Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 338
Filter
1.
Chin J Nat Med ; 22(9): 808-821, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39326975

ABSTRACT

Pharmaceutical formulations derived from Aristolochiaceae herbs, which contain aristolochic acids (AAs), are widely used for medicinal purposes. However, exposure to these plants and isolated AAs is linked to renal toxicity, known as AA nephropathy (AAN). Currently, the mechanisms underlying AAN are not fully understood, leading to unsatisfactory treatment strategies. In this study, we explored the protective role of 84-B10 (5-[[2-(4-methoxyphenoxy)-5-(trifluoromethyl) phenyl] amino]-5-oxo-3-phenylpentanoic acid) against AAN. RNA-seq analysis revealed that the mitochondrion and peroxisome were the most affected cellular components following 84-B10 treatment in AAN mice. Consistently, 84-B10 treatment preserved mitochondrial ultrastructure, restored mitochondrial respiration, enhanced the expression of key transporters (carnitine palmitoyltransferase 2) and enzymes (acyl-Coenzyme A dehydrogenase, medium chain) involved in mitochondrial fatty acid ß-oxidation, and reduced mitochondrial ROS generation in both aristolochic acid I (AAI)-challenged mice kidneys and cultured proximal tubular epithelial cells. Additionally, 84-B10 treatment increased the expression of key transporters (ATP binding cassette subfamily D) and rate-limiting enzymes (acyl-CoA oxidase 1) involved in peroxisomal fatty acid ß-oxidation and restored peroxisomal redox balance. Knocking down LONP1 expression diminished the protective effects of 84-B10 against AAN, suggesting LONP1-dependent protection. In conclusion, our study provides evidence that AAN is associated with significant disturbances in both mitochondrial and peroxisomal functions. The LONP1 activator 84-B10 demonstrates therapeutic potential against AAN, likely by maintaining homeostasis in both mitochondria and peroxisomes.


Subject(s)
Aristolochic Acids , Homeostasis , Mitochondria , Peroxisomes , Animals , Peroxisomes/metabolism , Peroxisomes/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Homeostasis/drug effects , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Male , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mice, Inbred C57BL , Kidney/drug effects , Kidney/metabolism , Humans
2.
Respir Res ; 25(1): 345, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313791

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung epithelial phenotypes, fibroblast activation, and increased extracellular matrix deposition. Transforming growth factor-beta (TGF-ß)1-induced Smad signaling and downregulation of peroxisomal genes are involved in the pathogenesis and can be inhibited by peroxisome proliferator-activated receptor (PPAR)-α activation. However, the three PPARs, that is PPAR-α, PPAR-ß/δ, and PPAR-γ, are known to interact in a complex crosstalk. METHODS: To mimic the pathogenesis of lung fibrosis, primary lung fibroblasts from control and IPF patients with comparable levels of all three PPARs were treated with TGF-ß1 for 24 h, followed by the addition of PPAR ligands either alone or in combination for another 24 h. Fibrosis markers (intra- and extracellular collagen levels, expression and activity of matrix metalloproteinases) and peroxisomal biogenesis and metabolism (gene expression of peroxisomal biogenesis and matrix proteins, protein levels of PEX13 and catalase, targeted and untargeted lipidomic profiles) were analyzed after TGF-ß1 treatment and the effects of the PPAR ligands were investigated. RESULTS: TGF-ß1 induced the expected phenotype; e.g. it increased the intra- and extracellular collagen levels and decreased peroxisomal biogenesis and metabolism. Agonists of different PPARs reversed TGF-ß1-induced fibrosis even when given 24 h after TGF-ß1. The effects included the reversals of (1) the increase in collagen production by repressing COL1A2 promoter activity (through PPAR-ß/δ activation); (2) the reduced activity of matrix metalloproteinases (through PPAR-ß/δ activation); (3) the decrease in peroxisomal biogenesis and lipid metabolism (through PPAR-γ activation); and (4) the decrease in catalase protein levels in control (through PPAR-γ activation) and IPF (through a combined activation of PPAR-ß/δ and PPAR-γ) fibroblasts. Further experiments to explore the role of catalase showed that an overexpression of catalase protein reduced collagen production. Additionally, the beneficial effect of PPAR-γ but not of PPAR-ß/δ activation on collagen synthesis depended on catalase activity and was thus redox-sensitive. CONCLUSION: Our data provide evidence that IPF patients may benefit from a combined activation of PPAR-ß/δ and PPAR-γ.


Subject(s)
Idiopathic Pulmonary Fibrosis , PPAR delta , PPAR gamma , PPAR-beta , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , PPAR-beta/metabolism , PPAR-beta/genetics , PPAR-beta/agonists , Cells, Cultured , PPAR delta/metabolism , PPAR delta/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/drug effects , Peroxisomes/metabolism , Peroxisomes/drug effects , Peroxisome Proliferator-Activated Receptors/metabolism , Male , Transforming Growth Factor beta1/metabolism , Female
3.
J Neurochem ; 168(9): 3108-3115, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39018358

ABSTRACT

Medium-chain fatty acids (MCFAs), particularly decanoic acid (C10) and octanoic acid (C8), have garnered attention in recent years for their potential antiepileptic properties. A previous study from our laboratory demonstrated that C10 targets the PPARγ nuclear receptor, increasing the activity of the antioxidant enzyme catalase and thereby possibly modulating peroxisomal content. Here, we examined markers of peroxisomal content and activity in response to C10 and C8 exposure in neuronal-like SH-SY5Y cells. SH-SY5Y were treated with 250 mM C10 or C8 for a period of 6 days. Following this, biochemical markers of peroxisomal content and function were assessed, including acyl-coA oxidase activity, peroxisomal gene expression and peroxisomal VLCFA ß-oxidation. Our findings revealed that C10 treatment augments acyl-CoA oxidase 1 (ACOx1) activity by 129% in comparison to control cells. An exploration into genes related to peroxisomal biosynthesis showed 23% increased expression of PEX11α upon C10 exposure, implying peroxisomal proliferation. Furthermore, it was observed that C10 exposure not only elevated ACOx1 activity but also enhanced peroxisomal ß-oxidation of docosanoic acid (C22). Our findings bolster the premise that C10 functions as a peroxisome proliferator, influencing peroxisomal content and function. Further investigations are required to fully understand the mechanistic details as to how this may be beneficial in epilepsy and the potential implications with regards to peroxisomal disease.


Subject(s)
Decanoic Acids , Peroxisomes , Peroxisomes/metabolism , Peroxisomes/drug effects , Humans , Decanoic Acids/pharmacology , Cell Line, Tumor , Acyl-CoA Oxidase/metabolism , Oxidation-Reduction/drug effects
4.
J Hazard Mater ; 477: 135164, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39032180

ABSTRACT

Cadmium (Cd) is one of the most toxic heavy metals for plants and humans. Reactive oxygen species (ROS) are some of the primary signaling molecules produced after Cd treatment in plants but the contribution of different organelles and specific cell types, together with the impact of light is unknown. We used Arabidopsis lines expressing GRX1-roGFP2 (glutaredoxin1-roGFP) targeted to different cell compartments and analysed changes in redox state over 24 h light/dark cycle in Cd-treated leaf discs. We imaged redox state changes in peroxisomes and chloroplasts in leaf tissue. Chloroplasts and peroxisomes were the most affected organelles in the dark and blocking the photosynthetic electron transport chain (pETC) by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) promotes higher Cd-dependent oxidation in all organelles. Peroxisomes underwent the most rapid changes in redox state in response to Cd and DCMU and silencing chloroplastic NTRC (NADPH thioredoxin reductase C) considerably increases peroxisome oxidation. Total NAD(P)H and cytosolic NADH decreased during exposure to Cd, while Ca+2 content in chloroplasts and cytosol increased in the dark period. Our results demonstrate a Cd-, time- and light-dependent increase of oxidation of all organelles analysed, that could be in part triggered by disturbances in pETC and photorespiration, the decrease of NAD(P)H availability, and differential antioxidants expression at subcellular level.


Subject(s)
Arabidopsis , Cadmium , Chloroplasts , Oxidation-Reduction , Peroxisomes , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/radiation effects , Cadmium/toxicity , Chloroplasts/metabolism , Chloroplasts/drug effects , Chloroplasts/radiation effects , Peroxisomes/metabolism , Peroxisomes/drug effects , Light , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Calcium/metabolism , Diuron/toxicity , Diuron/pharmacology
5.
Free Radic Biol Med ; 221: 81-88, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38762061

ABSTRACT

Androgen receptor (AR)-targeting therapy induces oxidative stress in prostate cancer. However, the mechanism of oxidative stress induction by AR-targeting therapy remains unclear. This study investigated the mechanism of oxidative stress induction by AR-targeting therapy, with the aim to develop novel therapeutics targeting oxidative stress induced by AR-targeting therapy. Intracellular reactive oxygen species (ROS) was examined by fluorescence microscopy and flow cytometry analysis. The effects of silencing gene expression and small molecule inhibitors on gene expression and cytotoxic effects were examined by quantitative real-time PCR and cell proliferation assay. ROS induced by androgen depletion co-localized with peroxisomes in prostate cancer cells. Among peroxisome-related genes, PPARA was commonly induced by AR inhibition and involved in ROS production via PKC signaling. Inhibition of PPARα by specific siRNA and a small molecule inhibitor suppressed cell proliferation and increased cellular sensitivity to the antiandrogen enzalutamide in prostate cancer cells. This study revealed a novel pathway by which AR inhibition induced intracellular ROS mainly in peroxisomes through PPARα activation in prostate cancer. This pathway is a promising target for the development of novel therapeutics for prostate cancer in combination with AR-targeting therapy such as antiandrogen enzalutamide.


Subject(s)
Benzamides , Cell Proliferation , Drug Resistance, Neoplasm , Nitriles , Oxidative Stress , Peroxisomes , Phenylthiohydantoin , Prostatic Neoplasms , Receptors, Androgen , Humans , Male , Androgen Receptor Antagonists/pharmacology , Benzamides/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Nitriles/pharmacology , Oxidative Stress/drug effects , Peroxisomes/metabolism , Peroxisomes/drug effects , Phenylthiohydantoin/pharmacology , PPAR alpha/metabolism , PPAR alpha/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Reactive Oxygen Species/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , RNA, Small Interfering/genetics , Signal Transduction/drug effects
6.
Int J Biochem Cell Biol ; 172: 106585, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734232

ABSTRACT

Tamoxifen is an estrogen receptor modulator that has been reported to alleviate hepatic lipid accumulation in mice, but the mechanism is still unclear. Peroxisome fatty acid ß-oxidation is the main metabolic pathway for the overload of long-chain fatty acids. As long-chain fatty acids are a cause of hepatic lipid accumulation, the activation of peroxisome fatty acid ß-oxidation might be a novel therapeutic strategy for metabolic associated fatty liver disease. In this study, we investigated the mechanism of tamoxifen against hepatic lipid accumulation based on the activation of peroxisome fatty acid ß-oxidation. Tamoxifen reduced liver long-chain fatty acids and relieved hepatic lipid accumulation in high fat diet mice without sex difference. In vitro, tamoxifen protected primary hepatocytes against palmitic acid-induced lipotoxicity. Mechanistically, the RNA-sequence of hepatocytes isolated from the liver revealed that peroxisome fatty acid ß-oxidation was activated by tamoxifen. Protein and mRNA expression of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase were significantly increased in vivo and in vitro. Small interfering RNA enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase in primary hepatocytes abolished the therapeutic effects of tamoxifen in lipid accumulation. In conclusion, our results indicated that tamoxifen could relieve hepatic lipid accumulation in high fat diet mice based on the activation of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase-mediated peroxisome fatty acids ß-oxidation.


Subject(s)
Enoyl-CoA Hydratase , Hepatocytes , Lipid Metabolism , Liver , Mice, Inbred C57BL , Oxidation-Reduction , Peroxisomes , Tamoxifen , Animals , Tamoxifen/pharmacology , Mice , Lipid Metabolism/drug effects , Liver/metabolism , Liver/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Oxidation-Reduction/drug effects , Male , Peroxisomes/metabolism , Peroxisomes/drug effects , Enoyl-CoA Hydratase/metabolism , Enoyl-CoA Hydratase/genetics , Up-Regulation/drug effects , Diet, High-Fat/adverse effects , Female , Fatty Acids/metabolism
7.
Sci Total Environ ; 859(Pt 2): 160286, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36403845

ABSTRACT

Triazole fungicides have been widely used all over the world. However, their potential ecological safety and health risks remain unclear, especially their cardiac developmental toxicity. This study systematically investigated whether and how triazole fungicides could activate peroxisome proliferative activity receptor γ (PPARγ) to cause abnormal heart development. Among ten triazole fungicides, difenoconazole (DIF) exhibited the strongest agonistic activity and caused severe pericardial edema in zebrafish embryos, accompanied by a reduction in heart rate, blood flow and cardiac function. In vitro transcriptomic profile implicated that DIF inhibited the Wnt signaling pathway, and in vivo DIF exposure significantly increased the phosphorylation of ß-catenin (p = 0.0002) and altered the expression of related genes in zebrafish embryos. Importantly, exposure to DIF could activate PPARγ and inhibit the Wnt/ß-catenin signaling pathway, which changed the size of Kupffer's vesicle (KV) (p = 0.02), altered the expression of left-right (LR) asymmetry-related genes, caused cardiac LR asymmetry defect, and eventually led to abnormal heart development. These findings provide evidence for potential developmental toxicity of triazole fungicides and highlight the necessity of assessing their ecological safety and human health risks.


Subject(s)
Environmental Exposure , Fungicides, Industrial , Heart Defects, Congenital , PPAR gamma , Triazoles , Wnt Signaling Pathway , Zebrafish Proteins , Zebrafish , Animals , Humans , Body Patterning/drug effects , Peroxisomes/drug effects , Peroxisomes/metabolism , Triazoles/toxicity , Wnt Signaling Pathway/drug effects , Zebrafish/abnormalities , Zebrafish Proteins/metabolism , Fungicides, Industrial/toxicity , Heart Defects, Congenital/chemically induced , PPAR gamma/metabolism , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/drug effects
8.
Biochem Biophys Res Commun ; 613: 47-52, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35526488

ABSTRACT

Peroxisome proliferator-activated receptor α (PPARα) regulates fatty acid oxidation (FAO). Usually, very-long chain fatty acids are first activated by acyl-CoA synthetase (ACS) to generate acyl-CoA for oxidation by acyl-CoA oxidase (ACOX) in peroxisomes, and the resultant shorter chain fatty acids will be further oxidized in mitochondria. ACS long-chain family member 4 (ACSL4) preferentially uses arachidonic acid (AA) as substrates to synthesize arachidonoyl-CoA. Arachidonoyl-CoA is usually esterified into phospholipids. When AA is released by phospholipase A2 (PLA2) from phospholipids, it will be used for prostaglandin synthesis by cyclooxygenases (COX). In this study, when PPARα agonist WY-14,643 was mixed in liquid Lieber-DeCarli ethanol or control diets and fed to mice, liver PLA2, COX-2, and ACOX1 were induced but ACSL4 was inhibited, suggesting that AA released by PLA2 from phospholipid will be metabolized to prostaglandin via COX-2 instead of being synthesized into acyl-CoA by ACSL4. However, liver prostaglandin E2 (PGE2), a major component of prostaglandin, was not increased with the induced COX-2 but decreased by WY-14,643. ACOX1 specific inhibitor mixed in the liquid diets restored both the WY-14,643-suppressed liver TG and PGE2, but COX-2 specific inhibitor celecoxib mixed in the liquid diets reversed the WY-14,643-suppressed liver TG but not liver PGE2 contents. These results suggest that induction of PLA2, COX-2 and ACOX1 orchestrates to increase oxidation of AA/PGE2, which constitutes one new mechanism by which PPARα induces peroxisomal FAO and inhibits ethanol-induced liver fat accumulation.


Subject(s)
Acyl-CoA Oxidase , Cyclooxygenase 2 , Fatty Liver, Alcoholic , PPAR alpha , Phospholipases A2 , Pyrimidines , Acyl-CoA Oxidase/metabolism , Animals , Coenzyme A/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Fatty Acids/metabolism , Fatty Liver, Alcoholic/drug therapy , Fatty Liver, Alcoholic/metabolism , Lipid Metabolism/drug effects , Liver/metabolism , Mice , PPAR alpha/agonists , PPAR alpha/metabolism , Peroxisomes/drug effects , Peroxisomes/metabolism , Phospholipases A2/metabolism , Phospholipids/metabolism , Pyrimidines/pharmacology , Signal Transduction/drug effects
9.
Sci Rep ; 12(1): 2512, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35169201

ABSTRACT

Peroxisomes play an important role in the metabolism of a variety of biomolecules, including lipids and bile acids. Peroxisomal Membrane Protein 4 (PXMP4) is a ubiquitously expressed peroxisomal membrane protein that is transcriptionally regulated by peroxisome proliferator-activated receptor α (PPARα), but its function is still unknown. To investigate the physiological function of PXMP4, we generated a Pxmp4 knockout (Pxmp4-/-) mouse model using CRISPR/Cas9-mediated gene editing. Peroxisome function was studied under standard chow-fed conditions and after stimulation of peroxisomal activity using the PPARα ligand fenofibrate or by using phytol, a metabolite of chlorophyll that undergoes peroxisomal oxidation. Pxmp4-/- mice were viable, fertile, and displayed no changes in peroxisome numbers or morphology under standard conditions. Also, no differences were observed in the plasma levels of products from major peroxisomal pathways, including very long-chain fatty acids (VLCFAs), bile acids (BAs), and BA intermediates di- and trihydroxycholestanoic acid. Although elevated levels of the phytol metabolites phytanic and pristanic acid in Pxmp4-/- mice pointed towards an impairment in peroxisomal α-oxidation capacity, treatment of Pxmp4-/- mice with a phytol-enriched diet did not further increase phytanic/pristanic acid levels. Finally, lipidomic analysis revealed that loss of Pxmp4 decreased hepatic levels of the alkyldiacylglycerol class of neutral ether lipids, particularly those containing polyunsaturated fatty acids. Together, our data show that while PXMP4 is not critical for overall peroxisome function under the conditions tested, it may have a role in the metabolism of (ether)lipids.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Fatty Acids/metabolism , Liver/metabolism , Membrane Proteins/metabolism , Signal Transduction/genetics , Animals , Bile Acids and Salts/metabolism , CRISPR-Cas Systems , Diet/methods , Female , Fenofibrate/administration & dosage , Gene Editing/methods , Gene Knockout Techniques/methods , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction/drug effects , PPAR alpha/metabolism , Peroxisomes/drug effects , Peroxisomes/metabolism , Phytanic Acid/metabolism , Phytol/administration & dosage
10.
J Cell Biol ; 221(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34747980

ABSTRACT

Mitochondria and peroxisomes are independent but functionally closely related organelles. A few proteins have been characterized as dual-organelle locating proteins with distinct or similar roles on mitochondria and peroxisomes. MARCH5 is a mitochondria-associated ubiquitin ligase best known for its regulatory role in mitochondria quality control, fission, and fusion. Here, we used a proximity tagging system, PUP-IT, and identified new interacting proteins of MARCH5. Our data uncover that MARCH5 is a dual-organelle locating protein that interacts with several peroxisomal proteins. PEX19 binds the transmembrane region on MARCH5 and targets it to peroxisomes. On peroxisomes, MARCH5 binds and mediates the ubiquitination of PMP70. Furthermore, we find PMP70 ubiquitination and pexophagy induced by mTOR inhibition are blocked in the absence of MARCH5. Our study suggests novel roles of MARCH5 on peroxisomes.


Subject(s)
Macroautophagy , Membrane Proteins/metabolism , Peroxisomes/metabolism , Ubiquitin-Protein Ligases/metabolism , ATP-Binding Cassette Transporters/metabolism , Blood Proteins/pharmacology , HeLa Cells , Humans , Jurkat Cells , Lipoproteins/metabolism , Macroautophagy/drug effects , Peroxins/metabolism , Peroxisomes/drug effects , Protein Binding/drug effects , Protein Transport/drug effects , Ubiquitination
11.
Biomed Pharmacother ; 143: 112223, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649350

ABSTRACT

Ferroptosis is a recently recognized process of cell death characterized by accumulation of iron-dependent lipid peroxides. Herein, we demonstrate that peroxisome proliferator-activated receptor δ (PPARδ) inhibits ferroptosis of mouse embryonic fibroblasts (MEFs) derived from cysteine/glutamate transporter (xCT)-knockout mice. Activation of PPARδ by the specific ligand GW501516 led to a dose-dependent decrease in ferroptotic cell death triggered by xCT deficiency, along with decreased levels of intracellular iron accumulation and lipid peroxidation. These effects of GW501516 were abolished by PPARδ-targeting small interfering RNA (siRNA) and the PPARδ inhibitor GSK0660, indicating that PPARδ inhibits xCT deficiency-induced ferroptosis. In addition, GW501516-activated PPARδ time- and dose-dependently upregulated catalase expression at both the mRNA and protein levels. This PPARδ-mediated upregulation of catalase was markedly attenuated in cells treated with PPARδ-targeting siRNA and GSK0660, indicating that expression of catalase is dependent on PPARδ. Consistently, the effects of GW501516 on ferroptosis of xCT-deficient MEFs were counteracted in the presence of 3-amino-1,2,4-triazole, a specific inhibitor of catalase, suggesting that catalase is essential for the effect of PPARδ on ferroptosis triggered by xCT deficiency. GW501516-activated PPARδ stabilized peroxisomes through catalase upregulation by targeting peroxisomal hydrogen peroxide-mediated lysosomal rupture, which led to ferroptosis of xCT-deficient MEFs. Collectively, these results demonstrate that PPARδ modulates ferroptotic signals in xCT-deficient MEFs by regulating catalase expression.


Subject(s)
Amino Acid Transport System y+/deficiency , Ferroptosis , Fibroblasts/metabolism , PPAR gamma/metabolism , Peroxisomes/metabolism , Amino Acid Transport System y+/genetics , Animals , Catalase/biosynthesis , Catalase/genetics , Cells, Cultured , Enzyme Induction , Ferroptosis/drug effects , Fibroblasts/drug effects , Fibroblasts/pathology , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Mice, Knockout , Oxidative Stress , PPAR gamma/agonists , PPAR gamma/genetics , Peroxisomes/drug effects , Peroxisomes/genetics , Peroxisomes/pathology , Signal Transduction , Thiazoles/pharmacology
12.
J Dermatol Sci ; 103(3): 167-175, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34420848

ABSTRACT

BACKGROUND: Previous studies suggested that the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-δ plays an essential role in cellular responses against oxidative stress. OBJECTIVE: To investigate how PPAR-δ elicits cellular responses against oxidative stress in primary human dermal fibroblasts (HDFs) exposed to ultraviolet B (UVB). METHODS: The present study was undertaken in HDFs by performing real-time polymerase chain reaction, gene silencing, cytotoxicity and reporter gene assay, analyses for catalase and reactive oxygen species, and immunoblot analyses. RESULTS: The PPAR-δ activator GW501516 upregulated expression of catalase and this upregulation was attenuated by PPAR-δ-targeting siRNA. GW501516-activated PPAR-δ induced catalase promoter activity through a direct repeat 1 response element. Mutation of this response element completely abrogated transcriptional activation, indicating that this site is a novel type of PPAR-δ response element. In addition, GW501516-activated PPAR-δ counteracted the reductions in activity and expression of catalase induced by UVB irradiation. These recovery effects were significantly attenuated in the presence of PPAR-δ-targeting siRNA or the specific PPAR-δ antagonist GSK0660. GW501516-activated PPAR-δ also protected HDFs from cellular damage triggered by UVB irradiation, and this PPAR-δ-mediated reduction of cellular damage was reversed by the catalase inhibitor or catalase-targeting siRNA. These effects of catalase blockade were positively correlated with accumulation of reactive oxygen species in HDFs exposed to UVB. Furthermore, GW501516-activated PPAR-δ targeted peroxisomal hydrogen peroxide through catalase in UVB-irradiated HDFs. CONCLUSION: The gene encoding catalase is a target of PPAR-δ, and this novel catalase-mediated pathway plays a critical role in the cellular response elicited by PPAR-δ against oxidative stress.


Subject(s)
Catalase/genetics , Dermis/radiation effects , Fibroblasts/radiation effects , PPAR delta/metabolism , Ultraviolet Rays/adverse effects , Dermis/cytology , Dermis/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Hydrogen Peroxide/metabolism , Oxidative Stress/drug effects , Oxidative Stress/genetics , Oxidative Stress/radiation effects , PPAR delta/agonists , PPAR delta/genetics , Peroxisomes/drug effects , Peroxisomes/metabolism , Peroxisomes/radiation effects , Primary Cell Culture , Thiazoles , Up-Regulation/drug effects
13.
J Cell Biochem ; 122(11): 1686-1700, 2021 11.
Article in English | MEDLINE | ID: mdl-34322908

ABSTRACT

Mitochondria and peroxisomes are metabolically interconnected and functionally active subcellular organelles. These two dynamic organelles, share a number of common biochemical functions such as ß-oxidation of fatty acids and detoxification of peroxides. The biogenesis and morphology of both these organelles in the mammalian cells is controlled by common transcription factors like PGC1α, and by a common fission machinery comprising of fission proteins like DRP1, Mff, and hFis1, respectively. In addition, the outer membrane mitochondria-anchored protein ligase (MAPL), the first mitochondrial SUMO E3 ligase with a RING-finger domain, also regulates mitochondrial morphology inducing mitochondrial fragmentation upon its overexpression. This fragmentation is dependent on both the RING domain of MAPL and the presence of the mitochondrial fission GTPase dynamin-related protein-1 (DRP1). Earlier studies have demonstrated that mitochondrial-derived vesicles are formed independently of the known mitochondrial fission GTPase, DRP1 are enriched for MAPL and are targeted to peroxisomes. The current study shows that MAPL regulates morphology of peroxisomes in a cell-type specific manner. Fascinatingly, the peroxisome elongation caused either due to silencing of DRP1 or by addition of polyunsaturated fatty acid, docosahexaenoic acid was blocked by overexpressing MAPL in mammalian cell lines. Furthermore, the transfection and colocalisation studies of MAPL with peroxisome membrane marker, PMP70, in different cell lines clearly revealed a cell-type specificity of transport of MAPL to peroxisomes. Previous work has placed the Vps35 (retromer component) as vital for delivery of MAPL to peroxisomes, placing the retromer as critical for the formation of MAPL-positive mitochondrial-derived vesicles. The results of polyethylene glycol-based cell-cell fusion assay signified that the enrichment of MAPL in peroxisomes is through vesicles and a retromer dependent phenomenon. Thus, a novel function for MAPL in peroxisomes is established to regulate peroxisome elongation and morphology under growth conditions and thus possibly modulate peroxisome fission.


Subject(s)
Peroxisomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , COS Cells , Chlorocebus aethiops , Docosahexaenoic Acids/pharmacology , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Expression , HeLa Cells , Hep G2 Cells , Humans , Mitochondrial Dynamics , Peroxisomes/drug effects , Peroxisomes/genetics , Ubiquitin-Protein Ligases/genetics
14.
Article in English | MEDLINE | ID: mdl-33945875

ABSTRACT

The biogenesis of peroxisomes in relation to the trafficking of proteins to peroxisomes has been extensively examined. However, the supply of phospholipids, which is needed to generate peroxisomal membranes in mammals, remains unclear. Therefore, we herein investigated metabolic alterations induced by clofibric acid, a peroxisome proliferator, in the synthesis of phospholipids, particularly phosphatidylethanolamine (PE) molecular species, and their relationship with the biogenesis of peroxisomal membranes. The subcutaneous administration of clofibric acid to rats at a relatively low dose (130 mg/kg) once a day time-dependently and gradually increased the integrated perimeter of peroxisomes per 100 µm2 hepatocyte cytoplasm (PA). A strong correlation was observed between the content (µmol/mg DNA) of PE containing arachidonic acid (20:4) and PA (r2 = 0.9168). Moreover, the content of PE containing octadecenoic acid (18:1) positively correlated with PA (r2 = 0.8094). The treatment with clofibric acid markedly accelerated the formation of 16:0-20:4 PE by increasing the production of 20:4 and the activity of acyl chain remodeling of pre-existing PE molecular species. Increases in the acyl chain remodeling of PE by clofibric acid were mainly linked to the up-regulated expression of the Lpcat3 gene. On the other hand, clofibric acid markedly increased the formation of palmitic acid (16:0)-18:1 PE through de novo synthesis. These results suggest that the enhanced formation of particular PE molecular species is related to increases in the mass of peroxisomal membranes in peroxisome proliferation in the liver.


Subject(s)
Arachidonic Acid/biosynthesis , Arachidonic Acid/chemistry , Clofibric Acid/pharmacology , Intracellular Membranes/drug effects , Liver/cytology , Peroxisomes/drug effects , Phosphatidylethanolamines/chemistry , Animals , Intracellular Membranes/metabolism , Male , Peroxisomes/metabolism , Rats , Rats, Wistar
15.
Am J Physiol Heart Circ Physiol ; 320(5): H1813-H1821, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33666503

ABSTRACT

Although peroxisomes have been extensively studied in other cell types, their presence and function have gone virtually unexamined in cardiac myocytes. Here, in neonatal rat ventricular myocytes (NRVM) we showed that several known peroxisomal proteins co-localize to punctate structures with a morphology typical of peroxisomes. Surprisingly, we found that the peroxisomal protein, fatty acyl-CoA reductase 1 (FAR1), was upregulated by pharmacological and pathophysiological ER stress induced by tunicamycin (TM) and simulated ischemia-reperfusion (sI/R), respectively. Moreover, FAR1 induction in NRVM was mediated by the ER stress sensor, activating transcription factor 6 (ATF6). Functionally, FAR1 knockdown reduced myocyte death during oxidative stress induced by either sI/R or hydrogen peroxide (H2O2). Thus, Far1 is an ER stress-inducible gene, which encodes a protein that localizes to peroxisomes of cardiac myocytes, where it reduces myocyte viability during oxidative stress. Since FAR1 is critical for plasmalogen synthesis, these results imply that plasmalogens may exert maladaptive effects on the viability of myocytes exposed to oxidative stress.NEW & NOTEWORTHY The peroxisomal enzyme, FAR1, was shown to be an ER stress- and ATF6-inducible protein that localizes to peroxisomes in cardiac myocytes. FAR1 decreases myocyte viability during oxidative stress.


Subject(s)
Activating Transcription Factor 6/metabolism , Aldehyde Oxidoreductases/biosynthesis , Endoplasmic Reticulum Stress , Myocardial Reperfusion Injury/enzymology , Myocytes, Cardiac/enzymology , Peroxisomes/enzymology , Activating Transcription Factor 6/genetics , Aldehyde Oxidoreductases/genetics , Animals , Animals, Newborn , Cell Hypoxia , Cell Survival , Cells, Cultured , Endoplasmic Reticulum Stress/drug effects , Enzyme Induction , Hydrogen Peroxide/toxicity , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Oxidative Stress , Peroxisomes/drug effects , Peroxisomes/metabolism , Rats , Tunicamycin/toxicity
16.
PLoS One ; 16(2): e0245799, 2021.
Article in English | MEDLINE | ID: mdl-33606716

ABSTRACT

Peroxisomes are metabolically active organelles which are known to exert anti-inflammatory effects especially associated with the synthesis of mediators of inflammation resolution. However, the role of catalase and effects of peroxisome derived reactive oxygen species (ROS) caused by lipid peroxidation through 4-hydroxy-2-nonenal (4-HNE) on lipopolysaccharide (LPS) mediated inflammatory pathway are largely unknown. Here, we show that inhibition of catalase by 3-aminotriazole (3-AT) results in the generation of peroxisomal ROS, which contribute to leaky peroxisomes in RAW264.7 cells. Leaky peroxisomes cause the release of matrix proteins to the cytosol, which are degraded by ubiquitin proteasome system. Furthermore, 3-AT promotes the formation of 4HNE-IκBα adduct which directly interferes with LPS induced NF-κB activation. Even though, a selective degradation of peroxisome matrix proteins and formation of 4HNE- IκBα adduct are not directly related with each other, both of them are could be the consequences of lipid peroxidation occurring at the peroxisome membrane.


Subject(s)
Catalase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Lipopolysaccharides/pharmacology , Peroxisomes/drug effects , Peroxisomes/metabolism , Animals , Cytokines/genetics , Gene Expression Regulation/drug effects , Inflammation/chemically induced , Inflammation/metabolism , Mice , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , RAW 264.7 Cells , RNA, Messenger/genetics , Reactive Oxygen Species/metabolism
17.
Elife ; 102021 01 26.
Article in English | MEDLINE | ID: mdl-33496266

ABSTRACT

Curcumin is a polyphenol compound that exhibits multiple physiological activities. To elucidate the mechanisms by which curcumin affects systemic amyloidosis, we investigated amyloid deposition and molecular changes in a mouse model of amyloid apolipoprotein A-II (AApoAII) amyloidosis, in which mice were fed a curcumin-supplemented diet. Curcumin supplementation for 12 weeks significantly increased AApoAII amyloid deposition relative to controls, especially in the liver and spleen. Liver weights and plasma ApoA-II and high-density lipoprotein concentrations were significantly elevated in curcumin-supplemented groups. RNA-sequence analysis revealed that curcumin intake affected hepatic lipid metabolism via the peroxisome proliferator-activated receptor (PPAR) pathway, especially PPARα activation, resulting in increased Apoa2 mRNA expression. The increase in liver weights was due to activation of PPARα and peroxisome proliferation. Taken together, these results demonstrate that curcumin is a PPARα activator and may affect expression levels of proteins involved in amyloid deposition to influence amyloidosis and metabolism in a complex manner.


Subject(s)
Amyloidosis/genetics , Apolipoprotein A-II/metabolism , Curcumin/pharmacology , PPAR alpha/genetics , Peroxisomes/metabolism , Signal Transduction , Animals , Female , Mice , PPAR alpha/metabolism , Peroxisomes/drug effects , Signal Transduction/drug effects
18.
Aging (Albany NY) ; 12(21): 21890-21903, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33159023

ABSTRACT

Proteomics have long been applied into characterization of molecular signatures in aging. Due to different methods and instrumentations employed for proteomic analysis, inter-dataset validation needs to be performed to identify potential biomarkers for aging. In this study, we used comparative proteomics analysis to profile age-associated changes in proteome and glutathionylome in mouse kidneys. We identified 108 proteins that were differentially expressed in young and aged mouse kidneys in three different datasets; from these, 27 proteins were identified as potential renal aging biomarkers, including phosphoenolpyruvate carboxykinase (Pck1), CD5 antigen-like protein (Cd5l), aldehyde dehydrogenase 1 (Aldh1a1), and uromodulin. Our results also showed that peroxisomal proteins were significantly downregulated in aged mice, whereas IgGs were upregulated, suggesting that peroxisome deterioration might be a hallmark for renal aging. Glutathionylome analysis demonstrated that downregulation of catalase and glutaredoxin-1 (Glrx1) significantly increased protein glutathionylation in aged mice. In addition, nicotinamide mononucleotide (NMN) administration significantly increased the number of peroxisomes in aged mouse kidneys, indicating that NMN enhanced peroxisome biogenesis, and suggesting that it might be beneficial to reduce kidney injuries. Together, our data identify novel potential biomarkers for renal aging, and provide a valuable resource for understanding the age-associated changes in kidneys.


Subject(s)
Aging/metabolism , Kidney/metabolism , Peroxisomes/metabolism , Proteome , Proteomics , Age Factors , Aging/pathology , Animals , Biomarkers/metabolism , Chromatography, Reverse-Phase , Databases, Protein , Kidney/drug effects , Kidney/pathology , Mice , Mice, Inbred C57BL , Nicotinamide Mononucleotide/pharmacology , Peroxisomes/drug effects , Peroxisomes/pathology , Proteostasis , Tandem Mass Spectrometry
19.
Biol Pharm Bull ; 43(9): 1382-1392, 2020.
Article in English | MEDLINE | ID: mdl-32879213

ABSTRACT

The effects of different dietary fats on hepatic fatty acid oxidation were compared in male ICR mice and Sprague-Dawley rats. Animals were fed diets containing 100 g/kg of either palm oil (saturated fat), safflower oil (rich in linoleic acid), an oil of evening primrose origin (γ-linolenic acid, GLA oil), perilla oil (α-linolenic acid) or fish oil (eicosapentaenoic and doxosahexaenoic acids) for 21 d. GLA, perilla and fish oils, compared with palm and safflower oils, increased the activity of fatty acid oxidation enzymes in both mice and rats, with some exceptions. In mice, GLA and fish oils greatly increased the peroxisomal palmitoyl-CoA oxidation rate, and the activity of acyl-CoA oxidase and enoyl-CoA hydratase to the same degree. The effects were much smaller with perilla oil. In rats, enhancing effects were more notable with fish oil than with GLA and perilla oils, excluding the activity of enoyl-CoA hydratase, and were comparable between GLA and perilla oils. In mice, strong enhancing effects of GLA oil, which were greater than with perilla oil and comparable to those of fish oil, were confirmed on mRNA levels of peroxisomal but not mitochondrial fatty acid oxidation enzymes. In rats, the effects of GLA and perilla oils on mRNA levels of peroxisomal and mitochondrial enzymes were indistinguishable, and lower than those observed with fish oil. Therefore, considerable diversity in the response to dietary polyunsaturated fats, especially the oil rich in γ-linolenic acid and fish oil, of hepatic fatty acid oxidation pathway exists between mice and rats.


Subject(s)
Dietary Fats/administration & dosage , Lipid Metabolism/drug effects , Liver/drug effects , gamma-Linolenic Acid/administration & dosage , Acyl-CoA Oxidase/metabolism , Animal Feed , Animals , Enoyl-CoA Hydratase/metabolism , Fish Oils/administration & dosage , Fish Oils/chemistry , Liver/cytology , Liver/enzymology , Male , Mice , Mice, Inbred ICR , Mitochondria/drug effects , Mitochondria/enzymology , Oxidation-Reduction/drug effects , Peroxisomes/drug effects , Peroxisomes/enzymology , Plant Oils/administration & dosage , Plant Oils/chemistry , Rats , Rats, Sprague-Dawley , Species Specificity
20.
SELECTION OF CITATIONS
SEARCH DETAIL