Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
BMC Vet Res ; 20(1): 451, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375652

ABSTRACT

BACKGROUND: Peste des petits ruminant (PPR) is a contagious disease caused by the peste des petits ruminants virus (PPRV). The disease poses a significant economic threat to small ruminant production in Ethiopia, particularly to the striving pastoral production system. A cross-sectional study was conducted to estimate the seroprevalence and associated risk factors of PPR in the small ruminants of the Borena Zone. A total of 384 serum samples were collected randomly from sheep and goats and examined for the presence of PPRV antibodies using competition enzyme-linked immune sorbent assay (c-ELISA). Additionally, a retrospective analysis of five years of outbreak data was performed to provide insight into the spatial and temporal distribution of the disease. RESULTS: The seroprevalence of PPRV antibodies in nonvaccinated, vaccinated, and unknown vaccination status of small ruminants in this study was found to be 32.1%, 68.8%, and 45.5%, respectively. Multivariable logistic analysis revealed a statistically significant association between PPRV seropositivity and several factors, including age, animal origin, flock size, and veterinary services status. A retrospective analysis revealed 53 PPR outbreaks in the Borena Zone from 2018 to 2022, exacerbated by low vaccination coverage relative to the at-risk animal population. CONCLUSION: The study revealed significant gaps in current vaccination efforts, with herd immunity levels falling below the FAO-WOAH recommended threshold of 80%. Despite Ethiopia's ambitious goal to eradicate PPR by 2027, the frequent outbreaks and insufficient herd immunity highlight the inadequacy of the existing strategies. To effectively move toward eradication, Ethiopia must align its approach with the global PPR eradication framework, which emphasizes a comprehensive strategy that includes diagnostics, surveillance, prevention, and the establishment of a robust veterinary regulatory system, rather than relying solely on vaccination. Overcoming logistical challenges, improving vaccination coverage, and optimizing the timing of vaccination campaigns, especially in hard-to-reach areas, will be crucial for reducing outbreaks and making progress toward eradication.


Subject(s)
Disease Outbreaks , Goat Diseases , Goats , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Sheep Diseases , Animals , Ethiopia/epidemiology , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/prevention & control , Goat Diseases/epidemiology , Goat Diseases/virology , Goat Diseases/prevention & control , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/virology , Sheep Diseases/prevention & control , Seroepidemiologic Studies , Cross-Sectional Studies , Peste-des-petits-ruminants virus/immunology , Retrospective Studies , Disease Outbreaks/veterinary , Female , Antibodies, Viral/blood , Male , Risk Factors , Vaccination/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary
2.
Open Vet J ; 14(8): 1960-1967, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39308707

ABSTRACT

Background: Infectious diseases such as peste des petits ruminants (PPRs), contagious caprine pleuropneumonia (CCPP), sheep and goat pox (SGPX), and pasteurellosis have considerable impacts on the optimal utilization of sheep and goat resources in Ethiopia. Immunization using multiple vaccines administered simultaneously has been suggested as a cost-effective and safe approach to controlling and preventing these diseases. Aim: The aim of this study was to assess the immunogenicity and safety of multiple vaccines administered simultaneously in goats. Methods: Sero-negative PPR, CCPP, SGPX, and Pasteurellosis goats were immunized with multiple vaccines. Goats vaccinated with a single vaccine against each disease served as a positive control. The immune response of the goats was assessed using serological tests, and any adverse effects were monitored. Results: The results of the present study showed that goats vaccinated with multiple vaccines exhibited a remarkable immune response against PPR, CCPP, and pasteurellosis. In contrast, they did not produce a protective immune response against sheep or goat pox. No adverse effects were observed with any of the vaccines. Conclusion: This study suggested that combined vaccines can be effective at inducing a protective immune response in goats. However, further research is needed to fully understand the immune response to combined vaccines.


Subject(s)
Bacterial Vaccines , Goat Diseases , Goats , Peste-des-Petits-Ruminants , Pleuropneumonia, Contagious , Viral Vaccines , Animals , Goat Diseases/prevention & control , Goat Diseases/virology , Goat Diseases/immunology , Peste-des-Petits-Ruminants/prevention & control , Peste-des-Petits-Ruminants/immunology , Pleuropneumonia, Contagious/prevention & control , Pleuropneumonia, Contagious/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Peste-des-petits-ruminants virus/immunology , Poxviridae Infections/veterinary , Poxviridae Infections/prevention & control , Poxviridae Infections/immunology , Sheep , Sheep Diseases/prevention & control , Sheep Diseases/immunology , Ethiopia , Capripoxvirus/immunology , Female , Male
3.
Commun Biol ; 7(1): 937, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095591

ABSTRACT

Peste des petits ruminants virus (PPRV) is a multi-host pathogen with sheep and goats as main hosts. To investigate the role of cattle in the epidemiology of PPR, we simulated conditions similar to East African zero-grazing husbandry practices in a series of trials with local Zebu cattle (Bos taurus indicus) co-housed with goats (Capra aegagrus hircus). Furthermore, we developed a mathematical model to assess the impact of PPRV-transmission from cattle to goats. Of the 32 cattle intranasally infected with the locally endemic lineage IV strain PPRV/Ethiopia/Habru/2014 none transmitted PPRV to 32 co-housed goats. However, these cattle or cattle co-housed with PPRV-infected goats seroconverted. The results confirm previous studies that cattle currently play a negligible role in PPRV-transmission and small ruminant vaccination is sufficient for eradication. However, the possible emergence of PPRV strains more virulent for cattle may impact eradication. Therefore, continued monitoring of PPRV circulation and evolution is recommended.


Subject(s)
Goat Diseases , Goats , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Peste-des-Petits-Ruminants/transmission , Peste-des-Petits-Ruminants/virology , Peste-des-Petits-Ruminants/epidemiology , Cattle , Peste-des-petits-ruminants virus/immunology , Peste-des-petits-ruminants virus/physiology , Goats/virology , Goat Diseases/virology , Goat Diseases/transmission , Cattle Diseases/transmission , Cattle Diseases/virology , Cattle Diseases/epidemiology , Disease Eradication/methods
4.
Int Immunol ; 36(10): 517-528, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38708774

ABSTRACT

Persistent immunoglobulin G (IgG) production (PIP) provides long-term vaccine protection. While variations in the duration of protection have been observed with vaccines prepared from different pathogens, little is known about the factors that determine PIP. Here, we investigated the impact of three parameters on the duration of anti-peptide IgG production, namely amino acid sequences, protein carriers, and immunization programs. We show that anti-peptide IgG production can be transformed from transient IgG production (TIP) to PIP, by placing short peptides (Pi) containing linear B cell epitopes in different competitive environments using bovine serum albumin (BSA) conjugates instead of the original viral particles. When goats were immunized with the peste des petits ruminants (PPR) live-attenuated vaccine (containing Pi as the constitutive component) and BSA-Pi conjugate, anti-Pi IgG production exhibited TIP (duration < 60 days) and PIP (duration > 368 days), respectively. Further, this PIP was unaffected by subsequent immunization with the PPR live-attenuated vaccine in the same goat. When goats were coimmunized with PPR live-attenuated vaccine and BSA-Pi, the induced anti-Pi IgG production showed a slightly extended TIP (from ~60 days to ~100 days). This discovery provides new perspectives for studying the fate of plasma cells in humoral immune responses and developing peptide vaccines related to linear neutralizing epitopes from various viruses.


Subject(s)
Antibodies, Viral , Epitopes, B-Lymphocyte , Goats , Viral Vaccines , Animals , Goats/immunology , Epitopes, B-Lymphocyte/immunology , Antibodies, Viral/immunology , Viral Vaccines/immunology , Immunoglobulin G/immunology , Antibody Formation/immunology , Peste-des-petits-ruminants virus/immunology , Vaccines, Attenuated/immunology
5.
Vet Ital ; 60(1)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38757513

ABSTRACT

This study was conducted to estimate the seroprevalence of Peste des petits ruminants virus (PPRV) and to determine the virus distribution in unvaccinated goats in the Pantnagar region of Uttarakhand state, India. A total of 212 serum samples from goats were collected randomly from various villages in three districts (Udhamsingh Nagar, Nainital, and Almora) of Uttarakhand. Serum samples were tested for anti-PPRV antibodies by a commercially available kit. RNA was extracted from the clinical samples and it was subjected to one-step RT-PCR, followed by virus isolation from positive samples. A total of 41 animals from various villages were found to be seropositive with a prevalence rate of 19.33%. PPR outbreaks were also reported from the Tarai region of Uttarakhand, and detection by PCR confirmed PPRV in 8 goats. Two representative swab samples were subjected to virus isolation in Vero cells and both samples showed typical cytopathic effects. The present study shows that PPRV is circulating in the Tarai region of Uttarakhand and mass vaccination for PPR must be followed in this region to increase herd immunity to a protective level. To the best of our knowledge, this is the first investigation of PPRV seroprevalence in unvaccinated goats of Uttarakhand, India.


Subject(s)
Goat Diseases , Goats , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/prevention & control , Peste-des-Petits-Ruminants/virology , India/epidemiology , Peste-des-petits-ruminants virus/isolation & purification , Peste-des-petits-ruminants virus/immunology , Goat Diseases/epidemiology , Goat Diseases/virology , Goat Diseases/prevention & control , Seroepidemiologic Studies
6.
J Virol ; 98(4): e0014624, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38440983

ABSTRACT

Peste des petits ruminants is an acute and highly contagious disease caused by the Peste des petits ruminants virus (PPRV). Host proteins play a crucial role in viral replication. However, the effect of fusion (F) protein-interacting partners on PPRV infection is poorly understood. In this study, we found that the expression of goat plasminogen activator urokinase (PLAU) gradually decreased in a time- and dose-dependent manner in PPRV-infected goat alveolar macrophages (GAMs). Goat PLAU was subsequently identified using co-immunoprecipitation and confocal microscopy as an F protein binding partner. The overexpression of goat PLAU inhibited PPRV growth and replication, whereas silencing goat PLAU promoted viral growth and replication. Additionally, we confirmed that goat PLAU interacted with a virus-induced signaling adapter (VISA) to antagonize F-mediated VISA degradation, increasing the production of type I interferon. We also found that goat PLAU reduced the inhibition of PPRV replication in VISA-knockdown GAMs. Our results show that the host protein PLAU inhibits the growth and replication of PPRV by VISA-triggering RIG-I-like receptors and provides insight into the host protein that antagonizes PPRV immunosuppression.IMPORTANCEThe role of host proteins that interact with Peste des petits ruminants virus (PPRV) fusion (F) protein in PPRV replication is poorly understood. This study confirmed that goat plasminogen activator urokinase (PLAU) interacts with the PPRV F protein. We further discovered that goat PLAU inhibited PPRV replication by enhancing virus-induced signaling adapter (VISA) expression and reducing the ability of the F protein to degrade VISA. These findings offer insights into host resistance to viral invasion and suggest new strategies and directions for developing PPR vaccines.


Subject(s)
Goat Diseases , Goats , Host-Pathogen Interactions , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Urokinase-Type Plasminogen Activator , Viral Fusion Proteins , Animals , Adaptor Proteins, Signal Transducing/metabolism , DEAD Box Protein 58/metabolism , Goat Diseases/immunology , Goat Diseases/metabolism , Goat Diseases/virology , Goats/immunology , Goats/virology , Macrophages, Alveolar , Peste-des-Petits-Ruminants/immunology , Peste-des-Petits-Ruminants/metabolism , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/growth & development , Peste-des-petits-ruminants virus/immunology , Peste-des-petits-ruminants virus/metabolism , Protein Binding , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Viral Fusion Proteins/metabolism
7.
Biologicals ; 79: 19-26, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36096853

ABSTRACT

Canine morbillivirus is a highly contagious multi-host pathogen with high morbidity and mortality. Timely diagnosis is of utmost importance to effectively control such a dreadful disease. Monoclonal antibodies (mAbs) serve as a high throughput diagnostics and applied tools for research and development (R&D). In the present study, a total of six mouse monoclonal antibodies were developed. All the mAbs generated belonged to IgG class. Of the six mAbs, two of them, namely CD-2F8 and CD-3D8 were directed against the nucleocapsid protein of CDV as determined in western blotting. The reactivity of all the mAbs was checked in indirect-ELISA and cell-ELISA using different morbilliviruses. The mAbs could broadly be categorized as; CDV specific (CD-3D8 and CD-2F8), cross-reactive to PPR virus (CD-AB3 and CD-4D6) and cross-reactive to both PPR virus and measles virus (CD-5D10 and CD-6E5). The characterized mAbs were used for antigenic profiling of CDV, PPR virus and measles virus. Based on the reactivity pattern; a close antigenic relationship was found among CDV and PPR virus as compared to measles virus. A pair of CDV specific mAbs namely CD-2F8 and CD-3D8 were identified which did not cross-react with measles and PPR viruses and thus could be used for diagnostic applications.


Subject(s)
Antibodies, Monoclonal , Distemper Virus, Canine , Animals , Antibodies, Monoclonal/chemistry , Distemper Virus, Canine/immunology , Dogs , Immunoglobulin G , Measles virus/immunology , Mice , Nucleocapsid Proteins , Peste-des-petits-ruminants virus/immunology
8.
BMC Microbiol ; 21(1): 334, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876012

ABSTRACT

BACKGROUND: Peste des Petits Ruminants (PPR) is an acute or peracute contagious transboundary viral disease that mainly affects caprine and ovine and causes significant economic impact in developing countries. After two PPR virus outbreaks in 2011 and 2014, an investigation, from August 2015 to September 2016, was carried out in Northern Iraq when an increased morbidity and mortality rates were reported in the domestic and captive wild goats. In the present study, ten domestic goat farms and seven captive wild goat herds located in seven geographical areas of Northern Iraq were clinically, pathologically, serologically and genotypically characterized to determine the prevalence and potential cause of PPR virus outbreak. RESULTS: The outbreak occurred with rate of morbidity (26.1%) and mortality (11.1%) in domestic goat farms as compared to captive wild goat herds where relatively high mortality (42.9%) and low morbidity (10.9%) rates were recorded. Based on the clinical symptoms (mucopurulent nasal discharges, ulceration and erosion of oral mucosa, profuse watery diarrhea) and necropsy (hemorrhage and congestion on mucous membranes of the colon and rectum with zebra stripes lesions) results, overall, the serological test findings revealed a high frequency (47.9%) of positive samples for anti-PPRV nucleoprotein antibodies. Furthermore, the nucleoprotein (N) gene was detected in 63.2 and 89.1% of samples using conventional and reverse transcription real-time quantitative PCR assays. A phylogenetic analysis of N gene amino acid sequences clustered with the reference strain revealed lineage IV similar to the strains isolated in 2011 and 2014, respectively. However, two sub-types of lineage IV (I and II), significantly distinct from the previous strains, were also observed. CONCLUSION: The phylogenetic analysis suggests that movements of goats are possible cause and one of the important factors responsible for the spread of virus across the region. The study results would help in improving farm management practices by establishing a PPR virus eradication program using regular monitoring and vaccination program to control and mitigate the risk of re-emergence of PPR virus infection in domestic and captive wild goats in Iraq.


Subject(s)
Goat Diseases/virology , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/isolation & purification , Animals , Animals, Domestic , Animals, Zoo , Antibodies, Viral/blood , Genotype , Goat Diseases/epidemiology , Goat Diseases/pathology , Goats , Iraq/epidemiology , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/immunology , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/pathology , Peste-des-petits-ruminants virus/classification , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/immunology , Phenotype , Phylogeny
9.
Viruses ; 13(11)2021 11 21.
Article in English | MEDLINE | ID: mdl-34835126

ABSTRACT

Across Africa, the Middle East, and Asia, peste des petits ruminants virus (PPRV) places a huge disease burden on agriculture, affecting, in particular, small ruminant production. The recent PPR outbreaks in Northern Africa, the European part of Turkey, and Bulgaria represent a significant threat to mainland Europe, as a source of disease. Although two safe and efficacious live attenuated vaccines (Sungri/96 and Nigeria/75/1) are available for the control of PPR, current serological tests do not enable the differentiation between naturally infected and vaccinated animals (DIVA). The vaccinated animals develop a full range of immune responses to viral proteins and, therefore, cannot be distinguished serologically from those that have recovered from a natural infection. This poses a serious problem for the post-vaccinal sero-surveillance during the ongoing PPR eradication program. Furthermore, during the latter stages of any eradication program, vaccination is only possible if the vaccine used is fully DIVA compliant. Using reverse genetics, we have developed two live attenuated PPR DIVA vaccines (Sungri/96 DIVA and Nigeria/75/1 DIVA), in which the C-terminal variable region of the PPRV N-protein has been replaced with dolphin morbillivirus (DMV). As a proof of principle, both the DIVA vaccines were evaluated in goats in pilot studies for safety and efficacy, and all the animals were clinically protected against the intranasal virulent virus challenge, similar to the parent vaccines. Furthermore, it is possible to differentiate between infected animals and vaccinated animals using two newly developed ELISAs. Therefore, these DIVA vaccines and associated tests can facilitate the sero-monitoring process and speed up the implementation of global PPR eradication through vaccination.


Subject(s)
Animal Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus/immunology , Ruminants/virology , Vaccination/veterinary , Viral Vaccines/immunology , Animal Diseases/immunology , Animal Diseases/prevention & control , Animal Diseases/virology , Animals , Peste-des-Petits-Ruminants/immunology , Peste-des-Petits-Ruminants/prevention & control , Peste-des-Petits-Ruminants/virology
10.
Front Immunol ; 12: 705539, 2021.
Article in English | MEDLINE | ID: mdl-34594325

ABSTRACT

The Morbillivirus peste des petits ruminants virus (PPRV) is the causal agent of a highly contagious disease that mostly affects sheep and goats and produces considerable losses in developing countries. Current PPRV control strategies rely on live-attenuated vaccines, which are not ideal, as they cannot differentiate infected from vaccinated animals (DIVA). Recombinant vector-based vaccines expressing viral subunits can provide an alternative to conventional vaccines, as they can be easily paired with DIVA diagnostic tools. In the present work, we used the bovine herpesvirus-4-based vector (BoHV-4-A) to deliver PPRV hemagglutinin H antigen (BoHV-4-A-PPRV-H-ΔTK). Vaccination with BoHV-4-A-PPRV-H-ΔTK protected sheep from virulent PPRV challenge and prevented virus shedding. Protection correlated with anti-PPRV IgGs, neutralizing antibodies and IFN-γ-producing cells induced by the vaccine. Detection of antibodies exclusively against H-PPRV in animal sera and not against other PPRV viral proteins such as F or N could serve as a DIVA diagnostic test when using BoHV-4-A-PPRV-H-ΔTK as vaccine. Our data indicate that BoHV-4-A-PPRV-H-ΔTK could be a promising new approach for PPRV eradication programs.


Subject(s)
Genetic Vectors , Herpesvirus 4, Bovine , Peste-des-Petits-Ruminants/prevention & control , Peste-des-petits-ruminants virus , Sheep Diseases/immunology , Sheep/immunology , Viral Proteins , Viral Vaccines , Animals , Chlorocebus aethiops , Dogs , Genetic Vectors/genetics , Genetic Vectors/immunology , Herpesvirus 4, Bovine/genetics , Herpesvirus 4, Bovine/immunology , Peste-des-Petits-Ruminants/genetics , Peste-des-Petits-Ruminants/immunology , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/immunology , Sheep/virology , Sheep Diseases/virology , Vero Cells , Viral Proteins/genetics , Viral Proteins/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
11.
Front Immunol ; 12: 745315, 2021.
Article in English | MEDLINE | ID: mdl-34671358

ABSTRACT

Peste des petits ruminants (PPR) is an acute transboundary infectious viral disease of small ruminants, mainly sheep and goats. Host susceptibility varies considerably depending on the PPR virus (PPRV) strain, the host species and breed. The effect of strains with different levels of virulence on the modulation of the immune system has not been thoroughly compared in an experimental setting so far. In this study, we used a multi-omics approach to investigate the host cellular factors involved in different infection phenotypes. Peripheral blood mononuclear cells (PBMCs) from Saanen goats were activated with a T-cell mitogen and infected with PPRV strains of different virulence: Morocco 2008 (high virulence), Ivory Coast 1989 (low virulence) and Nigeria 75/1 (live attenuated vaccine strain). Our results showed that the highly virulent strain replicated better than the other two in PBMCs and rapidly induced cell death and a stronger inhibition of lymphocyte proliferation. However, all the strains affected lymphocyte proliferation and induced upregulation of key antiviral genes and proteins, meaning a classical antiviral response is orchestrated regardless of the virulence of the PPRV strain. On the other hand, the highly virulent strain induced stronger inflammatory responses and activated more genes related to lymphocyte migration and recruitment, and inflammatory processes. Both transcriptomic and proteomic approaches were successful in detecting viral and antiviral effectors under all conditions. The present work identified key immunological factors related to PPRV virulence in vitro.


Subject(s)
Goats/immunology , Leukocytes, Mononuclear/immunology , Peste-des-Petits-Ruminants/immunology , Peste-des-petits-ruminants virus/pathogenicity , Virulence/immunology , Animals , Gene Expression Profiling , Goats/virology , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/immunology , Proteomics
12.
Vet Microbiol ; 261: 109201, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34399299

ABSTRACT

Peste des Petits Ruminants (PPR) is a highly contagious and often fatal disease of sheep and goats. Conventional live vaccines have been successfully used in endemic countries however, there are not completely safe and not allowing differentiation between vaccinated and infected animals (DIVA). In this study, a recombinant Newcastle disease virus (NDV) expressing the hemagglutinin of PPRV (NDV-PPRVH) was evaluated on small ruminants by serology response in sheep and goats, experimental infection in goats and immunity duration in sheep. The NDV-PPRVH vaccine injected twice at 28 days' interval, provided full protection against challenge with a virulent PPR strain in the most sensitive species and induced significant neutralizing antibodies. Immunological response in goats was slightly higher than sheep and the vaccine injected at 108.0 50 % egg infective dose/mL allowed anti-PPRV antibodies that lasted at least 12 months as shown by antibody response monitoring in sheep. The NDV vector presented a limited replication in the host and vaccinated animals remained negative when tested by cELISA based on PPRV nucleoprotein allowing DIVA. This recombinant vaccine appears to be a promising candidate in a free at risk countries and may be an important component of the global strategy for PPR eradication.


Subject(s)
Goat Diseases/prevention & control , Hemagglutinins/genetics , Peste-des-Petits-Ruminants/prevention & control , Peste-des-petits-ruminants virus/genetics , Sheep Diseases/prevention & control , Viral Vaccines/genetics , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Goats , Hemagglutinins/immunology , Newcastle disease virus/genetics , Newcastle disease virus/immunology , Peste-des-petits-ruminants virus/immunology , Sheep , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
13.
Vet Microbiol ; 260: 109186, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34333402

ABSTRACT

Replication of peste des petits ruminants virus (PPRV) strongly depends on the cellular environment and resources of host cells including nucleoside pool. Thus, enzymes involved in nucleoside biosynthesis (such as pyrimidine biosynthesis pathway) are regarded as attractive targets for antiviral drug development. Here, we demonstrate that brequinar (BQR) and leflunomide (LFM) which are two specific inhibitors of DHODH enzyme and 6-azauracil (6-AU) which is an ODase enzyme inhibitor robustly inhibit PPRV replication in HEK293T cell line as well as in peripheral blood mononuclear cells isolated from goat. We further demonstrate that these agents exert anti-PPRV activity via the depletion of purimidine nucleotide. Interestingly, these inhibitors can trigger the transcription of antiviral interferon-stimulated genes (ISGs). However, the induction of ISGs is largely independent of the classical JAK-STAT pathway. Combination of BQR with interferons (IFNs) exerts enhanced ISG induction and anti-PPRV activity. Taken together, this study reveals an unconventional novel mechanism of crosstalk between nucleotide biosynthesis pathways and cellular antiviral immunity in inhibiting PPRV replication. In conclusion, targeting pyrimidine biosynthesis represents a potential strategy for developing antiviral strategies against PPRV.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Nucleosides/metabolism , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/physiology , Animals , Biphenyl Compounds/pharmacology , HEK293 Cells , Humans , Immunity, Cellular , Interferons/pharmacology , Leflunomide/pharmacology , Leukocytes, Mononuclear/immunology , Peste-des-petits-ruminants virus/drug effects , Peste-des-petits-ruminants virus/immunology , Pyrimidines/metabolism , Uracil/analogs & derivatives , Uracil/pharmacology , Virus Replication
14.
J Vet Sci ; 22(4): e45, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34170088

ABSTRACT

BACKGROUND: Peste des petits ruminants (PPR) is an infectious disease caused by the peste des petits ruminants virus (PPRV) that mainly produces respiratory symptoms in affected animals, resulting in great losses in the world's agriculture industry every year. Single-domain variable heavy chain (VHH) antibody fragments, also referred to as nanobodies, have high expression yields and other advantages including ease of purification and high solubility. OBJECTIVES: The purpose of this study is to obtain a single-domain antibody with good reactivity and high specificity against PPRV. METHODS: A VHH cDNA library was established by immunizing camels with PPRV vaccine, and the capacity and diversity of the library were examined. Four PPRV VHHs were selected, and the biological activity and antigen-binding capacity of the four VHHs were identified by western blot, indirect immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) analyses. ELISA was used to identify whether the four VHHs were specific for PPRV, and VHH neutralization tests were carried out. ELISA and western blot analyses were used to identify which PPRV protein was targeted by VHH2. RESULTS: The PPRV cDNA library was constructed successfully. The library capacity was greater than 2.0 × 106 cfu/mL, and the inserted fragment size was approximately 400 bp to 2000 bp. The average length of the cDNA library fragment was about 1000 bp, and the recombination rate was approximately 100%. Four single-domain antibody sequences were selected, and proteins expressed in the supernatant were obtained. The four VHHs were shown to have biological activity, close affinity to PPRV, and no cross-reaction with common sheep diseases. All four VHHs had neutralization activity, and VHH2 was specific to the PPRV M protein. CONCLUSIONS: The results of this preliminary research of PPRV VHHs showed that four screened VHH antibodies could be useful in future applications. This study provided new materials for inclusion in PPRV research.


Subject(s)
Antibodies, Viral/immunology , Antibody Specificity , Camelus , Peste-des-Petits-Ruminants/prevention & control , Peste-des-petits-ruminants virus/immunology , Viral Vaccines , Animals , Antibody Affinity , Chlorocebus aethiops , Cloning, Molecular , Female , Gene Library , RNA, Messenger , Vero Cells
15.
Front Immunol ; 12: 630307, 2021.
Article in English | MEDLINE | ID: mdl-33912160

ABSTRACT

The study was aimed at developing an accessible laboratory animal model to elucidate protective and pathological roles of immune mediators during Peste des petits ruminants virus (PPRV) infection. It is because of the critical roles of type I IFNs in anti-viral defense, we assessed the susceptibility of IFN receptor knock out (IFNR KO) mice to PPRV infection. IFNR KO mice were exceedingly susceptible to the infection but WT animals efficiently controlled PPRV. Accordingly, the PPRV infected IFNR KO mice gradually reduced their body weights and succumbed to the infection within 10 days irrespective of the dose and route of infection. The lower infecting doses predominantly induced immunopathological lesions. The viral antigens as well as the replicating PPRV were abundantly present in most of the critical organs such as brain, lungs, heart and kidneys of IFNR KO mice infected with high dose of the virus. Neutrophils and macrophages transported the replicating virus to central nervous system (CNS) and contributed to pathology while the elevated NK and T cell responses directly correlated with the resolution of PPRV infection in WT animals. Using an array of fluorescently labeled H-2Kb tetramers, we discovered four immunogenic epitopes of PPRV. The PPRV-peptides interacted well with H-2Kb in acellular and cellular assay as well as expanded the virus-specific CD8+ T cells in immunized or infected mice. Adoptively transferred CD8+ T cells helped control PPRV in infected mice. Our study therefore established and employed a mouse model for investigating the pathogenesis of PPRV. The model could be useful for elucidating the contribution of immune cells in disease progression as well as to test anti-viral agents.


Subject(s)
Peste-des-Petits-Ruminants/immunology , Animals , Brain/virology , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , H-2 Antigens/immunology , Immunity, Innate , Immunization , Lung/virology , Mice , Mice, Inbred C57BL , Peste-des-Petits-Ruminants/mortality , Peste-des-Petits-Ruminants/pathology , Peste-des-petits-ruminants virus/immunology , Receptors, Interferon/physiology , Viral Vaccines/immunology
16.
Viruses ; 13(3)2021 03 05.
Article in English | MEDLINE | ID: mdl-33807534

ABSTRACT

The mitochondrial antiviral-signaling protein (MAVS, also known as VISA, IPS-1, or CARDIF) plays an essential role in the type I interferon (IFN) response and in retinoic acid-inducible gene I (RIG-I) mediated antiviral innate immunity in mammals. In this study, the caprine MAVS gene (caMAVS, 1566 bp) was identified and cloned. The caMAVS shares the highest amino acid similarity (98.1%) with the predicted sheep MAVS. Confocal microscopy analysis of partial deletion mutants of caMAVS revealed that the transmembrane and the so-called Non-Characterized domains are indispensable for intracellular localization to mitochondria. Overexpression of caMAVS in caprine endometrial epithelial cells up-regulated the mRNA levels of caprine interferon-stimulated genes. We concluded that caprine MAVS mediates the activation of the type I IFN pathway. We further demonstrated that both the CARD-like domain and the transmembrane domain of caMAVS were essential for the activation of the IFN-ß promotor. The interaction between caMAVS and caprine RIG-I and the vital role of the CARD and NC domain in this interaction was demonstrated by co-immunoprecipitation. Upon infection with the Peste des Petits Ruminants Virus (PPRV, genus Morbillivirus), the level of MAVS was greatly reduced. This reduction was prevented by the addition of the proteasome inhibitor MG132. Moreover, we found that viral protein V could interact and colocalize with MAVS. Together, we identified caMAVS as a RIG-I interactive protein involved in the activation of type I IFN pathways in caprine cells and as a target for PPRV immune evasion.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Interferon Inducers/immunology , Peste-des-Petits-Ruminants/immunology , Peste-des-petits-ruminants virus/immunology , Animals , Chlorocebus aethiops , Epithelial Cells , Goats , HEK293 Cells , Humans , Interferon Type I/immunology , Vero Cells
17.
J Immunoassay Immunochem ; 42(4): 424-443, 2021 Jul 04.
Article in English | MEDLINE | ID: mdl-33724901

ABSTRACT

This study reports the influence of peste des petits ruminants (PPR) vaccination on the clinico-pathological outcomes of PPR in the face of an outbreak. Twenty-two West African dwarf goats procured for a different study started showing early signs of PPR during acclimatization. In response, PPR vaccine was administered either intranasally with phytogenic mucoadhesive gum (Group A; n = 6) or without gum (Group B; n = 6); subcutaneously (Group C; n = 6) or not vaccinated (Group D; n = 4) and studied for 21 days. The clinical scores, hematology, serology and pathology scores were evaluated. Clinical signs of PPR were present in all groups, presenting a percentage mortality of 33%; 33%; 64% and 100% for Groups A, B, C, and D, respectively. Polycythemia and mild leukopenia were observed in all groups, and all animals were seropositive by day 7 post-vaccination. The lung consolidation scores were low in Groups A and B, compared to Group C. Histopathological lesions consistent with PPR was observed in the lymphoid organs, gastrointestinal tract, and lungs with the presence of PPR antigen as detected by immunohistochemistry. The findings suggest that intranasal vaccination with or without mucoadhesive gum may influence the outcome of PPR infection more than the subcutaneous route in the face of an outbreak.


Subject(s)
Drug Delivery Systems , Peste-des-Petits-Ruminants/immunology , Viral Vaccines/immunology , Administration, Intranasal , Animals , Gingiva/immunology , Goats , Injections, Subcutaneous , Male , Peste-des-petits-ruminants virus/immunology , Polymers/administration & dosage , Treatment Outcome , Viral Vaccines/administration & dosage
18.
Trop Anim Health Prod ; 53(2): 195, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33666802

ABSTRACT

This study reports the monitoring of several emerging viral pathogens in Mauritania, which was carried out by the analysis of bovine and camel samples taken at the slaughterhouse of Nouakchott. Blood and serum were collected by random sampling from 159 camels and 118 cattle in March 2013 at the large animals abattoir in Nouakchott. Serological tests for Rift Valley Fever (RVF), Peste des Petits Ruminants (PPR), West Nile disease (WND), epizootic haemorrhagic disease (EHD) and African horse sickness (AHS) were carried out using commercial ELISA kits. The samples, which resulted positives for PPR, WND and AHS, were tested with the confirmatory virus neutralization test (VNT). According to ELISA results, serological prevalence of RVF was 45% (95% CI 52.3-37.7) in camels and 16% (95% CI 22.6-9.4) in cattle. The difference between the observed prevalences in camels and in cattle was significant (p value ≤ 0.01). PPR was absent in camels and had 12% prevalence (95% CI, 17.86-6.14) in cattle. Furthermore, camels showed 92% (95% CI, 96.1-87.9) prevalence of WNV, 73% (95% CI, 82.3-63.64) of EHD and 3% (95% CI, 5.6-0.4) of AHS. This data are of relevance since provided useful feedbacks on the circulation of the pathogens in field. Moreover, this survey provided new information on the susceptibility of camels to several emerging pathogens and on the possible use of this species as sentinel animal.


Subject(s)
Abattoirs , Camelus/virology , Cattle Diseases/epidemiology , Virus Diseases/veterinary , African Horse Sickness/epidemiology , African Horse Sickness/virology , Animals , Antibodies, Viral/analysis , Antibodies, Viral/immunology , Cattle , Cattle Diseases/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Hemorrhagic Disease Virus, Epizootic/immunology , Hemorrhagic Disease Virus, Epizootic/isolation & purification , Mauritania/epidemiology , Peste-des-petits-ruminants virus/immunology , Peste-des-petits-ruminants virus/isolation & purification , Rift Valley Fever/epidemiology , Rift Valley Fever/virology , Seroepidemiologic Studies , Virus Diseases/epidemiology , Virus Diseases/virology , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile Fever/virology
19.
Virulence ; 12(1): 690-703, 2021 12.
Article in English | MEDLINE | ID: mdl-33522421

ABSTRACT

The toll-like receptor (TLR) family comprises both cell-surface and intracellular receptors that recognize different types of pathogen-associated molecular patterns (PAMPs) leading to the production of pro-inflammatory cytokines and subsequent development of adaptive immunity. TLR2 is a cell-surface receptor initially thought to act as a bacterial sentinel but also shown to recognize a number of viral glycoproteins. In this study, we sought to characterize the role of TLR2 in the activation of the immune response by peste des petits ruminants virus (PPRV), a morbillivirus of the Paramixoviridae family that causes an acute, highly contagious disease in goats and sheep. Using human embryonic kidney (HEK) 293 cells stably expressing human (h)TLR2 but lacking any other TLR, we found that PPRV induces IL-8 production in a dose-dependent manner. That activation is only observed in cells expressing hTLR2 and is greatly reduced when the receptor is blocked by pretreatment with specific antibody. We identified hemagglutinin (H) as the viral protein responsible of TLR2 activation by performing the same assays with purified recombinant mammalian-expressed H protein. Exogenous addition of recombinant H protein to cell culture induces high levels of interleukin (IL)-8 only in TLR2-expressing cells. Moreover, H engagement on TLR2 in the monocytic cell line THP-1 activates extracellular-signal-regulated kinase (ERK) signaling. Stimulation of primary ovine dendritic cells with either inactivated PPRV or purified recombinant H protein results in transcription of pro-inflammatory cytokines and the secretion of the Th1-polarizing cytokine IL-12. The role of these host immune mechanisms in the control of PPR is discussed.


Subject(s)
Hemagglutinins, Viral/immunology , Immunity, Innate/drug effects , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/immunology , Signal Transduction/immunology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Animals , Cytokines/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/virology , HEK293 Cells , Hemagglutinins, Viral/genetics , Hemagglutinins, Viral/pharmacology , Humans , Sheep , Signal Transduction/drug effects , THP-1 Cells
20.
J Immunoassay Immunochem ; 42(1): 82-94, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-32970525

ABSTRACT

Peste des petits ruminants (PPR) in Africa continues to defy conventional vaccinational approaches aimed at its control. There is need for route modification and immunopotentiation of the current vaccination methods, using easily affordable materials. This study evaluates the immunomodulatory potential of Irvingia gabonensis (IG) seed gum extract for intranasal PPR vaccination in goats using attenuated Nigeria 75/1 PPR vaccine. Twenty West African dwarf goats were divided into four groups (n=5). Group 1 was vaccinated intranasally using IG gum as vehicle; Group 2 was vaccinated intranasally without the gum; Group 3 via subcutaneous injection while Group 4 was not vaccinated. Hematology and Serum IgG levels were assessed weekly for 28 days post vaccination (dpv). H-PPR bELISA detected antibodies against PPR by 7th dpv, peaking by 21st dpv with mean percentage inhibitions of 78.2%; 69.6%; 87.0% and 0% in Groups 1, 2, 3 and 4, respectively. Also, significantly lower neutrophil to lymphocyte ratio (P<0.05) were observed by 14th dpv to 28th dpv in the vaccinated groups. The findings of this study show that the use of I. gabonensis seed gum extract for mucoadhesive intranasal PPR vaccine delivery has an immunomodulatory effect on the systemic immune response following PPR intranasal vaccine administration.


Subject(s)
Cellulose/chemistry , Drug Delivery Systems , Immunity, Humoral/immunology , Peste-des-Petits-Ruminants/immunology , Peste-des-petits-ruminants virus/immunology , Viral Vaccines/immunology , Administration, Intranasal , Animals , Cellulose/immunology , Goats , Hematocrit , Hemoglobins/analysis , Lymphocyte Count , Polymers/chemistry , Polymers/isolation & purification , Vaccination , Viral Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL