Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.399
Filter
1.
Water Environ Res ; 96(8): e11090, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39112019

ABSTRACT

This study presents an innovative double-walled borosilicate glass reactor system for the efficient treatment of liquid and gaseous wastewater. This reactor system allows precise temperature control, continuous pH monitoring, and controlled dosing of reagents to optimize reaction conditions. Detailed characterization was carried out by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), BET (specific surface area) analysis, point of zero charge (PZC), and scanning electron microscopy (SEM) for the SCR, SCRT, and 5%Fe@SCRT materials. For Malachite Green adsorption, SRCT demonstrated a maximum adsorption capacity of 39.78 ± 0.5 mg/g using the Langmuir isotherm model and followed pseudo-second-order kinetics. Optimum conditions for adsorption were found to be: an initial concentration of 50 ppm, an adsorbent dosage of 1 g/l, a pH of 8.5, and a temperature of 50°C. For the catalytic oxidation of phenol, 5%Fe@SRCT achieved a remarkable removal rate of 99.9 ± 0.1% under optimum conditions (50 ppm phenol, 1 g/l catalyst dosage, pH 3.5, H2O2 concentration 8.7 mM, and temperature 70°C). Intermediates identified during the reaction included hydroquinone, benzoquinone, catechol, and resorcinol, with degradation occurring over a 60-minute reaction period. The 5%Fe@SCRT material showed excellent reusability in the removal of phenol by catalytic oxidation, with no significant loss of efficiency over three cycles, while the SRCT underwent three cycles of regeneration for the adsorption of Malachite Green. Scavenger tests confirmed the involvement of hydroxyl radicals in the catalytic oxidation process. In addition, fish survival tests after catalytic oxidation of phenol by 5%Fe@SRCT showed no impact on fish, underlining the environmental safety of this process. In addition, germination tests after decolorization of MG by SRCT demonstrated a good effect with no negative impact, reinforcing the ecological value of this innovative technology. These results highlight the innovative use of SCRT and 5%Fe@SCRT as versatile materials for environmental remediation, exploiting their effective adsorption capacities and efficient catalytic oxidation performance within the proposed double-walled borosilicate glass reactor system. PRACTITIONER POINTS: The study demonstrates the effectiveness of an innovative reactor system employing SRCT adsorbent and Fe@SRCT catalyst for efficient removal of malachite green and phenol from wastewater. Environmental impact assessment, including seed germination and fish survival evaluation, validates the method's eco-friendly potential. Implementation of this approach could significantly contribute to sustainable water treatment practices.


Subject(s)
Rosaniline Dyes , Water Pollutants, Chemical , Rosaniline Dyes/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Animals , Catalysis , Clay/chemistry , Fishes , Phenol/chemistry , Seeds , Waste Disposal, Fluid/methods , Iron/chemistry , Water Purification/methods , Silicates/chemistry
2.
BMC Microbiol ; 24(1): 252, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982378

ABSTRACT

The present study aimed to develop a system using a combination of enzymatic and microbial degradation techniques for removing phenol from contaminated water. In our prior research, the HRP enzyme extracted from horseradish roots was utilized within a core-shell microcapsule to reduce phenolic shock, serving as a monolayer column. To complete the phenol removal process, a second column containing degrading microorganisms was added to the last column in this research. Phenol-degrading bacteria were isolated from different microbial sources on a phenolic base medium. Additionally, encapsulated calcium peroxide nanoparticles were used to provide dissolved oxygen for the microbial population. Results showed that the both isolated strains, WC1 and CC1, were able to completely remove phenol from the contaminated influent water the range within 5 to 7 days, respectively. Molecular identification showed 99.8% similarity for WC1 isolate to Stenotrophomonas rizophila strain e-p10 and 99.9% similarity for CC1 isolate to Bacillus cereus strain IAM 12,605. The results also indicated that columns using activated sludge as a microbial source had the highest removal rate, with the microbial biofilm completely removing 100% of the 100 mg/L phenol concentration in contaminated influent water after 40 days. Finally, the concurrent use of core-shell microcapsules containing enzymes and capsules containing Stenotrophomonas sp. WC1 strain in two continuous column reactors was able to completely remove phenol from polluted water with a concentration of 500 mg/L for a period of 20 days. The results suggest that a combination of enzymatic and microbial degrading systems can be used as a new system to remove phenol from polluted streams with higher concentrations of phenol by eliminating the shock of phenol on the microbial population.


Subject(s)
Biodegradation, Environmental , Phenol , Water Pollutants, Chemical , Phenol/metabolism , Water Pollutants, Chemical/metabolism , Horseradish Peroxidase/metabolism , Horseradish Peroxidase/chemistry , Water Purification/methods , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/classification , Biofilms/growth & development , Armoracia/metabolism , Sewage/microbiology , Bacillus cereus/metabolism , Bacillus cereus/isolation & purification , Bacillus cereus/enzymology
3.
Environ Monit Assess ; 196(8): 726, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995468

ABSTRACT

The feasibility of a simultaneous nitrification, denitrification and fermentation process (SNDF) under electric stirrer agitation conditions was verified in a single reactor. Enhanced activated sludge for phenol degradation and denitrification in pharmaceutical phenol-containing wastewater under low dissolved oxygen conditions, additional inoculation with Comamonas sp. BGH and optimisation of co-metabolites were investigated. At a hydraulic residence time (HRT) of 28 h, 15 mg/L of substrate as strain BGH co-metabolised substrate degraded 650 ± 50 mg/L phenol almost completely and was accompanied by an incremental increase in the quantity of strain BGH. Strain BGH showed enhanced phenol degradation. Under trisodium citrate co-metabolism, strain BGH combined with activated sludge treated phenol wastewater and degraded NO2--N from 50 ± 5 to 0 mg/L in only 7 h. The removal efficiency of this group for phenol, chemical oxygen demand (COD) and TN was 99.67%, 90.25% and 98.71%, respectively, at an HRT of 32 h. The bioaugmentation effect not only promotes the degradation of pollutants, but also increases the abundance of dominant bacteria in activated sludge. Illumina MiSeq sequencing research showed that strain BGH promoted the growth of dominant genera (Acidaminobacter, Raineyella, Pseudarcobacter) and increased their relative abundance in the activated sludge system. These genera are resistant to toxicity and organic matter degradation. This paper provides some reference for the activated sludge to degrade high phenol pharmaceutical wastewater under the action of biological enhancement.


Subject(s)
Bioreactors , Denitrification , Fermentation , Nitrification , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Bioreactors/microbiology , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Phenol/metabolism , Sewage/microbiology , Biodegradation, Environmental
4.
Cell Death Dis ; 15(7): 522, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039049

ABSTRACT

In recent studies, erianin, a natural product isolated from Dendrobium chrysotoxum Lindl, has exhibited notable anticancer properties. Ferroptosis, a novel form of programmed cell death, holds potential as a strategy to overcome Temozolomide (TMZ) resistance in glioma by inducing ferroptosis in TMZ-resistant glioma cells. Here, utilizing various phenotyping experiments, including cell counting kit-8 (CCK-8) assays, EdU assays, transwell assays, neurosphere formation assays and extreme limiting dilution (ELDA) assays, we demonstrated that erianin exerts its anticancer activity on both TMZ sensitive and TMZ-resistant glioma stem cells (GSCs). Furthermore, we made an exciting discovery that erianin enhances TMZ sensitivity in TMZ-resistant GSCs. Subsequently, we demonstrated that erianin induced ferroptosis in TMZ-resistant GSCs and enhances TMZ sensitivity through inducing ferroptosis, which was confirmed by intracellular measurements of ROS, GSH, and MDA, as well as through the use of BODIPY (581/591) C11 and transmission electron microscopy. Conversely, the ferroptosis inhibitor ferrostatin-1 (Fer-1) blocked the effects of erianin. The underlying mechanism of ferroptosis induced by erianin was further explored through co-immunoprecipitation (Co-IP) assays, ubiquitination assays, protein stability assessments, chromatin immunoprecipitation (ChIP) assays and luciferase reporter gene assays. We found that erianin specifically targets REST, inhibiting its transcriptional repression function without altering its expression levels. Consequently, this suppression of REST's role leads to an upregulation of LRSAM1 expression. In turn, LRSAM1 ubiquitinates and degrades SLC40A1, a protein that inhibits ferroptosis by exporting ferrous ions. By downregulating SLC40A1, erianin ultimately induces ferroptosis in TMZ-resistant GSCs. Taken together, our research demonstrates that the natural product erianin inhibits the malignant phenotype of GSCs and increases the sensitivity of TMZ in TMZ-resistant GSCs by inducing ferroptosis. These findings suggest erianin as a prospective compound for the treatment of TMZ-resistant glioma.


Subject(s)
Drug Resistance, Neoplasm , Ferroptosis , Temozolomide , Ubiquitination , Ferroptosis/drug effects , Humans , Drug Resistance, Neoplasm/drug effects , Ubiquitination/drug effects , Temozolomide/pharmacology , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Phenol/pharmacology , Glioma/metabolism , Glioma/drug therapy , Glioma/pathology , Glioma/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Animals , Bibenzyls
5.
Chem Biol Interact ; 399: 111153, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39029858

ABSTRACT

Mixed culture of microorganisms is an effective method to remove high concentration of phenol in wastewater. At present, it is still a challenge for microorganisms to remove high-concentration phenol from wastewater. In this study, a phenol-degrading consortium was isolated, which could rapidly degrade 1800 mg/L phenol within 30 h, and the highest phenol degradation concentration was 2000 mg/L. Further exploration of how microbial consortium cooperates to promote phenol biodegradation was studied: the core bacteria of the microbial consortium was relatively stable during phenol degradation; the bacteria could improve the adaptability to environment and metabolic ability of phenol, by producing more surfactants and betaine, thereby improving the degradation rate. The determination coefficient (R2) in the machine learning model showed that the back propagation artificial neural network (BP-ANN) can predict the biodegradation of phenol under different conditions, saving time and economic costs. This study explains how microbial consortium cooperates to degrade phenol from the aspects of microbial consortium composition and metabolic analysis, which provides a theoretical basis for mixed culture microorganisms to degrade pollutants.


Subject(s)
Biodegradation, Environmental , Machine Learning , Microbial Consortia , Phenol , Phenol/metabolism , Bacteria/metabolism , Water Pollutants, Chemical/metabolism , Neural Networks, Computer , Surface-Active Agents/metabolism
6.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063214

ABSTRACT

Erianin, a bibenzyl compound found in dendrobium extract, has demonstrated broad anticancer activity. However, its mechanism of action in gastric cancer (GC) remains poorly understood. LKB1 is a tumor-suppressor gene, and its mutation is an important driver of various cancers. Yet some studies have reported contradictory findings. In this study, we combined bioinformatics and in vitro and in vivo experiments to investigate the effect and potential mechanism of Erianin in the treatment of GC. The results show that LKB1 was highly expressed in patients' tumor tissues and GC cells, and it was associated with poor patient prognosis. Erianin could promote GC cell apoptosis and inhibit the scratch repair, migration, invasion, and epithelial-mesenchymal transition (EMT) characteristics. Erianin dose-dependently inhibited the expression of LKB1, SIK2, SIK3, and PARD3 but had no significant effect on SIK1. Erianin also inhibited tumor growth in CDX mice model. Unexpectedly, 5-FU also exhibited a certain inhibitory effect on LKB1. The combination of Erianin and 5-FU significantly improved the anti-tumor efficacy of 5-FU in the growth of GC cells and xenograft mouse models. In summary, Erianin is a potential anti-GC compound that can inhibit GC growth and EMT properties by targeting the LKB1-SIK2/3-PARD3-signaling axis. The synergistic effect of Erianin and 5-FU suggests a promising therapeutic strategy for GC treatment.


Subject(s)
AMP-Activated Protein Kinase Kinases , Bibenzyls , Cell Proliferation , Dendrobium , Epithelial-Mesenchymal Transition , Protein Serine-Threonine Kinases , Stomach Neoplasms , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Dendrobium/chemistry , Epithelial-Mesenchymal Transition/drug effects , Humans , Animals , Bibenzyls/pharmacology , Bibenzyls/chemistry , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Proliferation/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , Apoptosis/drug effects , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic/drug effects , Cell Movement/drug effects , Down-Regulation/drug effects , Phenol
7.
J Hazard Mater ; 476: 135056, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38981235

ABSTRACT

To address the problem of the weak natural restoration ability of oligotrophic groundwater environments, a novel N/P controlled-release material (CRM) for biostimulation, prepared by an improved method, was developed. CRMs can encapsulate N and P (N/P) salts for sustained release in aquifers. Paraffin-based CRMs can be used to control N/P release rates by adjusting the particle size of CRMs and the mass ratio of the paraffin. The developed CRMs had a more remarkable adaptability to groundwater than other materials. Specifically, 0.4-cm CRMs released N/P stably and efficiently over a wide temperature range (7-25 â„ƒ), and the release properties of various CRMs were not affected by pH. The release of N/P followed Fickian diffusion, and a dissolution-diffusion model was established to elucidate the mechanism of the controlled release. In contrast to bare N/P, CRMs obviously enhanced the biodegradation rate of phenol and prolonged the effectiveness of supplying N/P. The degradation rate of phenol in the CRM system increased by 20.8 %. The different supply modes of N/P, CRMs and bare N/P, resulted in differences in salinity. Metagenomic analysis showed that this difference changed the proportion of various phenol-degrading genera and thus changed the abundance of genes associated with the phenol degradation pathway.


Subject(s)
Biodegradation, Environmental , Groundwater , Paraffin , Phenol , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Phenol/metabolism , Phenol/chemistry , Paraffin/chemistry , Paraffin/metabolism , Nitrogen/metabolism , Nitrogen/chemistry , Phosphorus/chemistry , Phosphorus/metabolism , Delayed-Action Preparations , Salinity
8.
Int J Biol Macromol ; 275(Pt 1): 133430, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936567

ABSTRACT

Phenolic resins occupy an important position in industrial applications, but phenol, one of the raw materials for synthesis, is a non-renewable resource. Lignin, as a natural polymer containing phenolic hydroxyl groups, alcohol hydroxyl groups and other reactive groups, can replace some of the phenol in the synthesis of phenolic resins, which can reduce the amount of phenol, thus reducing the cost of phenolic resins, while effectively promoting the high value-added use of renewable biomass resources. Due to its low reactivity, alkaline lignin is usually discharged as production waste, unaware that lignin macromolecules can be modified. In this paper, the phenolic monomers were obtained by acid-catalyzed depolymerization of DES (choline chloride/p-toluenesulfonic acid or choline chloride/lactic acid) from waste alkaline lignin, and the recovery rate of the DES solution during the catalytic treatment was more than 85 %, in which the main monomer was 2-methoxy-4-(1-propyl) phenol. The degradation of alkaline lignin is still favorable after five times of DES solvent recovery. The depolymerized lignin monomer replaced phenol by 50 wt% and then ternary co-polymerized with phenol and formaldehyde to form a biomass phenol-based phenolic resin, providing a green route for phenolic resin production. The cost of resin preparation was economically calculated, and it was found that the cost of resin after accumulating 4 cycles of DES treatment was only 51.1 % of that of pure phenolic resin. The density functional theory (DFT) was used to simulate the possible radical reactions in the intermediate process of phenolic resin reaction, to explore the microscopic mechanism and competition, to provide theoretical reference for further experimental realization of resin structure control and optimization, and to improve the theoretical system of resin synthesis.


Subject(s)
Lignin , Phenols , Polymerization , Lignin/chemistry , Phenols/chemistry , Catalysis , Phenol/chemistry , Biomass , Resins, Synthetic/chemistry
9.
J Drugs Dermatol ; 23(6): 418-422, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38834218

ABSTRACT

BACKGROUND: Microneedling has been shown to release growth factors, which improves the appearance of acne scars by itself and in combination with different therapy modalities. Combining microneedling with Chemical Reconstruction of Scarred Skin (CROSS) therapy using a 60% phenol and 0.2% croton oil combination results in a significant improvement of acne scarring. OBJECTIVE: To assess the safety and efficacy of combination treatments using microneedling in combination with CROSS therapy that contains 60% phenol and 0.2% croton preparation in patients with Fitzpatrick skin types III to V.  Materials and Methods: Patients were treated over a 5-year period for atrophic acne scars using microneedling combined with CROSS. Most of the patients had combination atrophic scarring. High-quality before and after photographs were taken of the patients to assess the improvement in the scars.  Results: Most of the patients (89.5%) had Fitzpatrick skin types IV through V.  Analysis was done on a maximum of 3 microneedling sessions with 1 to 3 CROSS sessions. Photographic evaluation using the Global Aesthetic Improvement Scale showed an 18% grade-1 improvement and 81% grade-2 improvement. The Goodman and Baron Qualitative scar grading system showed a 62% grade-1 improvement and 38% grade-2 improvement. CONCLUSION: Combination treatments work best for atrophic scars. This is the first published report of using microneedling with a 60% phenol/0.2% croton oil combination. It proved to be very effective and safe in treating atrophic acne scars in Fitzpatrick skin types III to V, with minimal side effects and a quick recovery. J Drugs Dermatol. 2024;23(6):418-422.     doi:10.36849/JDD.7657.


Subject(s)
Acne Vulgaris , Cicatrix , Croton Oil , Needles , Humans , Acne Vulgaris/complications , Acne Vulgaris/therapy , Cicatrix/etiology , Cicatrix/therapy , Cicatrix/diagnosis , Cicatrix/pathology , Female , Male , Adult , Young Adult , Treatment Outcome , Combined Modality Therapy , Phenol/administration & dosage , Adolescent , Dry Needling/methods , Percutaneous Collagen Induction
10.
Int J Biol Macromol ; 273(Pt 1): 132771, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823752

ABSTRACT

In this study, biochar (BC) from Delonix regia pods peel and gum from Delonix regia seed (SG) were prepared, and also biochar/chitosan composite (BCS) and biochar/Delonix regia seed gum/chitosan composite (BCGS) were fabricated for the efficient adsorption of phenol. Various characterization tools such as SEM, TEM, ATR-FTIR, TGA, zeta potential, and textural investigation were studied to examine the features of the synthetized adsorbents, confirming their positive construction. It was fully studied how necessary factors, comprising pH, dose of adsorbent, contact shaking time, initial phenol concentration, and temperature influenced adsorption behavior. An obvious rise of the adsorption capacity from 60.16 to 165.20 mg/g was achieved by the modification of biochar with Delonix regia seed gum and chitosan under ideal circumstances of 2 h contact duration, pH 7, 15 °C, and a dose of 2.0 g/L. The phenol adsorption was well applied by Langmuir, Temkin, Dubinin-Radushkevich, and Sips isotherms, in addition to nonlinear pseudo-second-order kinetic model. Furthermore, the physisorption, endothermic, and spontaneous process was illustrated by thermodynamic investigation. Additionally, the fabricated adsorbents could be effectively used and regenerated without main losses of only 7.5, 4.6, and 4.0 % for BC, BCS, and BCGS, respectively in the removal percentage after seven cycles of application.


Subject(s)
Charcoal , Chitosan , Phenol , Plant Gums , Seeds , Chitosan/chemistry , Charcoal/chemistry , Adsorption , Seeds/chemistry , Hydrogen-Ion Concentration , Kinetics , Phenol/chemistry , Plant Gums/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Temperature , Water Purification/methods , Water/chemistry , Thermodynamics
11.
Methods Mol Biol ; 2820: 41-47, 2024.
Article in English | MEDLINE | ID: mdl-38941013

ABSTRACT

The proteomic approach plays a key role to characterize a biological system at any given time. In recent years, advances in proteomics have led to an increasing application in all biological fields, including plant matrices and associated microbiome studies. However, extracting adequate protein samples remains the most critical step for any plant proteomics study. The protein extraction protocols proposed for the phyllosphere involve an initial leaf washing step; however, this is an approach only applicable if interest is restricted to epiphytes. A metaproteomic approach is required to obtain an overall picture and consequently an extraction that considers proteins derived from the plant, epiphytic and endophytic microorganisms. The most commonly used extractions for plant tissue involve the use of phenol or TCA-acetone. However, for efficient protein recovery is essential to remove interfering components abundant in plant tissues, such as polysaccharides, lipids, and phenolic compounds. A well-proven protocol on the basis of a combination of TCA-acetone and phenol extraction is presented here, obtaining some cleaned protein pellets, suitable for electrophoresis and subsequent proteomics studies. Important points for the success of this protocol are (i) a proper sampling and sample preparation, (ii) maintaining samples at a low temperature during extraction and using protease inhibitors, (iii) an initial step in TCA-acetone to remove part of the interfering substances, and (iv) careful recovery of the phenolic phase. Furthermore, the protocol is timesaving and can be completed in one working day.


Subject(s)
Plant Leaves , Plant Proteins , Proteomics , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Proteomics/methods , Plant Leaves/metabolism , Plant Leaves/chemistry , Acetone/chemistry , Phenol/chemistry , Plants/metabolism , Plants/chemistry , Trichloroacetic Acid/chemistry
12.
Int J Mol Sci ; 25(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928085

ABSTRACT

An approach based on the heat stress and microbial stress model of the medicinal plant Sparganium stoloniferum was proposed to elucidate the regulation and mechanism of bioactive phenol accumulation. This method integrates LC-MS/MS analysis, 16S rRNA sequencing, RT-qPCR, and molecular assays to investigate the regulation of phenolic metabolite biosynthesis in S. stoloniferum rhizome (SL) under stress. Previous research has shown that the metabolites and genes involved in phenol biosynthesis correlate to the upregulation of genes involved in plant-pathogen interactions. High-temperature and the presence of Pseudomonas bacteria were observed alongside SL growth. Under conditions of heat stress or Pseudomonas bacteria stress, both the metabolites and genes involved in phenol biosynthesis were upregulated. The regulation of phenol content and phenol biosynthesis gene expression suggests that phenol-based chemical defense of SL is stimulated under stress. Furthermore, the rapid accumulation of phenolic substances relied on the consumption of amino acids. Three defensive proteins, namely Ss4CL, SsC4H, and SsF3'5'H, were identified and verified to elucidate phenol biosynthesis in SL. Overall, this study enhances our understanding of the phenol-based chemical defense of SL, indicating that bioactive phenol substances result from SL's responses to the environment and providing new insights for growing the high-phenol-content medicinal herb SL.


Subject(s)
Gene Expression Regulation, Plant , Heat-Shock Response , Plants, Medicinal , Plants, Medicinal/metabolism , Phenols/metabolism , Phenol/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Rhizome/microbiology , Rhizome/metabolism , Pseudomonas/metabolism , Pseudomonas/genetics , Tandem Mass Spectrometry , RNA, Ribosomal, 16S/genetics
13.
Bioorg Chem ; 150: 107569, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38905886

ABSTRACT

Erianin, a natural compound derived from Dendrobium, has shown significant anticancer properties against a wide range of cancer cells. Despite the identification of multiple mechanisms of action for erianin, none of these mechanisms fully account for its broad-spectrum effect. In this study, we aimed to identify the cellular target and underlying mechanism responsible for the broad-spectrum antitumor effects of erianin. We found that erianin effectively inhibited tubulin polymerization in cancer cells and purified tubulin. Through competition binding assays and X-ray crystallography, it was revealed that erianin bound to the colchicine site of ß-tubulin. Importantly, the X-ray crystal structure of the tubulin-erianin complex was solved, providing clear insight into the orientation and position of erianin in the colchicine-binding site. Erianin showed activity against paclitaxel-resistant cells, evidenced by G2/M cell cycle arrest, apoptosis-related PARP and Caspase-3 cleavage, and in vivo xenograft studies. The study concluded that erianin bound reversibly to the colchicine site of ß-tubulin, inhibited tubulin polymerization, and displayed anticancer activity against paclitaxel-resistant cells, offering valuable insights for further exploration as potential anticancer agents.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Colchicine , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Tubulin , Humans , Tubulin/metabolism , Tubulin/chemistry , Colchicine/pharmacology , Colchicine/chemistry , Colchicine/metabolism , Binding Sites , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Drug Resistance, Neoplasm/drug effects , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Mice , Apoptosis/drug effects , Taxoids/pharmacology , Taxoids/chemistry , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Crystallography, X-Ray , Bridged-Ring Compounds/chemistry , Bridged-Ring Compounds/pharmacology , Mice, Nude , Cell Line, Tumor , Biological Products/chemistry , Biological Products/pharmacology , Bibenzyls/chemistry , Bibenzyls/pharmacology , Phenol
14.
Ann Anat ; 255: 152296, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925274

ABSTRACT

Body embalming, a practice with deep historical roots across various cultures, forms the backbone of contemporary human body donation educational programmes. In this study, we explored current embalming practices within six South African human anatomical dissection programmes, focusing on the use and volumes of key chemicals-formalin, phenol, and alcohol-and their associated health risks and potential toxicity. We measured and compared aspects of embalming practices such as the duration of body preservation and the annual intake of bodies. Variations in embalming practices and chemical ratios across different South African universities were found. However, the consistent use of formalin, phenol and alcohol were observed across all six programmes. Formaldehyde concentrations used in South African dissection programmes were within the generally acceptable international range. Regarding arterial embalming, South African dissection programmes showed widespread adherence to international embalming practices, with one programme using a substantially lower concentration of formalin. The dual nature of formaldehyde as both an effective preservative and a recognised carcinogen was underscored in relation to human health regarding chemical toxicity. Phenol, like formaldehyde, was consistently used as it is important for the inhibition of bacterial and fungal growth. Alcohol was also consistently used, but there was much greater variation in its volume across South African institutions. Our data showed a slight positive relationship between storage duration and the volumes of formalin and phenol in human embalming fluid. South African regulators enforce stricter exposure limits than those set by the World Health Organisation and various European agencies. While South African institutions operate within internationally acceptable ranges of chemical use that both maximise preservation and minimise toxicity, we acknowledge that these data are preliminary. Further investigation is encouraged to ensure embalming practices effectively protect all those involved and support the educational goals of human anatomical dissection programmes in South Africa.


Subject(s)
Embalming , Formaldehyde , Phenol , Humans , Embalming/methods , South Africa , Formaldehyde/toxicity , Cadaver , Dissection , Anatomy/education , Ethanol , Fixatives , Tissue and Organ Procurement
15.
Environ Res ; 257: 119295, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38824983

ABSTRACT

Doping with nitrogen atoms can improve the catalytic activity of activated carbon cathodes in electro-Fenton systems, but currently there is a lack of understanding of the catalytic mechanism, which limits the further development of high-performance activated carbon cathodes. Here, a multi-scale exploration was conducted using density functional theory and experimental methods to investigate the mechanism of different nitrogen doping types promoting the redox performance of activated carbon cathodes and the degradation of phenol. The density functional theory results indicate that the introduction of nitrogen atoms enhances the binding ability between carbon substrates and oxygen-containing substances, promotes the localization of surrounding electrons, and makes it easier for O2 to bind with protons and catalyze the hydrogenation reaction of *OOH. Due to its weak binding ability with oxygen-containing substances, AC is difficult to form H2O2, resulting in a tendency towards the 4e-ORR pathway. The binding energy between graphite-N carbon substrate and pyridine-N carbon substrate with *OOH is closer to the volcano top, so graphite n and pyridine n can better promote the selectivity of activated carbon for 2e-ORR. In addition, the calculation results also indicate that pyrrole-N and graphite-N are more capable of catalyzing the reaction energy barrier between ·OH and phenol. Finally, the simulation results were used to guide the modification of nitrogen doped activated carbon and experimental verification was carried out. The degradation results of phenol confirmed the efficient synergistic effect between different types of nitrogen doping, and the NAC-800 electrode exhibited efficient and stable characteristics. This work provides a guiding strategy for further developing stable and highly selective activated carbon cathode materials.


Subject(s)
Electrodes , Hydrogen Peroxide , Nitrogen , Phenol , Nitrogen/chemistry , Hydrogen Peroxide/chemistry , Phenol/chemistry , Catalysis , Charcoal/chemistry , Oxidation-Reduction , Iron/chemistry
16.
Environ Monit Assess ; 196(7): 642, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904840

ABSTRACT

The purpose of this research is to investigate the ability of peanut shell activated carbon (PSAC) to adsorb phenol from aqueous solutions. Phenolic wastewater in various industries and their release to the environment are environmental problems. Among the various separation methods, adsorption is an accepted method because of its efficiency, simplicity, cost-effectiveness, and possibility to use different adsorbent materials to achieve maximum adsorption efficiency. Response surface methodology (RSM) was used to minimize the required experiments, modeling, finding the optimal point, and variance analysis. Among the studied variables, pH, adsorbent dosage, and initial concentration are important. The results show that it is possible to completely remove at 300 ppm of phenol concentration and 5 min. Characterization of PSAC was done using Fourier transform infrared spectroscopy spectrum (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmet-Teller (BET), and size analysis. By examining the isotherm models, it was found that the adsorption follows the Langmuir model. The maximum adsorption capacity was 250 mg g-1 based on the Langmuir model. The three combined features of complete removal, ultra-fast adsorption, and high adsorption capacity are the unique features of this nano biocarbon for phenol removal.


Subject(s)
Phenol , Waste Disposal, Fluid , Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/chemistry , Kinetics , Phenol/chemistry , Waste Disposal, Fluid/methods , Charcoal/chemistry , Wastewater/chemistry , Arachis/chemistry , Water Purification/methods , Phenols/chemistry
17.
Arch Microbiol ; 206(7): 313, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900186

ABSTRACT

Phenols are highly toxic chemicals that are extensively used in industry and produce large amounts of emissions. Notably, phenols released into the soil are highly persistent, causing long-term harm to human health and the environment. In this study, a gram-positive, aerobic, and rod-shaped bacterial strain, Z13T, with efficient phenol degradation ability, was isolated from the soil of sugarcane fields. Based on the physiological properties and genomic features, strain Z13T is considered as a novel species of the genus Rhodococcus, for which the name Rhodococcus sacchari sp. nov. is proposed. The type strain is Z13T (= CCTCC AB 2022327T = JCM 35797T). This strain can use phenol as its sole carbon source. Z13T was able to completely degrade 1200 mg/L phenol within 20 h; the maximum specific growth rate was µmax = 0.93174 h-1, and the maximum specific degradation rate was qmax = 0.47405 h-1. Based on whole-genome sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, strain Z13T contains a series of phenol degradation genes, including dmpP, CatA, dmpB, pcaG, and pcaH, and can metabolize aromatic compounds. Moreover, the potential of strain Z13T for soil remediation was investigated by introducing Z13T into simulated phenol-contaminated soil, and the soil microbial diversity was analyzed. The results showed that 100% of the phenol in the soil was removed within 7.5 d. Furthermore, microbial diversity analysis revealed an increase in the relative species richness of Oceanobacillus, Chungangia, and Bacillus.


Subject(s)
Biodegradation, Environmental , Phenol , Phylogeny , RNA, Ribosomal, 16S , Rhodococcus , Soil Microbiology , Soil Pollutants , Rhodococcus/metabolism , Rhodococcus/genetics , Rhodococcus/classification , Rhodococcus/growth & development , Rhodococcus/isolation & purification , Soil Pollutants/metabolism , Phenol/metabolism , RNA, Ribosomal, 16S/genetics , Saccharum/metabolism , Saccharum/microbiology , Saccharum/growth & development , Soil/chemistry , Genome, Bacterial
18.
J Foot Ankle Res ; 17(2): e12017, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837882

ABSTRACT

BACKGROUND: Ingrown toenails are a common pathology. Although a range of conservative and surgical measures are widely used for this condition, little is known about their use in practice. This study explored current practice relating to the treatment or management of ingrown toenails by podiatrists in the UK. METHODS: A cross-sectional online survey (Qualtrics, Provo, UT, USA) conducted between March to June 2020 was distributed to practicing podiatrists treating or managing ingrown toenails in the UK. RESULTS: A total of 396 practicing podiatrists responded (60.1% based in the private sector). The majority (88.6%) performed nail surgery most commonly (54.3%) less than five a month. Nearly all (95%) only performed nail avulsion with or without chemical matrixectomy, universally using phenol (97.2%). Application time and number of applications varied but was most commonly applied three times (61.5%) for a total of 3 minutes (75%). Aftercare varied considerably between public and private sectors, with public sectors offering fewer follow-up appointments. CONCLUSIONS: Although there is a variation in clinical practice throughout the treatment pathway, almost all respondents offered nail avulsion with phenol matrixectomy, whereas very few provided incisional nail surgery. This data provides the most comprehensive description of how UK podiatrists conduct nail surgery for onychocryptosis.


Subject(s)
Nails, Ingrown , Podiatry , Practice Patterns, Physicians' , Humans , Nails, Ingrown/therapy , Nails, Ingrown/surgery , Cross-Sectional Studies , Podiatry/statistics & numerical data , United Kingdom , Practice Patterns, Physicians'/statistics & numerical data , Surveys and Questionnaires , Phenol/therapeutic use , Male , Female , Toes , Nails/surgery , Health Care Surveys
19.
Microbiol Spectr ; 12(8): e0026624, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916316

ABSTRACT

Physicochemical methods for remediating phenol-contaminated soils are costly and inefficient, making biodegradation an environmentally friendly alternative approach. This study aims to screen for potential phenol-degrading bacteria and to verify the removal capacities of a selected strain in a bioaugmentation experiment at the greenhouse level using Brassica chinensis L. (Chinese cabbage) as the model plant and phenol-contaminated soil. In parallel, pot experiments were conducted using a collaborative approach based on this model system. We found that Myroides xuanwuensis strain H13 showed a high degradation capability, with a 97.67% efficiency in degrading 100 mg/L phenol. Under shaking flask conditions, H13 facilitated the solubilization of tricalcium phosphate and potassium feldspar powder. Pot experiments suggested a phenol removal percentage of 89.22% and enhanced availability of soil phosphorus and potassium for plants with H13 inoculation. In this case, the abundance of soil microbes and the activity of soil enzymes significantly increased as well. Furthermore, both photosynthesis and the antioxidant system in Chinese cabbage were enhanced following H13 inoculation, resulting in its increased yield and quality. Partial least squares path modeling revealed that H13 can primarily affect plant root growth, with a secondary impact on photosynthesis. These findings highlight the potential of biodegradation from phenol-degrading bacteria as a promising strategy for efficient phenol removal from soil while promoting plant growth and health.IMPORTANCEThis study is significant for environmental remediation and agriculture by its exploration of a more environmentally friendly and cost-effective bio-strategy in treating phenol-contaminated soil. These findings have essential implications for environmental remediation efforts and sustainable agriculture. By utilizing the biodegradation capabilities of Myroides xuanwuensis strain H13, it is possible to remove phenol contaminants from the soil efficiently, reducing their negative effects. Furthermore, the enhanced growth and health of the Chinese cabbage plants indicate the potential of this approach to promote sustainable crop production.


Subject(s)
Biodegradation, Environmental , Brassica , Phenol , Soil Microbiology , Soil Pollutants , Soil Pollutants/metabolism , Brassica/growth & development , Brassica/metabolism , Brassica/microbiology , Phenol/metabolism , Soil/chemistry , Plant Development , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/growth & development , Bacteria/metabolism , Bacteria/growth & development , Bacteria/classification , Bacteria/genetics
20.
Water Sci Technol ; 89(9): 2384-2395, 2024 May.
Article in English | MEDLINE | ID: mdl-38747955

ABSTRACT

Cr(VI) and phenol commonly coexist in wastewater, posing a great threat to the environment and human health. However, it is still a challenge for microorganisms to degrade phenol under high Cr(VI) stress. In this study, the phenol-degrading strain Bacillus cereus ZWB3 was co-cultured with the Cr(VI)-reducing strain Bacillus licheniformis MZ-1 to enhance phenol biodegradation under Cr(Ⅵ) stress. Compared with phenol-degrading strain ZWB3, which has weak tolerance to Cr(Ⅵ), and Cr(Ⅵ)-reducing strain MZ-1, which has no phenol-degrading ability, the co-culture of two strains could significantly increase the degraded rate and capacity of phenol. In addition, the co-cultured strains exhibited phenol degradation ability over a wide pH range (7-10). The reduced content of intracellular proteins and polysaccharides produced by the co-cultured strains contributed to the enhancement of phenol degradation and Cr(Ⅵ) tolerance. The determination coefficients R2, RMSE, and MAPE showed that the BP-ANN model could predict the degradation of phenol under various conditions, which saved time and economic cost. The metabolic pathway of microbial degradation of phenol was deduced by metabolic analysis. This study provides a valuable strategy for wastewater treatment containing Cr(Ⅵ) and phenol.


Subject(s)
Biodegradation, Environmental , Chromium , Machine Learning , Phenol , Phenol/metabolism , Chromium/metabolism , Bacillus cereus/metabolism , Water Pollutants, Chemical/metabolism , Bacillus licheniformis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL