitochondrial biogenesis and TCA flux.


Subject(s)
Citric Acid Cycle , Lactic Acid , Monocarboxylic Acid Transporters , Muscle, Skeletal , Organelle Biogenesis , Symporters , Animals , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Muscle, Skeletal/metabolism , Symporters/metabolism , Symporters/genetics , Lactic Acid/metabolism , Mice , Mitochondria/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice, Knockout , Glycolysis
8.
Cell Death Dis ; 15(6): 385, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824126

ABSTRACT

Drusen, the yellow deposits under the retina, are composed of lipids and proteins, and represent a hallmark of age-related macular degeneration (AMD). Lipid droplets are also reported in the retinal pigment epithelium (RPE) from AMD donor eyes. However, the mechanisms underlying these disease phenotypes remain elusive. Previously, we showed that Pgc-1α repression, combined with a high-fat diet (HFD), induce drastic AMD-like phenotypes in mice. We also reported increased PGC-1α acetylation and subsequent deactivation in the RPE derived from AMD donor eyes. Here, through a series of in vivo and in vitro experiments, we sought to investigate the molecular mechanisms by which PGC-1α repression could influence RPE and retinal function. We show that PGC-1α plays an important role in RPE and retinal lipid metabolism and function. In mice, repression of Pgc-1α alone induced RPE and retinal degeneration and drusen-like deposits. In vitro inhibition of PGC1A by CRISPR-Cas9 gene editing in human RPE (ARPE19- PGC1A KO) affected the expression of genes responsible for lipid metabolism, fatty acid ß-oxidation (FAO), fatty acid transport, low-density lipoprotein (LDL) uptake, cholesterol esterification, cholesterol biosynthesis, and cholesterol efflux. Moreover, inhibition of PGC1A in RPE cells caused lipid droplet accumulation and lipid peroxidation. ARPE19-PGC1A KO cells also showed reduced mitochondrial biosynthesis, impaired mitochondrial dynamics and activity, reduced antioxidant enzymes, decreased mitochondrial membrane potential, loss of cardiolipin, and increased susceptibility to oxidative stress. Our data demonstrate the crucial role of PGC-1α in regulating lipid metabolism. They provide new insights into the mechanisms involved in lipid and drusen accumulation in the RPE and retina during aging and AMD, which may pave the way for developing novel therapeutic strategies targeting PGC-1α.


Subject(s)
Lipid Droplets , Lipid Metabolism , Macular Degeneration , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Animals , Humans , Mice , Lipid Droplets/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Male , Oxidative Stress
9.
J Exp Clin Cancer Res ; 43(1): 180, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937832

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is characterized by its high metastatic potential, which results in poor patient survival. Cancer-associated fibroblasts (CAFs) are crucial in facilitating TNBC metastasis via induction of mitochondrial biogenesis. However, how to inhibit CAF-conferred mitochondrial biogenesis is still needed to explore. METHODS: We investigated metastasis using wound healing and cell invasion assays, 3D-culture, anoikis detection, and NOD/SCID mice. Mitochondrial biogenesis was detected by MitoTracker green FM staining, quantification of mitochondrial DNA levels, and blue-native polyacrylamide gel electrophoresis. The expression, transcription, and phosphorylation of peroxisome-proliferator activated receptor coactivator 1α (PGC-1α) were detected by western blotting, chromatin immunoprecipitation, dual-luciferase reporter assay, quantitative polymerase chain reaction, immunoprecipitation, and liquid chromatography-tandem mass spectrometry. The prognostic role of PGC-1α in TNBC was evaluated using the Kaplan-Meier plotter database and clinical breast cancer tissue samples. RESULTS: We demonstrated that PGC-1α indicated lymph node metastasis, tumor thrombus formation, and poor survival in TNBC patients, and it was induced by CAFs, which functioned as an inducer of mitochondrial biogenesis and metastasis in TNBC. Shikonin impeded the CAF-induced PGC-1α expression, nuclear localization, and interaction with estrogen-related receptor alpha (ERRα), thereby inhibiting PGC-1α/ERRα-targeted mitochondrial genes. Mechanistically, the downregulation of PGC-1α was mediated by synthase kinase 3ß-induced phosphorylation of PGC-1α at Thr295, which associated with neural precursor cell expressed developmentally downregulated 4e1 recognition and subsequent degradation by ubiquitin proteolysis. Mutation of PGC-1α at Thr295 negated the suppressive effects of shikonin on CAF-stimulated TNBC mitochondrial biogenesis and metastasis in vitro and in vivo. CONCLUSIONS: Our findings indicate that PGC-1α is a viable target for blocking TNBC metastasis by disrupting mitochondrial biogenesis, and that shikonin merits potential for treatment of TNBC metastasis as an inhibitor of mitochondrial biogenesis through targeting PGC-1α.


Subject(s)
Glycogen Synthase Kinase 3 beta , Naphthoquinones , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice , Animals , Phosphorylation , Glycogen Synthase Kinase 3 beta/metabolism , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Female , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Mice, SCID , Neoplasm Metastasis , Mice, Inbred NOD , Mitochondria/metabolism , Xenograft Model Antitumor Assays
10.
Toxicol Appl Pharmacol ; 489: 116991, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871090

ABSTRACT

Liver fibrosis is considered an epidemic health problem due to different insults that lead to death. Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 (SGLT2) inhibitor, is one of the newer anti-diabetic drugs used to manage type 2 diabetes mellitus (T2DM). DAPA exerted beneficial effects in many human and rat models due to its antioxidant, anti-inflammatory and antifibrotic activities. AIM: Due to previously reported capabilities related to DAPA, we designed this study to clarify the beneficial role of DAPA in liver fibrosis triggered by common bile duct ligation (CBL) in male rats. METHODS: For 14 or 28 days after CBL procedures, DAPA was administered to the rats orally at a dose of 10 mg/kg once daily. The effects of DAPA were evaluated by assaying liver enzymes, hepatic oxidant/antioxidant parameters, serum levels of tumor necrotic factor alpha (TNF-α), and AMP-activated protein kinase (AMPK). In addition, we measured the hepatic expression of fibrosis regulator-related genes along with evaluating liver histological changes. KEY FINDINGS: DAPA successfully decreased hepatic enzymes and malondialdehyde levels, increased superoxide dismutase activity, elevated catalase levels, decreased serum levels of TNF-α, elevated serum levels of AMPK, decreased liver hydroxyproline content, upregulated Sirt1/PGC1α/FoxO1 liver gene expressions, down-regulated fibronectin-1 (Fn-1), collagen-1 genes in liver tissues, and improved the damaged liver tissues. Deteriorated biochemical parameters and histological liver insults associated with CBL were more pronounced after 28 days, but DAPA administration for 14 and 28 days showed significant improvement in most parameters and reflected positively in the histological structures of the liver. SIGNIFICANCE: The significance of this study lies in the observation that DAPA mitigated CBL-induced liver fibrosis in rats, most likely due to its antioxidant, anti-inflammatory, and antifibrotic effects. These results suggest that DAPA's beneficial impact on liver fibrosis might be attributed to its interaction with the Sirt1/AMPK/PGC1α/FoxO1 pathway, indicating a potential mechanistic action for future exploration.


Subject(s)
AMP-Activated Protein Kinases , Benzhydryl Compounds , Common Bile Duct , Glucosides , Liver Cirrhosis , Liver , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Glucosides/pharmacology , Glucosides/therapeutic use , AMP-Activated Protein Kinases/metabolism , Ligation , Benzhydryl Compounds/pharmacology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Rats , Liver/drug effects , Liver/pathology , Liver/metabolism , Common Bile Duct/surgery , Signal Transduction/drug effects , Rats, Wistar , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Antifibrotic Agents/pharmacology , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Forkhead Box Protein O1
11.
Arch Microbiol ; 206(6): 265, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761195

ABSTRACT

Acute pancreatitis frequently causes intestinal barrier damage, which aggravates pancreatitis. Although Clostridium butyricum exerts anti-inflammatory and protective effects on the intestinal barrier during acute pancreatitis, the underlying mechanism is unclear. The G protein-coupled receptors 109 A (GPR109A) and adenosine monophosphate-activated protein kinase (AMPK)/ peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathways can potentially influence the integrity of the intestinal barrier. Our study generated acute pancreatitis mouse models via intraperitoneal injection of cerulein and lipopolysaccharides. After intervention with Clostridium butyricum, the model mice showed reduced small intestinal and colonic intestinal barrier damage, dysbiosis amelioration, and increased GPR109A/AMPK/PGC-1α expression. In conclusion, Clostridium butyricum could improve pancreatic and intestinal inflammation and pancreatic injury, and relieve acute pancreatitis-induced intestinal barrier damage in the small intestine and colon, which may be associated with GPR109A/AMPK/PGC-1α.


Subject(s)
AMP-Activated Protein Kinases , Clostridium butyricum , Disease Models, Animal , Pancreatitis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Receptors, G-Protein-Coupled , Animals , Clostridium butyricum/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice , Pancreatitis/metabolism , Pancreatitis/microbiology , Pancreatitis/pathology , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Male , Signal Transduction , Up-Regulation
12.
Gene ; 926: 148606, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38788813

ABSTRACT

Obesity and overweight are multifactorial diseases affecting more than one-third of the world's population. Physical inactivity contributes to a positive energy balance and the onset of obesity. Exercise combined with a balanced diet is an effective non-pharmacological strategy to improve obesity-related disorders. Gallic acid (GA), is a natural endogenous polyphenol found in a variety of fruits, vegetables, and wines, with beneficial effects on energetic homeostasis. The present study aims to investigate the effects of exercise training on obese mice supplemented with GA. Animal experimentation was performed with male Swiss mice divided into five groups: ST (standard control), HFD (obese control), HFD + GA (GA supplement), HFD + Trained (training), and HFD + GA + Trained (GA and training). The groups are treated for eight weeks with 200 mg/kg/body weight of the feed compound and, if applicable, physical training. The main findings of the present study show that GA supplementation improves liver fat, body weight, adiposity, and plasma insulin levels. In addition, animals treated with the GA and a physical training program demonstrate reduced levels of anxiety. Gene expression analyses show that Sesn2 is activated via PGC-1α independent of the GATOR2 protein, which is activated by GA in the context of physical activity. These data are corroborated by molecular docking analysis, demonstrating the interaction of GA with GATOR2. The present study contributes to understanding the metabolic effects of GA and physical training and demonstrates a new hepatic mechanism of action via Sestrin 2 and PGC-1α.


Subject(s)
Gallic Acid , Liver , Mice, Obese , Obesity , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Animals , Mice , Gallic Acid/pharmacology , Male , Liver/metabolism , Liver/drug effects , Obesity/metabolism , Obesity/genetics , Obesity/drug therapy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Anxiety/drug therapy , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Diet, High-Fat/adverse effects , Gene Expression Regulation/drug effects , Sestrins
13.
Food Funct ; 15(12): 6475-6487, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38804652

ABSTRACT

Ginsenoside compound K (GCK) possesses a glucocorticoid (GC)-like structure and functions as an agonist of the glucocorticoid receptor (GR), thereby exerting anti-inflammatory effects through GR activation. However, it remains unclear whether GCK leads to hyperglycemia, which is a known adverse reaction associated with classical GCs. In this study, we have successfully demonstrated that GCK exerts its anti-inflammatory effects in a rat model of adjuvant arthritis without impacting gluconeogenesis and pentose phosphate pathways, thus avoiding any glucose metabolism disorders. By employing the GR mutant plasmid, we have identified the binding site between GCK and GR as GRM560T, which differs from the binding site shared by dexamethasone (DEX) and GR. Notably, compared to DEX, GCK induces distinct levels of phosphorylation at S211 on GR upon binding to activate steroid receptor coactivator 1 (SRC1)-a co-factor responsible for mediating anti-inflammatory effects-while not engaging peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-an associated coactivator involved in gluconeogenesis.


Subject(s)
Anti-Inflammatory Agents , Arthritis, Experimental , Ginsenosides , Rats, Sprague-Dawley , Receptors, Glucocorticoid , Animals , Ginsenosides/pharmacology , Rats , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Male , Receptors, Glucocorticoid/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Gluconeogenesis/drug effects , Glucose/metabolism , Humans , Dexamethasone/pharmacology
14.
Biomed Environ Sci ; 37(4): 367-376, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727159

ABSTRACT

Objective: This study aimed to clarify the intervention effect of salidroside (SAL) on lung injury caused by PM 2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods: Specific pathogen-free (SPF) grade male C57BL/6 mice were randomly assigned to the following groups: control group, SAL group, PM 2.5 group, SAL+PM 2.5 group. On the first day, SAL was given by gavage, and on the second day, PM 2.5 suspension was given by intratracheal instillation. The whole experiment consist of a total of 10 cycles, lasting 20 days. At the end of treatment, blood samples and lung tissues were collected and analyzed. Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy. The expression of inflammatory, antioxidants, apoptosis, and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results: Exposure to PM 2.5 leads to obvious morphological and pathologica changes in the lung of mice. PM 2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1, Nrf2, SOD2, SIRT1 and PGC-1ɑ, and an increase in the protein expressions of IL-6, IL-1ß, Bax, caspase-9 and cleaved caspase-3. However, SAL reversed the aforementioned changes caused by PM 2.5 by activating the SIRT1-PGC-1α pathway. Conclusion: SAL can activate SIRT1-PGC-1ɑ to ameliorate PM 2.5-induced lung injury.


Subject(s)
Glucosides , Lung Injury , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phenols , Sirtuin 1 , Animals , Mice , Glucosides/pharmacology , Glucosides/therapeutic use , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung Injury/drug therapy , Particle Size , Particulate Matter/toxicity , Particulate Matter/adverse effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sirtuin 1/drug effects , Sirtuin 1/genetics , Sirtuin 1/metabolism
15.
J Diabetes Res ; 2024: 5511454, 2024.
Article in English | MEDLINE | ID: mdl-38736904

ABSTRACT

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Subject(s)
Adipogenesis , Lipase , Animals , Male , Mice , Acyltransferases , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Diet, High-Fat , Fibroblast Growth Factors/metabolism , Lipase/metabolism , Lipase/genetics , Lipogenesis , Lipolysis , Mice, Inbred C57BL , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Uncoupling Protein 1/metabolism
16.
Biochem Pharmacol ; 225: 116250, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705537

ABSTRACT

Obesity has emerged as a prominent global health concern, with heat stress posing a significant challenge to both human health and animal well-being. Despite a growing interest in environmental determinants of obesity, very few studies have examined the associations between heat stress-related environmental factors and adiposity. Consequently, there exists a clear need to understand the molecular mechanisms underlying the obesogenic effects of heat stress and to formulate preventive strategies. This study focused on culturing porcine subcutaneous preadipocytes at 41.5 ℃ to induce heat stress, revealing that this stressor triggered apoptosis and fat deposition. Analysis demonstrated an upregulation in the expression of HSP70, BAX, adipogenesis-related genes (PPARγ, AP2, CEBPα and FAS), the p-AMPK/AMPK ratio and SIRT1, PGC-1α in the heat stress group compared to the control group (P < 0.05). Conversely, the expression of lipid lysis-related genes (ATGL, HSL and LPL) and Bcl-2 decreased in the heat stress group compared to the control group (P < 0.05). Furthermore, subsequent activator and/or inhibitor experiments validated that heat stress modulated HSP70 and AMPK signalling pathways to enhance lipogenesis and inhibit lipolysis in porcine subcutaneous preadipocytes. Importantly, this study reveals, for the first time, that EGCG mitigates heat-stress-induced fat deposition by targeting HSP70 through the activation of AMPK-SIRT1-PGC-1α in porcine subcutaneous preadipocytes. These findings elucidate the molecular mechanisms contributing to heat stress-induced obesity and provide a foundation for the potential clinical utilisation of EGCG as a preventive measure against both heat stress and obesity.


Subject(s)
Adipocytes , Catechin , HSP70 Heat-Shock Proteins , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Adipocytes/drug effects , Adipocytes/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Swine , Catechin/pharmacology , Catechin/analogs & derivatives , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , AMP-Activated Protein Kinases/metabolism , Heat-Shock Response/drug effects , Heat-Shock Response/physiology , Cells, Cultured , Subcutaneous Fat/metabolism , Subcutaneous Fat/drug effects
17.
Int Immunopharmacol ; 134: 112248, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38749332

ABSTRACT

Psoriasis, characterized by aberrant epidermal keratinocyte proliferation and differentiation, is a chronic inflammatory immune-related skin disease. Diosmetin (Dios), derived from citrus fruits, exhibits anti-inflammatory and anti-proliferative properties. In this study, IL-17A-induced HaCaT cell model and Imiquimod (IMQ)-induced mouse model were utilized to investigate the effects of Dios against psoriasis. The morphology and biomarkers of psoriasis were regarded as the preliminary evaluation including PASI score, skin thickness, H&E staining, EdU staining and inflammatory factors. Transcriptomics analysis revealed PGC-1α as a key target for Dios in ameliorating psoriasis. Specifically, Dios, through PGC-1α, suppressed YAP-mediated proliferation and inflammatory responses in psoriatic keratinocytes. In conclusion, Dios shows promise in psoriasis treatment and holds potential for development as targeted medications for application in psoriasis.


Subject(s)
Cell Proliferation , Imiquimod , Keratinocytes , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Psoriasis , Signal Transduction , Psoriasis/drug therapy , Psoriasis/immunology , Animals , Keratinocytes/drug effects , Keratinocytes/metabolism , Humans , Signal Transduction/drug effects , Cell Proliferation/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice , Flavonoids/pharmacology , Flavonoids/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , YAP-Signaling Proteins/metabolism , Disease Models, Animal , Transcription Factors/metabolism , Transcription Factors/genetics , HaCaT Cells , Cell Line , Mice, Inbred BALB C , Interleukin-17/metabolism , Male , Inflammation/drug therapy
18.
Int Immunopharmacol ; 134: 112257, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38759366

ABSTRACT

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is a major contributor to neonatal mortality and neurodevelopmental disorders, but currently there is no effective therapy drug for HIE. Mitochondrial dysfunction plays a pivotal role in hypoxic-ischemic brain damage(HIBD). Menaquinone-4 (MK-4), a subtype of vitamin K2 prevalent in the brain, has been shown to enhance mitochondrial function and exhibit protective effects against ischemia-reperfusion injury. However, the impact and underlying molecular mechanism of MK-4 in HIE have not been fully elucidated. METHODS: In this study, we established the neonatal rats HIBD model in vivo and oxygen-glucose deprivation and reperfusion (OGD/R) of primary neurons in vitro to explore the neuroprotective effects of MK-4 on HI damage, and illuminate the potential mechanism. RESULTS: Our findings revealed that MK-4 ameliorated mitochondrial dysfunction, reduced oxidative stress, and prevented HI-induced neuronal apoptosis by activating the Sirt1-PGC-1α-TFAM signaling pathway through Sirt1 mediation. Importantly, these protective effects were partially reversed by EX-527, a Sirt1 inhibitor. CONCLUSION: Our study elucidated the potential therapeutic mechanism of MK-4 in neonatal HIE, suggesting its viability as an agent for enhancing recovery from HI-induced cerebral damage in newborns. Further exploration into MK-4 could lead to novel interventions for HIE therapy.


Subject(s)
Animals, Newborn , Apoptosis , Hypoxia-Ischemia, Brain , Mitochondria , Neurons , Neuroprotective Agents , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1 , Vitamin K 2 , Animals , Sirtuin 1/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Signal Transduction/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Vitamin K 2/analogs & derivatives , Vitamin K 2/pharmacology , Vitamin K 2/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Rats , Neurons/drug effects , Neurons/pathology , Apoptosis/drug effects , Oxidative Stress/drug effects , Cells, Cultured , Disease Models, Animal , Transcription Factors/metabolism , Brain/drug effects , Brain/pathology , Brain/metabolism
19.
Exp Gerontol ; 193: 112468, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801840

ABSTRACT

BACKGROUND: Aged sarcopenia is characterized by loss of skeletal muscle mass and strength, and mitochondrial dysregulation in skeletal myocyte is considered as a major factor. Here, we aimed to analyze the effects of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) on mitochondrial reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) in aged skeletal muscles. METHODS: C2C12 cells were stimulated by 50 µM 7ß-hydroxycholesterol (7ß-OHC) to observe the changes of cellular ROS, mitochondrial ROS, and expression of PGC-1α and Nrf2. Different PGC-1α expression in cells was established by transfection with small interfering RNA (siRNA) or plasmids overexpressing PGC-1α (pEX-3-PGC-1α). The effects of different PGC-1α expression on cellular ROS, mitochondrial ROS and Nrf2 expression were measured in cells. Wild type (WT) mice and PGC-1α conditional knockout (CKO) mice were used to analyze the effects of PGC-1α on aged sarcopenia and expression of Nrf2 and CD38 in gastrocnemius muscles. Diethylmaleate, a Nrf2 activator, was used to analyze the connection between PGC-1α and Nrf2 in cells and in mice. RESULTS: In C2C12 cells, the expressions of PGC-1α and Nrf2 were declined by the 7ß-OHC treatment or PGC-1α silence. Moreover, PGC-1α silence increased the harmful ROS and decreased the Nrf2 protein expression in the 7ß-OHC-treated cells. PGC-1α overexpression decreased the harmful ROS and increased the Nrf2 protein expression in the 7ß-OHC-treated cells. Diethylmaleate treatment decreased the harmful ROS in the 7ß-OHC-treated or PGC-1α siRNA-transfected cells. At the same age, muscle-specific PGC-1α deficiency aggravated aged sarcopenia, decreased Nrf2 expression and increased CD38 expression in gastrocnemius muscles compared with the WT mice. Diethylmaleate treatment improved the muscle function and decreased the CD38 expression in the old two genotypes. CONCLUSIONS: Our study demonstrated that PGC-1α modulated mitochondrial oxidative stress in aged sarcopenia through regulating Nrf2.


Subject(s)
Mice, Knockout , Muscle, Skeletal , NF-E2-Related Factor 2 , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Reactive Oxygen Species , Sarcopenia , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Sarcopenia/metabolism , Sarcopenia/pathology , Mice , Reactive Oxygen Species/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Male , Aging/metabolism , Mice, Inbred C57BL , Cell Line , Mitochondria, Muscle/metabolism , Mitochondria/metabolism
20.
PLoS One ; 19(5): e0300787, 2024.
Article in English | MEDLINE | ID: mdl-38753634

ABSTRACT

The Presenilin (Psn) gene is closely related to aging, but it is still unclear the role of Psn genes in skeletal muscle. Here, the Psn-UAS/Mhc-GAL4 system in Drosophila was used to regulate muscle Psn overexpression(MPO) and muscle Psn knockdown(MPK). Drosophila were subjected to endurance exercise from 4 weeks to 5 weeks old. The results showed that MPO and exercise significantly increased climbing speed, climbing endurance, lifespan, muscle SOD activity, Psn expression, Sirt1 expression, PGC-1α expression, and armadillo (arm) expression in aged Drosophila, and they significantly decreased muscle malondialdehyde levels. Interestingly, when the Psn gene is knockdown by 0.78 times, the PGC-1α expression and arm expression were also down-regulated, but the exercise capacity and lifespan were increased. Furthermore, exercise combined with MPO further improved the exercise capacity and lifespan. MPK combined with exercise further improves the exercise capacity and lifespan. Thus, current results confirmed that the muscle Psn gene was a vital gene that contributed to the healthy aging of skeletal muscle since whether it was overexpressed or knocked down, the aging progress of skeletal muscle structure and function was slowed down by regulating the activity homeostasis of Sirt1/PGC-1α pathway and Psn/arm pathway. Exercise enhanced the function of the Psn gene to delay skeletal muscle aging by up regulating the activity of the Sirt1/PGC-1α pathway and Psn/arm pathway.


Subject(s)
Longevity , Muscle, Skeletal , Physical Conditioning, Animal , Signal Transduction , Animals , Aging/physiology , Aging/genetics , Aging/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Healthy Aging/genetics , Healthy Aging/metabolism , Healthy Aging/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Sirtuin 1/metabolism , Sirtuin 1/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL