Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
1.
Front Immunol ; 15: 1396777, 2024.
Article in English | MEDLINE | ID: mdl-39224600

ABSTRACT

Inflammation plays a pivotal role in cancer development, with chronic inflammation promoting tumor progression and treatment resistance, whereas acute inflammatory responses contribute to protective anti-tumor immunity. Gasdermin D (GSDMD) mediates the release of pro-inflammatory cytokines such as IL-1ß. While the release of IL-1ß is directly linked to the progression of several types of cancers, the role of GSDMD in cancer is less clear. In this study, we show that GSDMD expression is upregulated in human breast, kidney, liver, and prostate cancer. Higher GSDMD expression correlated with increased survival in primary breast invasive carcinoma (BRCA), but not in liver hepatocellular carcinoma (LIHC). In BRCA, but not in LIHC, high GSDMD expression correlated with a myeloid cell signature associated with improved prognosis. To further investigate the role of GSDMD in anticancer immunity, we induced breast cancer and hepatoma tumors in GSDMD-deficient mice. Contrary to our expectations, GSDMD deficiency had no effect on tumor growth, immune cell infiltration, or cytokine expression in the tumor microenvironment, except for Cxcl10 upregulation in hepatoma tumors. In vitro and in vivo innate immune activation with TLR ligands, that prime inflammatory responses, revealed no significant difference between GSDMD-deficient and wild-type mice. These results suggest that the impact of GSDMD on anticancer immunity is dependent on the tumor type. They underscore the complex role of inflammatory pathways in cancer, emphasizing the need for further exploration into the multifaceted effects of GSDMD in various tumor microenvironments. As several pharmacological modulators of GSDMD are available, this may lead to novel strategies for combination therapy in cancer.


Subject(s)
Breast Neoplasms , Intracellular Signaling Peptides and Proteins , Phosphate-Binding Proteins , Tumor Microenvironment , Animals , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Female , Humans , Mice , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Breast Neoplasms/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Tumor Microenvironment/immunology , Mice, Knockout , Disease Models, Animal , Cell Line, Tumor , Cytokines/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/mortality , Liver Neoplasms/genetics , Gasdermins
2.
Front Immunol ; 15: 1427970, 2024.
Article in English | MEDLINE | ID: mdl-39221246

ABSTRACT

Hypertrophy of ligamentum flavum (LF) is a significant contributing factor to lumbar spinal canal stenosis (LSCS). lncRNA plays a vital role in organ fibrosis, but its role in LF fibrosis remains unclear. Our previous findings have demonstrated that Hedgehog-Gli1 signaling is a critical driver leading to LF hypertrophy. Through the RIP experiment, our group found lnc-RMRP was physically associated with Gli1 and exhibited enrichment in Gli1-activated LF cells. Histological studies revealed elevated expression of RMRP in hypertrophic LF. In vitro experiments further confirmed that RMRP promoted Gli1 SUMO modification and nucleus transfer. Mechanistically, RMRP induced GSDMD-mediated pyroptosis, proinflammatory activation, and collagen expression through the Hedgehog pathway. Notably, the mechanical stress-induced hypertrophy of LF in rabbit exhibited analogous pathological changes of LF fibrosis occurred in human and showed enhanced levels of collagen and α-SMA. Knockdown of RMRP resulted in the decreased expression of fibrosis and pyroptosis-related proteins, ultimately ameliorating fibrosis. The above data concluded that RMRP exerts a crucial role in regulating GSDMD-mediated pyroptosis of LF cells via Gli1 SUMOylation, thus indicating that targeting RMRP could serve as a potential and effective therapeutic strategy for LF hypertrophy and fibrosis.


Subject(s)
Hypertrophy , Ligamentum Flavum , Pyroptosis , Sumoylation , Zinc Finger Protein GLI1 , Humans , Animals , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Ligamentum Flavum/metabolism , Ligamentum Flavum/pathology , Rabbits , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Male , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Fibrosis , Disease Models, Animal , Gasdermins
3.
Front Immunol ; 15: 1456244, 2024.
Article in English | MEDLINE | ID: mdl-39253076

ABSTRACT

Inflammatory diseases compromise a clinically common and diverse group of conditions, causing detrimental effects on body functions. Gasdermins (GSDM) are pore-forming proteins, playing pivotal roles in modulating inflammation. Belonging to the GSDM family, gasdermin D (GSDMD) actively mediates the pathogenesis of inflammatory diseases by mechanistically regulating different forms of cell death, particularly pyroptosis, and cytokine release, in an inflammasome-dependent manner. Aberrant activation of GSDMD in different types of cells, such as immune cells, cardiovascular cells, pancreatic cells and hepatocytes, critically contributes to the persistent inflammation in different tissues and organs. The contributory role of GSDMD has been implicated in diabetes mellitus, liver diseases, cardiovascular diseases, neurodegenerative diseases, and inflammatory bowel disease (IBD). Clinically, alterations in GSDMD levels are potentially indicative to the occurrence and severity of diseases. GSDMD inhibition might represent an attractive therapeutic direction to counteract the progression of inflammatory diseases, whereas a number of GSDMD inhibitors have been shown to restrain GSDMD-mediated pyroptosis through different mechanisms. This review discusses the current understanding and future perspectives on the role of GSDMD in the development of inflammatory diseases, as well as the clinical insights of GSDMD alterations, and therapeutic potential of GSDMD inhibitors against inflammatory diseases. Further investigation on the comprehensive role of GSDM shall deepen our understanding towards inflammation, opening up more diagnostic and therapeutic opportunities against inflammatory diseases.


Subject(s)
Inflammation , Intracellular Signaling Peptides and Proteins , Phosphate-Binding Proteins , Pyroptosis , Humans , Phosphate-Binding Proteins/metabolism , Inflammation/immunology , Inflammation/metabolism , Animals , Intracellular Signaling Peptides and Proteins/metabolism , Inflammasomes/metabolism , Gasdermins
4.
Immunohorizons ; 8(9): 679-687, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39264735

ABSTRACT

Silica crystals activate the NLRP3 inflammasome in macrophages, resulting in the caspase-1-dependent secretion of the proinflammatory cytokine IL-1ß. Caspase-1-mediated cleavage of gasdermin D (GSDMD) triggers the formation of GSDMD pores, which drive pyroptotic cell death and facilitate the rapid release of IL-1ß. However, the role of GSDMD in silica-induced lung injury is unclear. In this study, we show that although silica-induced lung injury is dependent on the inflammasome adaptor ASC and IL-1R1 signaling, GSDMD is dispensable for acute lung injury. Although the early rapid secretion of IL-1ß in response to ATP and nigericin was GSDMD dependent, GSDMD was not required for IL-1ß release at later time points. Similarly, secretion of IL-1ß from macrophages in response to silica and alum proceeded in a GSDMD-independent manner. We further found that gasdermin E did not contribute to macrophage IL-1ß secretion in the absence of GSDMD in vitro and was also not necessary for silica-induced acute lung injury in vivo. These findings demonstrate that GSDMD and gasdermin E are dispensable for IL-1ß secretion in response to silica in vitro and in silica-induced acute lung injury in vivo.


Subject(s)
Interleukin-1beta , Intracellular Signaling Peptides and Proteins , Macrophages , Mice, Inbred C57BL , Phosphate-Binding Proteins , Silicon Dioxide , Animals , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice , Macrophages/metabolism , Inflammasomes/metabolism , Mice, Knockout , Acute Lung Injury/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis , Gasdermins
5.
Cell Chem Biol ; 31(8): 1518-1528.e6, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39106869

ABSTRACT

The septin cytoskeleton is primarily known for roles in cell division and host defense against bacterial infection. Despite recent insights, the full breadth of roles for septins in host defense is poorly understood. In macrophages, Shigella induces pyroptosis, a pro-inflammatory form of cell death dependent upon gasdermin D (GSDMD) pores at the plasma membrane and cell surface protein ninjurin-1 (NINJ1) for membrane rupture. Here, we discover that septins promote macrophage pyroptosis induced by lipopolysaccharide (LPS)/nigericin and Shigella infection, but do not affect cytokine expression or release. We observe that septin filaments assemble at the plasma membrane, and cleavage of GSDMD is impaired in septin-depleted cells. We found that septins regulate mitochondrial dynamics and the expression of NINJ1. Using a Shigella-zebrafish infection model, we show that septin-mediated pyroptosis is an in vivo mechanism of infection control. The discovery of septins as a mediator of pyroptosis may inspire innovative anti-bacterial and anti-inflammatory treatments.


Subject(s)
Cell Adhesion Molecules, Neuronal , Cell Membrane , Intracellular Signaling Peptides and Proteins , Macrophages , Phosphate-Binding Proteins , Pyroptosis , Septins , Pyroptosis/drug effects , Septins/metabolism , Phosphate-Binding Proteins/metabolism , Mice , Animals , Macrophages/metabolism , Cell Membrane/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Humans , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , RAW 264.7 Cells , Gasdermins , Nerve Growth Factors
6.
Nat Commun ; 15(1): 7015, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147779

ABSTRACT

During meiosis, nucleoprotein filaments of the strand exchange proteins RAD51 and DMC1 are crucial for repairing SPO11-generated DNA double-strand breaks (DSBs) by homologous recombination (HR). A balanced activity of positive and negative RAD51/DMC1 regulators ensures proper recombination. Fidgetin-like 1 (FIGNL1) was previously shown to negatively regulate RAD51 in human cells. However, FIGNL1's role during meiotic recombination in mammals remains unknown. Here, we decipher the meiotic functions of FIGNL1 and FIGNL1 Interacting Regulator of Recombination and Mitosis (FIRRM) using male germline-specific conditional knock-out (cKO) mouse models. Both FIGNL1 and FIRRM are required for completing meiotic prophase in mouse spermatocytes. Despite efficient recruitment of DMC1 on ssDNA at meiotic DSB hotspots, the formation of late recombination intermediates is defective in Firrm cKO and Fignl1 cKO spermatocytes. Moreover, the FIGNL1-FIRRM complex limits RAD51 and DMC1 accumulation on intact chromatin, independently from the formation of SPO11-catalyzed DSBs. Purified human FIGNL1ΔN alters the RAD51/DMC1 nucleoprotein filament structure and inhibits strand invasion in vitro. Thus, this complex might regulate RAD51 and DMC1 association at sites of meiotic DSBs to promote proficient strand invasion and processing of recombination intermediates.


Subject(s)
Cell Cycle Proteins , DNA Breaks, Double-Stranded , DNA-Binding Proteins , Meiosis , Mice, Knockout , Rad51 Recombinase , Spermatocytes , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Animals , Male , Meiosis/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Humans , Mice , Spermatocytes/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Homologous Recombination , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA Damage , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Chromatin/metabolism , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics
7.
Anal Chem ; 96(33): 13438-13446, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39129352

ABSTRACT

Pyroptosis of programmed cell death has been recognized as a more effective way to inhibit the occurrence and development of tumors than the better-studied apoptosis. However, it is still challenging to quickly and effectively trigger pyroptosis of cancer cells for high-efficacy cancer treatment. Here, we report on the first use of mild constant-potential electrostimulation (cp-ES) to quickly trigger cancer cell pyroptosis with a probability up to ∼91.4% and significantly shortened time (within 1 h), ∼3-6 times faster than typical drug stimulation to induce pyroptosis. We find that the ES-induced cancer cell pyroptosis is through the activated caspase-3 (pathway) cleavage of gasdermin E (GSDME) to form an N-terminal fragment (GSDME-N) and observe nuclear shrinkage and reduction of the number of nucleoli as well as down-/up-regulated expression of two important nucleoproteins of nucleolin and nucleophosmin (NPM1). The study enriches the basic understanding of pyroptosis and provides a new avenue for potential effective treatment of cancer.


Subject(s)
Caspase 3 , Nucleophosmin , Pyroptosis , Humans , Caspase 3/metabolism , Nucleolin , Cell Line, Tumor , Cell Nucleus/metabolism , Nuclear Proteins/metabolism , Phosphate-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Gasdermins
8.
Pathol Res Pract ; 261: 155490, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39126977

ABSTRACT

Pyroptosis is an inflammatory programed cell death process that plays a crucial role in cancer therapeutic, while Gasdermin-D is a critical effector protein for pyroptosis execution. This review discusses the intricate interactions between Gasdermin-D and some non-coding RNAs (lncRNA, miRNA, siRNA) and their potential application in the regulation of pyroptosis as an anticancer therapy. Correspondingly, these ncRNAs significantly implicate in Gasdermin-D expression and function regarding the pyroptosis pathway. Functioning as competing endogenous RNAs (ceRNAs), these ncRNAs might regulate Gasdermin-D at the molecular level, underlying fatal cell death caused by cancer and tumor propagation. Therefore, these interactions appeal to therapeutics, offering new avenues for cancer treatment. It address this research gap by discussing the possible roles of ncRNAs as mediators of gasdermin-D regulation. It suggest therapeutic strategies based on the current research findings to ensure the interchange between the ideal pyroptosis and cancer cell death.


Subject(s)
Intracellular Signaling Peptides and Proteins , Neoplasms , Phosphate-Binding Proteins , Pyroptosis , RNA, Untranslated , Pyroptosis/physiology , Humans , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Animals , Gene Expression Regulation, Neoplastic , Gasdermins
9.
Mol Med ; 30(1): 127, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179968

ABSTRACT

BACKGROUND: Cognitive dysfunction caused by infection frequently emerges as a complication in sepsis survivor patients. However, a comprehensive understanding of its pathogenesis remains elusive. METHODS: In our in vivo experiments, an animal model of endotoxemia was employed, utilizing the Novel Object Recognition Test and Morris Water Maze Test to assess cognitive function. Various techniques, including immunofluorescent staining, Western blotting, blood‒brain barrier permeability assessment, Limulus Amebocyte Lysate (LAL) assay, and Proximity-ligation assay, were employed to identify brain pathological injury and neuroinflammation. To discern the role of Caspase-11 (Casp11) in hematopoietic or non-hematopoietic cells in endotoxemia-induced cognitive decline, bone marrow chimeras were generated through bone marrow transplantation (BMT) using wild-type (WT) and Casp11-deficient mice. In vitro studies involved treating BV2 cells with E. coli-derived outer membrane vesicles to mimic in vivo conditions. RESULTS: Our findings indicate that the deficiency of Casp11-GSDMD signaling pathways reverses infection-induced cognitive dysfunction. Moreover, cognitive dysfunction can be ameliorated by blocking the IL-1 effect. Mechanistically, the absence of Casp11 signaling significantly mitigated blood‒brain barrier leakage, microglial activation, and synaptic damage in the hippocampal CA3 region, ultimately leading to improved cognitive function. CONCLUSION: This study unveils the crucial contribution of Casp11 and GSDMD to cognitive impairments and spatial memory loss in a murine sepsis model. Targeting Casp11 signaling emerges as a promising strategy for preventing or treating cognitive dysfunction in patients with severe infections.


Subject(s)
Caspases, Initiator , Caspases , Cognitive Dysfunction , Disease Models, Animal , Signal Transduction , Animals , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Mice , Caspases/metabolism , Caspases, Initiator/metabolism , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Blood-Brain Barrier/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Endotoxemia/complications , Endotoxemia/metabolism , Endotoxemia/etiology , Hippocampus/metabolism , Hippocampus/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Sepsis/complications , Sepsis/metabolism , Gasdermins
10.
J Biochem Mol Toxicol ; 38(9): e23824, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39206630

ABSTRACT

To explain the effect and mechanism of cordycepin (COR) in resisting acute kidney injury (AKI). Network pharmacology was employed to analyze the correlations between COR, AKI, and pyroptosis, as well as the action target of COR. A mouse model of AKI was established by ischemia reperfusion injury (IRI), and after treatment with COR, the renal function, tissue inflammatory cytokine levels, and pyroptosis-related signals were detected in mice. In in-vitro experiments, damage of renal macrophages was caused by the oxygen-glucose deprivation model, and pyroptosis indicators and inflammatory cytokine levels were assayed after COR treatment. Network pharmacological analysis revealed that nuclear factor kappa-B (NF-κB) was the primary action target of COR and that COR could inhibit kidney injury and tissue inflammation during IRI by inhibiting NF-κB-mediated gasdermin D cleavage. When NF-κB was inhibited, the effect of COR was weakened. COR in renal macrophages could inhibit pyroptosis and lower the levels of inflammatory cytokines, whose effect was associated with NF-κB. Our study finds that COR can play an anti-inflammatory role and inhibit the progression of AKI through the NF-κB-mediated pyroptosis, which represents its nephroprotective mechanism.


Subject(s)
Acute Kidney Injury , Deoxyadenosines , Intracellular Signaling Peptides and Proteins , Macrophages , NF-kappa B , Phosphate-Binding Proteins , Pyroptosis , Animals , Pyroptosis/drug effects , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Macrophages/metabolism , Macrophages/drug effects , NF-kappa B/metabolism , Deoxyadenosines/pharmacology , Phosphate-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Male , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Mice, Inbred C57BL , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , Gasdermins
11.
Int Immunopharmacol ; 140: 112835, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39088917

ABSTRACT

In recent years, researchers have focused on studying the mechanism of sepsis-induced immunosuppression, but there is still a lack of suitable animal models that accurately reflect the process of sepsis-induced immunosuppression. The aim of this study was to evaluate the immune status at various stages in a model of sepsis-induced secondary pneumonia and to demonstrate whether pyroptosis is one of the modes of immune cell death in sepsis. Firstly, we established a sepsis model in C57BL/6J mice using cecal ligation and puncture (CLP). The surviving mice were treated with a 40 µL suspension of P.aeruginosa (Pa) under anesthesia on day 4 post-CLP to establish a sepsis-induced secondary pneumonia model. Secondly, routine blood tests, serum ALT and PCT levels, gross lung specimens, and H&E staining of the lung and liver tissues were used to assess the successful establishment of this model. Serum levels of TNF-α and IL-6, the CD4+/CD8+ratio in blood, H&E staining of the spleen, and immunohistochemistry of CD4 and CD8 in the spleen were detected to evaluate the immune status of the model mice. Finally, the expression levels of pyroptosis-related proteins in the spleen were detected by Western blot. The expression of GSDMD was assessed using immunohistochemistry, and pyroptosis was directly observed through transmission electron microscopy. The experimental results above confirmed the successful construction of the model for sepsis-induced secondary pneumonia, demonstrating its ability to reflect sepsis-induced immunosuppression. Moreover, the expression of pyroptosis-related proteins, immunohistochemical GSDMD, and transmission electron microscopy of the spleen showed that pyroptosis was one of the modes of immune cell death in sepsis.


Subject(s)
Disease Models, Animal , Mice, Inbred C57BL , Pyroptosis , Sepsis , Spleen , Animals , Sepsis/immunology , Mice , Spleen/immunology , Spleen/pathology , Male , Lung/pathology , Lung/immunology , Tumor Necrosis Factor-alpha/metabolism , Pneumonia/immunology , Pneumonia/pathology , Pneumonia/etiology , Interleukin-6/metabolism , Interleukin-6/blood , Phosphate-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Gasdermins
12.
Life Sci ; 354: 122951, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39127315

ABSTRACT

In the contemporary landscape of oncology, immunotherapy, represented by immune checkpoint blockade (ICB) therapy, stands out as a beacon of innovation in cancer treatment. Despite its promise, the therapy's progression is hindered by suboptimal clinical response rates. Addressing this challenge, the modulation of the NLRP3 inflammasome-GSDMD-mediated pyroptosis pathway holds promise as a means to augment the efficacy of immunotherapy. In the pathway, the NLRP3 inflammasome serves as a pivotal molecular sensor that responds to inflammatory stimuli within the organism. Its activation leads to the release of cytokines interleukin 1ß and interleukin 18 through the cleavage of GSDMD, thereby forming membrane pores and potentially resulting in pyroptosis. This cascade of processes exerts a profound impact on tumor development and progression, with its function and expression exhibiting variability across different tumor types and developmental stages. Consequently, understanding the specific roles of the NLRP3 inflammasome and GSDMD-mediated pyroptosis in diverse tumors is imperative for comprehending tumorigenesis and crafting precise therapeutic strategies. This review aims to elucidate the structure and activation mechanisms of the NLRP3 inflammasome, as well as the induction mechanisms of GSDMD-mediated pyroptosis. Additionally, we provide a comprehensive overview of the involvement of this pathway in various cancer types and its applications in tumor immunotherapy, nanotherapy, and other fields. Emphasis is placed on the feasibility of leveraging this approach to enhance ICB therapy within the field of immunotherapy. Furthermore, we discuss the potential applications of this pathway in other immunotherapy methods, such as chimeric antigen receptor T-cell (CAR-T) therapy and tumor vaccines.


Subject(s)
Immunotherapy , Inflammasomes , Intracellular Signaling Peptides and Proteins , NLR Family, Pyrin Domain-Containing 3 Protein , Neoplasms , Phosphate-Binding Proteins , Pyroptosis , Humans , Pyroptosis/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Neoplasms/immunology , Neoplasms/therapy , Immunotherapy/methods , Inflammasomes/metabolism , Inflammasomes/immunology , Phosphate-Binding Proteins/metabolism , Animals , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Gasdermins
13.
Nat Cell Biol ; 26(9): 1394-1406, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39187689

ABSTRACT

The gasdermins are a family of pore-forming proteins that have recently emerged as executors of pyroptosis, a lytic form of cell death that is induced by the innate immune system to eradicate infected or malignant cells. Mammalian gasdermins comprise a cytotoxic N-terminal domain, a flexible linker and a C-terminal repressor domain. Proteolytic cleavage in the linker releases the cytotoxic domain, thereby allowing it to form ß-barrel membrane pores. Formation of gasdermin pores in the plasma membrane eventually leads to a loss of the electrochemical gradient, cell death and membrane rupture. Here we review recent work that has expanded our understanding of gasdermin biology and function in mammals by revealing their activation mechanism, their regulation and their roles in autoimmunity, host defence and cancer. We further highlight fungal and bacterial gasdermin pore formation pointing to a conserved mechanism of cell death induction.


Subject(s)
Inflammation , Pyroptosis , Humans , Animals , Inflammation/metabolism , Inflammation/pathology , Inflammation/immunology , Cell Death , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism , Pore Forming Cytotoxic Proteins/genetics , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/immunology , Neoplasms/genetics , Immunity, Innate , Evolution, Molecular , Gasdermins
14.
Mol Cell Neurosci ; 130: 103956, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39097250

ABSTRACT

Microglia are immune cells that play important roles in the formation of the innate immune response within the central nervous system (CNS). The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multiple protein complex that is crucial for innate immunity, and excessive activation of the inflammasome for various reasons contributes to the pathogenesis of neurodegenerative diseases (NDs). ß2-adrenoceptor agonists have become the focus of attention in studies on NDs due to the high synthesis of ß2-adrenoceptors in the central nervous system (CNS). Promising results have been obtained from these studies targeting anti-inflammatory and neuroprotective effects. Formoterol is an effective, safe for long-term use, and FDA-approved ß2-adrenoceptor agonist with demonstrated anti-inflammatory features in the CNS. In this study, we researched the effects of formoterol on LPS/ATP-stimulated NLRP3 inflammasome activation, pyroptosis, NF-κB, autophagy, and ESCRT-III-mediated plasma membrane repair pathways in the N9 microglia cells. The results showed that formoterol, through the IκBα/NF-κB axis, significantly inhibited NLRP3 inflammasome activation, reduced the level of active caspase-1, secretion of IL-1ß and IL-18 proinflammatory cytokine levels, and the levels of pyroptosis. Additionally, we showed that formoterol activates autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair, which are significant pathways in the inhibition of NLRP3 inflammasome activation and pyroptosis. Our study suggests that formoterol efficaciously prevents the NLRP3 inflammasome activation and pyroptosis in microglial cells regulation through IκBα/NF-κB, autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair.


Subject(s)
Adrenergic beta-2 Receptor Agonists , Autophagy , Formoterol Fumarate , Inflammasomes , Microglia , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/drug effects , Microglia/metabolism , Animals , Pyroptosis/drug effects , Mice , NF-kappa B/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Autophagy/drug effects , Formoterol Fumarate/pharmacology , Adrenergic beta-2 Receptor Agonists/pharmacology , Cell Membrane/metabolism , Cell Membrane/drug effects , NF-KappaB Inhibitor alpha/metabolism , Phosphate-Binding Proteins/metabolism , Cell Line
15.
Nat Commun ; 15(1): 6640, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103324

ABSTRACT

Immune checkpoint inhibitor (ICI)-induced myocarditis involves intensive immune/inflammation activation; however, its molecular basis is unclear. Here, we show that gasdermin-E (GSDME), a gasdermin family member, drives ICI-induced myocarditis. Pyroptosis mediated by GSDME, but not the canonical GSDMD, is activated in myocardial tissue of mice and cancer patients with ICI-induced myocarditis. Deficiency of GSDME in male mice alleviates ICI-induced cardiac infiltration of T cells, macrophages, and monocytes, as well as mitochondrial damage and inflammation. Restoration of GSDME expression specifically in cardiomyocytes, rather than myeloid cells, in GSDME-deficient mice reproduces ICI-induced myocarditis. Mechanistically, quantitative proteomics reveal that GSDME-dependent pyroptosis promotes cell death and mitochondrial DNA release, which in turn activates cGAS-STING signaling, triggering a robust interferon response and myocardial immune/inflammation activation. Pharmacological blockade of GSDME attenuates ICI-induced myocarditis and improves long-term survival in mice. Our findings may advance the understanding of ICI-induced myocarditis and suggest that targeting the GSDME-cGAS-STING-interferon axis may help prevent and manage ICI-associated myocarditis.


Subject(s)
Immune Checkpoint Inhibitors , Membrane Proteins , Myocarditis , Nucleotidyltransferases , Pyroptosis , Animals , Myocarditis/immunology , Myocarditis/pathology , Myocarditis/chemically induced , Myocarditis/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/adverse effects , Mice , Male , Humans , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Signal Transduction , Mice, Inbred C57BL , Mice, Knockout , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Female , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Gasdermins
16.
Comb Chem High Throughput Screen ; 27(14): 2125-2139, 2024.
Article in English | MEDLINE | ID: mdl-39099451

ABSTRACT

AIM: An analysis of bioinformatics and cell experiments was performed to verify the relationship between gasdermin D (GSDMD), an executive protein of pyroptosis, and Alzheimer's disease (AD). METHODS: The training set GSE33000 was utilized to identify differentially expressed genes (DEGs) in both the AD group and control group, as well as in the GSDMD protein high/low expression group. Subsequently, the weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) regression analysis were conducted, followed by the selection of the key genes for the subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The association between GSDMD and AD was assessed and confirmed in the training set GSE33000, as well as in the validation sets GSE5281 and GSE48350. Immunofluorescence (IF) was employed to detect the myelin basic protein (MBP), a distinctive protein found in the rat oligodendrocytes (OLN-93 cells). A range of concentrations (1-15 µmol/L) of ß-amyloid 1-42 (Aß1-42) were exposed to the cells, and the subsequent observations were made regarding cell morphology. Additionally, the assessments were conducted to evaluate the cell viability, the lactate dehydrogenase (LDH) release, the cell membrane permeability, and the GSDMD protein expression. RESULTS: A total of 7,492 DEGs were screened using GSE33000. Subsequently, WGCNA analysis identified 19 genes that exhibited the strongest correlation with clinical traits in AD. Additionally, LASSO regression analysis identified 13 key genes, including GSDMD, AFF1, and ATOH8. Furthermore, the investigation revealed that the key genes were associated with cellular inflammation based on GO and KEGG analyses. Moreover, the area under the curve (AUC) values for the key genes in the training and validation sets were determined to be 0.95 and 0.70, respectively. Significantly, GSDMD demonstrated elevated levels of expression in AD across both datasets. The positivity of MBP expression in cells exceeded 95%. As the concentration of Aß1-42 action gradually escalated, the detrimental effects on cells progressively intensified, resulting in a gradual decline in cell survival rate, accompanied by an increase in lactate dehydrogenase release, cell membrane permeability, and GSDMD protein expression. CONCLUSION: The association between GSDMD and AD has been observed, and it has been found that Aß1-42 can induce a significant upregulation of GSDMD in OLN-93 cells. This suggests that Aß1-42 has the potential to induce cellular pyroptosis and can serve as a valuable cellular pyroptosis model for the study of AD.


Subject(s)
Alzheimer Disease , Phosphate-Binding Proteins , Pyroptosis , Alzheimer Disease/metabolism , Pyroptosis/drug effects , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Humans , Animals , Rats , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Amyloid beta-Peptides/metabolism , Computational Biology , Peptide Fragments/metabolism , Gasdermins
17.
Arch Biochem Biophys ; 759: 110102, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029644

ABSTRACT

Abdominal aortic aneurysm (AAA) is a dangerous condition affecting the aorta. Macrophage pyroptosis, phenotypic transformation, and apoptosis of aortic smooth muscle cells (ASMCs) are pivotal mechanisms in AAA pathogenesis. This study explores how Gasdermin B (GSDMB) regulates macrophage non-canonical pyroptosis and its impact on the phenotypic transformation and apoptosis of ASMCs, thereby unveiling the role of GSDMB in AAA pathogenesis. Immunofluorescence analysis was used to assess the expression levels and localization of GSDMB, cysteinyl aspartate-specific protease-4 (Caspase-4), and N-terminal of cleaved GSDMD (N-GSDMD) in AAA tissues. A cell model that mimics macrophage non-canonical pyroptosis was established by treating THP-1 cells with lipopolysaccharide (LPS). THP-1 cells with reduced or increased GSDMB were generated using small interfering RNA (siRNA) or plasmids. Co-culture experiments involving THP-1 cells and HASMCs were conducted to explore the impact of GSDMB on HASMCs. The mitochondrial reactive oxygen species (mtROS) scavenger Mito-TEMPO lowered mtROS levels in THP-1 cells. Our findings revealed that GSDMB was significantly upregulated in AAA macrophages, which was accompanied by robust non-canonical pyroptosis. THP-1 cells showed non-canonical pyroptosis in response to LPS, which was accompanied by an increase in GSDMB. Further research demonstrated that altering GSDMB, either by knockdown or overexpression, can affect macrophage non-canonical pyroptosis as well as the phenotypic transformation and apoptosis of HASMCs. LPS-induced non-canonical pyroptosis in THP-1 cells was associated with an increase in mtROS, whereas Mito-TEMPO effectively decreased non-canonical pyroptosis and the expression of GSDMB. These findings suggest that GSDMB plays a role in AAA macrophage non-canonical pyroptosis, which influences the phenotypic transformation and apoptosis of HASMCs. The mtROS-Dynamin-Related Protein 1 (Drp1) axis is likely to regulate the GSDMB-mediated non-canonical pyroptosis.


Subject(s)
Aortic Aneurysm, Abdominal , Macrophages , Pyroptosis , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Humans , Macrophages/metabolism , THP-1 Cells , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Phosphate-Binding Proteins/metabolism , Reactive Oxygen Species/metabolism , Lipopolysaccharides/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Caspases, Initiator/metabolism , Male , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Mitochondria/metabolism , Gasdermins
18.
Cell Mol Life Sci ; 81(1): 295, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977508

ABSTRACT

Nod-like receptor family pyrin-containing protein 3 (NLRP3) inflammasome plays a pathologic role in metabolic dysfunction-associated steatohepatitis (MASH), but the molecular mechanism regulating the NLRP3 inflammasome activation in hepatocellular lipotoxicity remains largely unknown. Bromodomain-containing protein 4 (BRD4) has emerged as a key epigenetic reader of acetylated lysine residues in enhancer regions that control the transcription of key genes. The aim of this study is to investigate if and how BRD4 regulated the NLRP3 inflammasome activation and pyroptosis in MASH. Using the AML12 and primary mouse hepatocytes stimulated by palmitic acid (PA) as an in vitro model of hepatocellular lipotoxicity, we found that targeting BRD4 by genetic knockdown or a selective BRD4 inhibitor MS417 protected against hepatosteatosis; and this protective effect was attributed to inhibiting the activation of NLRP3 inflammasome and reducing the expression of Caspase-1, gasdermin D (GSDMD), interleukin (IL)-1ß and IL-6. Moreover, BRD4 inhibition limited the voltage-dependent anion channel-1 (VDAC1) expression and oligomerization in PA-treated AML12 hepatocytes, thereby suppressing the NLRP3 inflammasome activation. Additionally, the expression of BRD4 enhanced in MASH livers of humans. Mechanistically, BRD4 was upregulated during hepatocellular lipotoxicity that in turn modulated the active epigenetic mark H3K27ac at the promoter regions of the Vdac and Gsdmd genes, thereby enhancing the expression of VDAC and GSDMD. Altogether, our data provide novel insights into epigenetic mechanisms underlying BRD4 activating the NLRP3 inflammasome and promoting GSDMD-mediated pyroptosis in hepatocellular lipotoxicity. Thus, BRD4 might serve as a novel therapeutic target for the treatment of MASH.


Subject(s)
Hepatocytes , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pyroptosis , Transcription Factors , Animals , Humans , Male , Mice , Bromodomain Containing Proteins , Cell Cycle Proteins , Fatty Liver/metabolism , Fatty Liver/pathology , Furans , Gasdermins , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Indenes/pharmacology , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nuclear Proteins , Palmitic Acid/pharmacology , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Pyroptosis/drug effects , Sulfonamides/pharmacology , Transcription Factors/metabolism , Transcription Factors/genetics
19.
Exp Dermatol ; 33(7): e15135, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021278

ABSTRACT

Autoimmune skin disease is a kind of heterogeneous disease with complicated pathogenesis. Many factors such as genetic, infectious, environmental and even psychological factors may interact together to trigger a synergistic effect for the development of abnormal innate and adaptive immune responses. Although the exact mechanisms remain unclear, recent evidence suggests that pyroptosis plays a pivotal role in the development of autoimmune skin disease. The feature of pyroptosis is the first formation of pores in cellular membranes, then cell rupture and the release of intracellular substances and pro-inflammatory cytokines, such as interleukin-1 beta (IL-1ß) and IL-18. This hyperactive inflammatory programmed cell death damages the homeostasis of the immune system and advances autoimmunity. This review briefly summarises the molecular regulatory mechanisms of pyrin domain-containing protein 3 (NLRP3) inflammasome and gasdermin family, as well as the molecular mechanisms of pyroptosis, highlights the latest progress of pyroptosis in autoimmune skin disease, including systemic lupus erythematosus, psoriasis, atopic dermatitis and systemic scleroderma and attempts to identify its potential advantages as a therapeutic target or prognostic biomarker for these diseases.


Subject(s)
Autoimmune Diseases , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Humans , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Skin Diseases/immunology , Animals , Phosphate-Binding Proteins/metabolism , Interleukin-1beta/metabolism , Scleroderma, Systemic/immunology , Lupus Erythematosus, Systemic/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Psoriasis/immunology , Psoriasis/metabolism , Autoimmunity , Interleukin-18/metabolism , Dermatitis, Atopic/immunology
20.
Int J Biol Sci ; 20(9): 3393-3411, 2024.
Article in English | MEDLINE | ID: mdl-38993566

ABSTRACT

Chronic prostatitis is one of the most common urologic diseases that troubles young men, with unclear etiology and ineffective treatment approach. Pyroptosis is a novel model of cell death, and its roles in chronic prostatitis are unknown. In this study, P2X7R, NEK7, and GSDMD-NT expression levels were detected in prostate tissues from benign prostate hyperplasia (BPH) patients and experiment autoimmune prostatitis (EAP) mice. P2X7R agonist, antagonist, NLRP3 inhibitor, and disulfiram were used to explore the roles of the P2X7R-NEK7-NLRP3 axis in prostate epithelial cell pyroptosis and chronic prostatitis development. We found that P2X7R, NEK7, and GSDMD-NT were highly expressed in the prostate epithelial cells of BPH patients with prostatic inflammation and EAP mice. Activation of P2X7R exacerbated prostatic inflammation and increased NLRP3 inflammasome component expressions and T helper 17 (Th17) cell proportion. Moreover, P2X7R-mediated potassium efflux promoted NEK7-NLRP3 interaction, and NLRP3 assembly and activation, which caused GSDMD-NT-mediated prostate epithelial cell pyroptosis to exacerbate EAP development. Disulfiram could effectively improve EAP by inhibiting GSDMD-NT-mediated prostate epithelial cell pyroptosis. In conclusion, the P2X7R-NEK7-NLRP3 axis could promote GSDMD-NT-mediated prostate epithelial cell pyroptosis and chronic prostatitis development, and disulfiram may be an effective drug to treat chronic prostatitis.


Subject(s)
Epithelial Cells , NIMA-Related Kinases , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Prostate , Prostatitis , Pyroptosis , Animals , Humans , Male , Mice , Autoimmune Diseases/metabolism , Epithelial Cells/metabolism , Gasdermins , Mice, Inbred C57BL , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Prostate/metabolism , Prostatitis/metabolism , Pyroptosis/drug effects , Receptors, Purinergic P2X7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL