Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.054
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125875

ABSTRACT

Parasites have been associated with possible anticancer activity, including Trypanosoma cruzi, which has been linked to inhibiting the growth of solid tumors. To better understand this antitumor effect, we investigated the association of anti-T. cruzi antibodies with B cells of the acute lymphoblastic leukemia (ALL) SUPB15 cell line. The antibodies were generated in rabbits. IgGs were purified by affinity chromatography. Two procedures (flow cytometry (CF) and Western blot(WB)) were employed to recognize anti-T. cruzi antibodies on SUPB15 cells. We also used CF to determine whether the anti-T. cruzi antibodies could suppress SUPB15 cells. The anti-T. cruzi antibodies recognized 35.5% of the surface antigens of SUPB15. The complement-dependent cytotoxicity (CDC) results demonstrate the cross-suppression of anti-T. cruzi antibodies on up to 8.4% of SUPB15 cells. For the WB analysis, a band at 100 kDa with high intensity was sequenced using mass spectrometry, identifying the protein as nucleolin. This protein may play a role in the antitumor effect on T. cruzi. The anti-T. cruzi antibodies represent promising polyclonal antibodies that have the effect of tumor-suppressive cross-linking on cancer cells, which should be further investigated.


Subject(s)
Antibodies, Protozoan , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Trypanosoma cruzi , Trypanosoma cruzi/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Humans , Cell Line, Tumor , Animals , Rabbits , Antibodies, Protozoan/immunology , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , Nucleolin , Phosphoproteins/immunology , Phosphoproteins/metabolism
2.
Front Immunol ; 15: 1439184, 2024.
Article in English | MEDLINE | ID: mdl-39104541

ABSTRACT

Introduction: Human Cytomegalovirus (HCMV) is a betaherpesvirus that causes severe disease in immunocompromised transplant recipients. Immunotherapy with CD8 T cells specific for HCMV antigens presented on HLA class-I molecules is explored as strategy for long-term relief to such patients, but the antiviral effectiveness of T cell preparations cannot be efficiently predicted by available methods. Methods: We developed an Assay for Rapid Measurement of Antiviral T-cell Activity (ARMATA) by real-time automated fluorescent microscopy and used it to study the ability of CD8 T cells to neutralize HCMV and control its spread. As a proof of principle, we used TCR-transgenic T cells specific for the immunodominant HLA-A02-restricted tegumental phosphoprotein pp65. pp65 expression follows an early/late kinetic, but it is not clear at which stage of the virus cycle it acts as an antigen. We measured control of HCMV infection by T cells as early as 6 hours post infection (hpi). Results: The timing of the antigen recognition indicated that it occurred before the late phase of the virus cycle, but also that virion-associated pp65 was not recognized during virus entry into cells. Monitoring of pp65 gene expression dynamics by reporter fluorescent genes revealed that pp65 was detectable as early as 6 hpi, and that a second and much larger bout of expression occurs in the late phase of the virus cycle by 48 hpi. Since transgenic (Tg)-pp65 specific CD8 T cells were activated even when DNA replication was blocked, our data argue that pp65 acts as an early virus gene for immunological purposes. Discussion: ARMATA does not only allow same day identification of antiviral T-cell activity, but also provides a method to define the timing of antigen recognition in the context of HCMV infection.


Subject(s)
CD8-Positive T-Lymphocytes , Cytomegalovirus Infections , Cytomegalovirus , Phosphoproteins , Viral Matrix Proteins , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus/immunology , Cytomegalovirus/genetics , Phosphoproteins/immunology , Phosphoproteins/genetics , Humans , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Gene Expression Regulation, Viral , Antigens, Viral/immunology , HLA-A2 Antigen/immunology , HLA-A2 Antigen/genetics
3.
Mikrochim Acta ; 191(7): 434, 2024 06 29.
Article in English | MEDLINE | ID: mdl-38951317

ABSTRACT

An enhanced lateral flow assay (LFA) is presented for rapid and highly sensitive detection of acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens with gold nanoflowers (Au NFs) as signaling markers and gold enhancement to amplify the signal intensities. First, the effect of the morphology of gold nanomaterials on the sensitivity of LFA detection was investigated. The results showed that Au NFs prepared by the seed growth method showed a 5-fold higher detection sensitivity than gold nanoparticles (Au NPs) of the same particle size, which may benefit from the higher extinction coefficient and larger specific surface area of Au NFs. Under the optimized experimental conditions, the Au NFs-based LFA exhibited a detection limit (LOD) of 25 pg mL-1 for N protein using 135 nm Au NFs as the signaling probes. The signal was further amplified by using a gold enhancement strategy, and the LOD for the detection of N protein achieved was 5 pg mL-1. The established LFA also exhibited good repeatability and stability and showed applicability in the diagnosis of SARS-CoV-2 infection.


Subject(s)
Antigens, Viral , Coronavirus Nucleocapsid Proteins , Gold , Limit of Detection , Metal Nanoparticles , SARS-CoV-2 , Gold/chemistry , SARS-CoV-2/immunology , Metal Nanoparticles/chemistry , Humans , Antigens, Viral/analysis , Antigens, Viral/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/analysis , Phosphoproteins/immunology , Phosphoproteins/analysis , Phosphoproteins/chemistry , COVID-19/diagnosis , COVID-19/virology , Immunoassay/methods , COVID-19 Serological Testing/methods
4.
Sci Rep ; 14(1): 15864, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38982108

ABSTRACT

In 2019, the novel SARS-CoV-2 coronavirus emerged in China, causing the pneumonia named COVID-19. At the beginning, all research efforts were focused on the spike (S) glycoprotein. However, it became evident that the nucleocapsid (N) protein is pivotal in viral replication, genome packaging and evasion of the immune system, is highly immunogenic, which makes it another compelling target for antibody development alongside the spike protein. This study focused on the construction of single chain fragments variable (scFvs) libraries from SARS-CoV-2-infected patients to establish a valuable, immortalized and extensive antibodies source. We used the Intracellular Antibody Capture Technology to select a panel of scFvs against the SARS-CoV-2 N protein. The whole panel of scFv was expressed and characterized both as intrabodies and recombinant proteins. ScFvs were then divided into 2 subgroups: those that exhibited high binding activity to N protein when expressed in yeast or in mammalian cells as intrabodies, and those purified as recombinant proteins, displaying affinity for recombinant N protein in the nanomolar range. This panel of scFvs against the N protein represents a novel platform for research and potential diagnostic applications.


Subject(s)
Antibodies, Viral , COVID-19 , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Single-Chain Antibodies , Humans , SARS-CoV-2/immunology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Coronavirus Nucleocapsid Proteins/immunology , Phosphoproteins/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Peptide Library
5.
Langmuir ; 40(31): 16484-16491, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39046807

ABSTRACT

The rapid epidemic around the world of coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, proves the need and stimulates efforts to explore efficient diagnostic tests for the sensitive detection of the SARS-CoV-2 virus. An aggregation-induced electrochemiluminescence (AIECL) sensor was developed for the ultrasensitive detection of the SARS-CoV-2 nucleocapsid (N) protein in this work. Tetraphenylethylene doped in zeolite imidazole backbone-90 (TPE-ZIF-90) showed highly efficient aggregation-induced emission (AIE) to endow TPE-ZIF-90 with high ECL intensity. Upon the capture of the SARS-CoV-2 N protein by immune recognition, an alkaline phosphatase (ALP)-modified gold nanoparticle (AuNP)-decorated zinc oxide (ZnO) nanoflower (ALP/Au-ZnO) composite was introduced on the sensing platform, which catalyzed L-ascorbate-2-phosphate trisodium salt (AA2P) to produce PO43- and ascorbic acid (AA). Based on a multiquenching of the ECL signal strategy, including resonance energy transfer (RET) between TPE-ZIF-90 and Au-ZnO, disassembly of TPE-ZIF-90 triggered by the strong coordination between PO43- and Zn2+, and RET between TPE-ZIF-90 and AuNPs produced in situ by the AA reductive reaction, the constructed AIECL sensor achieved highly sensitive detection of the SARS-CoV-2 N protein with a low limit of detection of 0.52 fg/mL. With the merits of high specificity, good stability, and proven application ability, the present RET- and enzyme-triggered multiquenching AIECL sensor may become a powerful tool in the field of SARS-CoV-2 virus diagnosis.


Subject(s)
Electrochemical Techniques , Gold , Luminescent Measurements , Metal Nanoparticles , SARS-CoV-2 , Zinc Oxide , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Metal Nanoparticles/chemistry , Gold/chemistry , Electrochemical Techniques/methods , Luminescent Measurements/methods , Humans , Zinc Oxide/chemistry , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/analysis , Limit of Detection , COVID-19/diagnosis , COVID-19/virology , Biosensing Techniques/methods , Phosphoproteins/analysis , Phosphoproteins/chemistry , Phosphoproteins/immunology , Stilbenes/chemistry , Zeolites/chemistry , Alkaline Phosphatase/analysis , Alkaline Phosphatase/chemistry , Imidazoles/chemistry
6.
Front Immunol ; 15: 1418678, 2024.
Article in English | MEDLINE | ID: mdl-39021574

ABSTRACT

Background: Knowledge about SARS-CoV-2 antibody dynamics in neonates and direct comparisons with maternal antibody responses are not well established. This study aimed to characterize and directly compare the maternal and infant antibody response in a national birth cohort from the Faroe Islands. Methods: The levels of immunoglobulins (Ig) targeting the receptor binding domain (RBD) of the spike protein and the nucleocapsid protein (N protein) of SARS-CoV-2 were investigated in maternal blood and umbilical cord blood from neonates. The study included 537 neonates and 565 mothers from the Faroe Islands, and follow-up samples were collected 12 months after birth. Multiple linear regression models were used to assess associations of maternal parameters with maternal and neonatal Ig levels and pregnancy outcomes. Results: The finding showed that neonates acquired varying levels of SARS-CoV-2 antibodies through transplacental transfer, and the levels were significantly influenced by the mother's vaccination and infection status. The study also found that maternal vaccination and the presence of SARS-CoV-2 antibodies targeting spike RBD were associated with gestational age and APGAR scores. Furthermore, the anti-RBD and -N protein-specific antibody response dynamics during 12 months after birth exhibited differences between mothers and children. RBD and N protein responses were maintained at follow-up in the mother's cohort, while only the N protein response was maintained at follow-up in the children's cohort. Conclusion: In conclusion, SARS-CoV-2-specific immune responses in newborns rely on maternal immunity, while the persistence of SARS-CoV-2-specific Igs appears to be differently regulated between mothers and children. The study provides new insights into the dynamics of SARS-CoV-2-specific immune responses in newborns and underscores the nuanced relationship between maternal factors and neonatal humoral responses.


Subject(s)
Antibodies, Viral , COVID-19 , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Female , SARS-CoV-2/immunology , COVID-19/immunology , Pregnancy , Antibodies, Viral/blood , Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Infant, Newborn , Coronavirus Nucleocapsid Proteins/immunology , Adult , Immunity, Maternally-Acquired , Infant , Male , Cohort Studies , Phosphoproteins/immunology , Pregnancy Complications, Infectious/immunology , Fetal Blood/immunology
7.
Sci Rep ; 14(1): 13417, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862731

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that gave rise to COVID-19 infection produced a worldwide health crisis. The virus can cause a serious or even fatal disease. Comprehending the complex immunological responses triggered by SARS-CoV-2 infection is essential for identifying pivotal elements that shape the course of the disease and its enduring effects on immunity. The span and potency of antibody responses provide valuable perspicuity into the resilience of post-infection immunity. The analysis of existing literature reveals a diverse controversy, confining varying data about the persistence of particular antibodies as well as the multifaceted factors that impact their development and titer, Within this study we aimed to understand the dynamics of anti-SARS-CoV-2 antibodies against nucleocapsid (anti-SARS-CoV-2 (N)) and spike (anti-SARS-CoV-2 (N)) proteins in long-term immunity in convalescent patients, as well as the factors influencing the production and kinetics of those antibodies. We collected 6115 serum samples from 1611 convalescent patients at different post-infection intervals up to 21 months Study showed that in the fourth month, the anti-SARS-CoV-2 (N) exhibited their peak mean value, demonstrating a 79% increase compared to the initial month. Over the subsequent eight months, the peak value experienced a modest decline, maintaining a relatively elevated level by the end of study. Conversely, anti-SARS-CoV-2 (S) exhibited a consistent increase at each three-month interval over the 15-month period, culminating in a statistically significant peak mean value at the study's conclusion. Our findings demonstrate evidence of sustained seropositivity rates for both anti-SARS-CoV-2 (N) and (S), as well as distinct dynamics in the long-term antibody responses, with anti-SARS-CoV-2 (N) levels displaying remarkable persistence and anti-SARS-CoV-2 (S) antibodies exhibiting a progressive incline.


Subject(s)
Antibodies, Viral , COVID-19 , Immunity, Humoral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/immunology , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , SARS-CoV-2/immunology , Immunity, Humoral/immunology , Spike Glycoprotein, Coronavirus/immunology , Female , Male , Adult , Middle Aged , Coronavirus Nucleocapsid Proteins/immunology , Phosphoproteins/immunology , Aged , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood
8.
Biochemistry (Mosc) ; 89(5): 872-882, 2024 May.
Article in English | MEDLINE | ID: mdl-38880648

ABSTRACT

The pandemic of a new coronavirus infection that has lasted for more than 3 years, is still accompanied by frequent mutations in the S protein of SARS-CoV-2 and emergence of new virus variants causing new disease outbreak. Of all coronaviral proteins, the S and N proteins are the most immunogenic. The aim of this study was to compare the features of the humoral and T-cell immune responses to the SARS-CoV-2 S and N proteins in people with different histories of interaction with this virus. The study included 27 individuals who had COVID-19 once, 23 people who were vaccinated twice with the Sputnik V vaccine and did not have COVID-19, 22 people who had COVID-19 and were vaccinated twice with Sputnik V 6-12 months after the disease, and 25 people who had COVID-19 twice. The level of antibodies was determined by the enzyme immunoassay, and the cellular immunity was assessed by the expression of CD107a on CD8high lymphocytes after recognition of SARS-CoV-2 antigens. It was shown that the humoral immune response to the N protein was formed mainly by short-lived plasma cells synthesizing IgG antibodies of all four subclasses with a gradual switch from IgG3 to IgG1. The response to the S protein was formed by short-lived plasma cells at the beginning of the response (IgG1 and IgG3 subclasses) and then by long-lived plasma cells (IgG1 subclass). The dynamics of antibody level synthesized by the short-lived plasma cells was described by the Fisher equation, while changes in the level of antibodies synthesized by the long-lived plasma cells were described by the Erlang equation. The level of antibodies in the groups with the hybrid immunity exceeded that in the group with the post-vaccination immunity; the highest antibody content was observed in the group with the breakthrough immunity. The cellular immunity to the S and N proteins differed depending on the mode of immune response induction (vaccination or disease). Importantly, the response of heterologous CD8+ T cell to the N proteins of other coronaviruses may be involved in the immune defense against SARS-CoV-2.


Subject(s)
Antibodies, Viral , COVID-19 , Coronavirus Nucleocapsid Proteins , Immunity, Cellular , Immunity, Humoral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Male , Middle Aged , Female , Adult , Spike Glycoprotein, Coronavirus/immunology , Coronavirus Nucleocapsid Proteins/immunology , COVID-19 Vaccines/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Phosphoproteins/immunology , CD8-Positive T-Lymphocytes/immunology , Aged
9.
Front Immunol ; 15: 1397052, 2024.
Article in English | MEDLINE | ID: mdl-38911866

ABSTRACT

Background: Immunocompromised patients are at particular risk of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infection and previous findings suggest that the infection or vaccination induced immune response decreases over time. Our main goal was to investigate the SARS-CoV-2-specific immune response in rheumatoid arthritis patients and healthy controls over prolonged time. Methods: The SARS-CoV-2-specific humoral immune response was measured by Elecsys Anti-SARS-CoV-2 Spike (S) immunoassay, and antibodies against SARS-CoV-2 nucleocapsid protein (NCP) were also evaluated by Euroimmun enzyme-linked immunosorbent assay (ELISA) test. The SARS-CoV-2-specific T-cell response was detected by an IFN- γ release assay. Results: We prospectively enrolled 84 patients diagnosed with rheumatoid arthritis (RA) and 43 healthy controls in our longitudinal study. Our findings demonstrate that RA patients had significantly lower anti-S antibody response and reduced SARS-CoV-2-specific T-cell response compared to healthy controls (p<0.01 for healthy controls, p<0.001 for RA patients). Furthermore, our results present evidence of a notable increase in the SARS-CoV-2-specific humoral immune response during the follow-up period in both study groups (p<0.05 for healthy volunteers, p<0.0001 for RA patients, rank-sum test). Participants who were vaccinated against Coronavirus disease-19 (COVID-19) during the interim period had 2.72 (CI 95%: 1.25-5.95, p<0.05) times higher anti-S levels compared to those who were not vaccinated during this period. Additionally, individuals with a confirmed SARS-CoV-2 infection exhibited 2.1 times higher (CI 95%: 1.31-3.37, p<0.01) anti-S levels compared to those who were not infected during the interim period. It is worth noting that patients treated with targeted therapy had 52% (CI 95%: 0.25-0.94, p<0.05) lower anti-S levels compared to matched patients who did not receive targeted therapy. Concerning the SARS-CoV-2-specific T-cell response, our findings revealed that its level had not changed substantially in the study groups. Conclusion: Our present data revealed that the level of SARS-CoV-2-specific humoral immune response is actually higher, and the SARS-CoV-2-specific T-cell response remained at the same level over time in both study groups. This heightened humoral response, the nearly permanent SARS-CoV-2-specific T-cell response and the coexistence of different SARS-CoV-2 variants within the population, might be contributing to the decline in severe COVID-19 cases.


Subject(s)
Antibodies, Viral , Arthritis, Rheumatoid , COVID-19 , Immunity, Humoral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Arthritis, Rheumatoid/immunology , SARS-CoV-2/immunology , Male , Female , Middle Aged , COVID-19/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Aged , Spike Glycoprotein, Coronavirus/immunology , Adult , T-Lymphocytes/immunology , Coronavirus Nucleocapsid Proteins/immunology , Prospective Studies , Phosphoproteins/immunology , Case-Control Studies , Longitudinal Studies
10.
Sci Rep ; 14(1): 12725, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830902

ABSTRACT

Humoral immunity in COVID-19 includes antibodies (Abs) targeting spike (S) and nucleocapsid (N) SARS-CoV-2 proteins. Antibody levels are known to correlate with disease severity, but titers are poorly reported in mild or asymptomatic cases. Here, we analyzed the titers of IgA and IgG against SARS-CoV-2 proteins in samples from 200 unvaccinated Hospital Workers (HWs) with mild COVID-19 at two time points after infection. We analyzed the relationship between Ab titers and patient characteristics, clinical features, and evolution over time. Significant differences in IgG and IgA titers against N, S1 and S2 proteins were found when samples were segregated according to time T1 after infection, seroprevalence at T1, sex and age of HWs and symptoms at infection. We found that IgM + samples had higher titers of IgG against N antigen and IgA against S1 and S2 antigens than IgM - samples. There were significant correlations between anti-S1 and S2 Abs. Interestingly, IgM + patients with dyspnea had lower titers of IgG and IgA against N, S1 and S2 than those without dyspnea. Comparing T1 and T2, we found that IgA against N, S1 and S2 but only IgG against certain Ag decreased significantly. In conclusion, an association was established between Ab titers and the development of infection symptoms.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/virology , COVID-19/blood , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , SARS-CoV-2/immunology , Female , Antibodies, Viral/immunology , Antibodies, Viral/blood , Adult , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunity, Humoral , Phosphoproteins/immunology
11.
J Immunol Res ; 2024: 9313267, 2024.
Article in English | MEDLINE | ID: mdl-38939745

ABSTRACT

Vaccination is one of the most effective prophylactic public health interventions for the prevention of infectious diseases such as coronavirus disease (COVID-19). Considering the ongoing need for new COVID-19 vaccines, it is crucial to modify our approach and incorporate more conserved regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to effectively address emerging viral variants. The nucleocapsid protein is a structural protein of SARS-CoV-2 that is involved in replication and immune responses. Furthermore, this protein offers significant advantages owing to the minimal accumulation of mutations over time and the inclusion of key T-cell epitopes critical for SARS-CoV-2 immunity. A novel strategy that may be suitable for the new generation of vaccines against COVID-19 is to use a combination of antigens, including the spike and nucleocapsid proteins, to elicit robust humoral and potent cellular immune responses, along with long-lasting immunity. The strategic use of multiple antigens aims to enhance vaccine efficacy and broaden protection against viruses, including their variants. The immune response against the nucleocapsid protein from other coronavirus is long-lasting, and it can persist up to 11 years post-infection. Thus, the incorporation of nucleocapsids (N) into vaccine design adds an important dimension to vaccination efforts and holds promise for bolstering the ability to combat COVID-19 effectively. In this review, we summarize the preclinical studies that evaluated the use of the nucleocapsid protein as antigen. This study discusses the use of nucleocapsid alone and its combination with spike protein or other proteins of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Humans , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/genetics , Immunogenicity, Vaccine , Animals , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Epitopes, T-Lymphocyte/immunology , Antibodies, Viral/immunology , Nucleocapsid Proteins/immunology
12.
Discov Med ; 36(185): 1289-1297, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926115

ABSTRACT

BACKGROUND: Genetic mutations play a crucial role in the development and progression of myelodysplastic syndromes (MDS), impacting the immune microenvironment and influencing the choice of treatment regimen, as well as the efficacy and prognosis of patients. The objective of this study was to examine variations in hematological and immunological characteristics associated with common gene mutations in MDS patients and establish a foundation for the precise treatment of MDS. METHODS: The hematological, immunological, and other clinical features of 71 recently diagnosed MDS patients from January 1, 2019, to July 31, 2023, were retrospectively analyzed. These patients were categorized based on their gene mutations, and the variances in hematological and immunological characteristics among distinct groups were compared. RESULTS: Hematological variances were observed among different gene mutation groups. Specifically, platelet counts in the splicing factor 3B subunit 1 (SF3B1) mutation group were notably higher compared to the wild-type group (p = 0.009). Conversely, in the additional sex combs like 1 (ASXL1) mutation groups, monocyte ratios were significantly elevated in comparison to the wild-type group (p = 0.046), and in the ten-eleven translocation 2 (TET2) mutation group, lymphocyte ratios were significantly lower (p = 0.022). Additionally, the leukocyte (p = 0.005), neutrophil ratio (p = 0.002), and lymphocyte ratio (p = 0.001) were significantly higher in the Runt-related transcription factor 1 (RUNX1) mutation group. Regarding immunological distinctions, the Natural Killer (NK) cell ratio demonstrated a significant increase in the SF3B1 mutation group (p = 0.005). Moreover, the TET2 mutation group exhibited a significantly higher Interleukin-8 (IL-8) level (p = 0.017). In contrast, the U2 small nuclear RNA auxiliary factor 1 (U2AF1) group displayed significantly lower levels of IL-1ß (p = 0.033), IL-10 (p = 0.033), and Tumour Necrosis Factor-α (TNF-α) (p = 0.009). CONCLUSION: Distinct variations exist in the immune microenvironment of MDS associated with different genetic mutations. Further studies are imperative to delve into the underlying mechanisms that drive these differences.


Subject(s)
Dioxygenases , Mutation , Myelodysplastic Syndromes , RNA Splicing Factors , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/immunology , Myelodysplastic Syndromes/blood , Female , Male , Middle Aged , Aged , RNA Splicing Factors/genetics , Retrospective Studies , Adult , Aged, 80 and over , DNA-Binding Proteins/genetics , Phosphoproteins/genetics , Phosphoproteins/immunology , Killer Cells, Natural/immunology , Core Binding Factor Alpha 2 Subunit/genetics , Platelet Count , Repressor Proteins
13.
BMC Infect Dis ; 24(1): 584, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867165

ABSTRACT

BACKGROUND: Natural infection and vaccination against SARS-CoV-2 is associated with the development of immunity against the structural proteins of the virus. Specifically, the two most immunogenic are the S (spike) and N (nucleocapsid) proteins. Seroprevalence studies performed in university students provide information to estimate the number of infected patients (symptomatic or asymptomatic) and generate knowledge about the viral spread, vaccine efficacy, and epidemiological control. Which, the aim of this study was to evaluate IgG antibodies against the S and N proteins of SARS-CoV-2 at university students from Southern Mexico. METHODS: A total of 1418 serum samples were collected from eighteen work centers of the Autonomous University of Guerrero. Antibodies were detected by Indirect ELISA using as antigen peptides derived from the S and N proteins. RESULTS: We reported a total seroprevalence of 39.9% anti-S/N (positive to both antigens), 14.1% anti-S and 0.5% anti-N. The highest seroprevalence was reported in the work centers from Costa Grande, Acapulco and Centro. Seroprevalence was associated with age, COVID-19, contact with infected patients, and vaccination. CONCLUSION: University students could play an essential role in disseminating SARS-CoV-2. We reported a seroprevalence of 54.5% against the S and N proteins, which could be due to the high population rate and cultural resistance to safety measures against COVID-19 in the different regions of the state.


Subject(s)
Antibodies, Viral , COVID-19 , Coronavirus Nucleocapsid Proteins , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Students , Humans , Mexico/epidemiology , Male , Female , Cross-Sectional Studies , Spike Glycoprotein, Coronavirus/immunology , Immunoglobulin G/blood , COVID-19/epidemiology , COVID-19/immunology , Young Adult , Antibodies, Viral/blood , SARS-CoV-2/immunology , Seroepidemiologic Studies , Adult , Universities , Coronavirus Nucleocapsid Proteins/immunology , Adolescent , Phosphoproteins/immunology
14.
Biosens Bioelectron ; 261: 116456, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38878694

ABSTRACT

This study proposes a new efficient wireless biosensor based on magnetoelastic waves for antibody detection in human plasma, aiming at the serological diagnosis of COVID-19. The biosensor underwent functionalization with the N antigen - nucleocapsid phosphoprotein of the SARS-CoV-2 virus. Validation analyses by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting (WB), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis and micro-Raman spectroscopy confirmed the selectivity and effective surface functionalization of the biosensor. The research successfully obtained, expressed and purified the recombinant antigen, while plasma samples from COVID-19 positive and negative patients were applied to test the performance of the biosensor. A performance comparison with the enzyme-linked immunosorbent assays (ELISA) method revealed equivalent diagnostic capacity. These results indicate the robustness of the biosensor in reliably differentiating between positive and negative samples, highlighting its potential as an efficient and low-cost tool for the serological diagnosis of COVID-19. In addition to being fast to execute and having the potential for automation in large-scale diagnostic studies, the biosensor fills a significant gap in existing SARS-CoV-2 detection approaches.


Subject(s)
Antibodies, Viral , Biosensing Techniques , COVID-19 Serological Testing , COVID-19 , SARS-CoV-2 , Humans , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Antibodies, Viral/blood , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/blood , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/instrumentation , Coronavirus Nucleocapsid Proteins/immunology , Phosphoproteins/immunology , Phosphoproteins/blood , Phosphoproteins/chemistry , Enzyme-Linked Immunosorbent Assay
15.
J Med Virol ; 96(6): e29739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899449

ABSTRACT

This longitudinal prospective controlled multicenter study aimed to monitor immunity generated by three exposures caused by breakthrough infections (BTI) after COVID-19-vaccination considering pre-existing cell-mediated immunity to common-corona-viruses (CoV) which may impact cellular reactivity against SARS-CoV-2. Anti-SARS-CoV-2-spike-IgG antibodies (anti-S-IgG) and cellular reactivity against Spike-(S)- and nucleocapsid-(N)-proteins were determined in fully-vaccinated (F) individuals who either experienced BTI (F+BTI) or had booster vaccination (F+Booster) compared to partially vaccinated (P+BTI) and unvaccinated (U) from 1 to 24 weeks post PCR-confirmed infection. High avidity anti-S-IgG were found in F+BTI compared to U, the latter exhibiting increased long-lasting pro-inflammatory cytokines to S-stimulation. CoV was associated with higher cellular reactivity in U, whereas no association was seen in F. The study illustrates the induction of significant S-specific cellular responses in F+BTI building-up basic immunity by three exposures. Only U seem to benefit from pre-existing CoV immunity but demonstrated inflammatory immune responses compared to F+BTI who immunologically benefit from enhanced humoral and cellular immunity after BTI. This study demonstrates that individuals with hybrid immunity from COVID-19-vaccination and BTI acquire a stable humoral and cellular immune response that is maintained for at least 6 months. Our findings corroborate recommendations by health authorities to build on basic immunity by three S-protein exposures.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunity, Cellular , Spike Glycoprotein, Coronavirus , Adult , Aged , Female , Humans , Male , Middle Aged , 2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Breakthrough Infections/immunology , Breakthrough Infections/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cytokines/immunology , Immunization, Secondary , Immunoglobulin G/blood , Longitudinal Studies , Phosphoproteins/immunology , Prospective Studies , Spike Glycoprotein, Coronavirus/immunology , Vaccination
16.
Food Chem ; 451: 139295, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38729042

ABSTRACT

Information regarding protein expression and phosphorylation modifications in the bovine milk fat globule membrane is scarce, particularly throughout various lactation periods. This study employed a complete proteome and phosphoproteome between bovine colostrum and mature milk. A total of 11 proteins were seen in both protein expression and phosphorylation levels. There were 400 proteins identified in only protein expression, and 104 phosphoproteins identified in only phosphorylation levels. A total of 232 significant protein characteristics were identified within the proteome and significant phosphorylation sites within 86 phosphoproteins of the phosphoproteome. Biological activities and pathways primarily exhibited associations with the immune system. Simultaneously, a comprehensive analysis of proteins and phosphorylation sites using a multi-omics approach. Hence, the data we have obtained has the potential to expand our understanding of how the bovine milk fat globule membrane might be utilized as a beneficial component in dairy products.


Subject(s)
Glycolipids , Glycoproteins , Lactation , Lipid Droplets , Milk , Phosphoproteins , Proteomics , Animals , Cattle , Glycoproteins/chemistry , Glycoproteins/immunology , Glycoproteins/metabolism , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Glycolipids/chemistry , Glycolipids/metabolism , Female , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Milk/chemistry , Milk Proteins/chemistry , Milk Proteins/metabolism , Milk Proteins/immunology , Phosphorylation , Proteome/chemistry , Proteome/immunology , Proteome/analysis
17.
Virology ; 596: 110118, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805803

ABSTRACT

Long COVID (LC) is characterized by persistent symptoms following SARS-CoV-2 infection, with various mechanisms offered to explain its pathogenesis. This study explored whether adaptive humoral anti-SARS-CoV-2 responses differ in LC. Unvaccinated COVID-19 convalescents (n = 200) were enrolled, with 21.5% (n = 43) presenting LC three months post-infection. LC diagnosis was based on persistent symptom(s) and alterations in biochemical/clinical markers; three phenotypes were distinguished: cardiological, pulmonary, and psychiatric LC. All three phenotypes were characterized by significantly decreased seroprevalence of IgG antibodies against nucleocapsid (anti-NP). LC was associated with decreased odds of testing positive for anti-NP (OR = 0.35, 95%CI: 0.16-0.78, p = 0.001). Seropositive LC patients had lower anti-S1 and anti-S2 levels than individuals without LC, and those with pulmonary and psychological phenotypes also revealed decreased anti-RBD concentrations. The results indicate that LC can be characterized by diminished humoral response to SARS-CoV-2. The potential implication of this phenomenon in post-acute viral sequelae is discussed.


Subject(s)
Antibodies, Viral , COVID-19 , Immunity, Humoral , Immunoglobulin G , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Female , Male , Middle Aged , Immunoglobulin G/blood , Aged , Phenotype , Post-Acute COVID-19 Syndrome , Adult , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Phosphoproteins/immunology
18.
Biologicals ; 86: 101769, 2024 May.
Article in English | MEDLINE | ID: mdl-38759304

ABSTRACT

This study focuses on the development and initial assessment of an indirect IgG enzyme-linked immunosorbent assay (ELISA) specifically designed to detect of anti-SARS-CoV-2 antibodies. The unique aspect of this ELISA method lies in its utilization of a recombinant nucleocapsid (N) antigen, produced through baculovirus expression in insect cells. Our analysis involved 292 RT-qPCR confirmed positive serum samples and 54 pre-pandemic healthy controls. The process encompassed cloning, expression, and purification of the SARS-CoV-2 N gene in insect cells, with the resulted purified protein employed in our ELISA tests. Statistical analysis yielded an Area Under the Curve of 0.979, and the optimized cut-off exhibited 92 % sensitivity and 94 % specificity. These results highlight the ELISA's potential for robust and reliable serological detection of SARS-CoV-2 antibodies. Further assessments, including a larger panel size, reproducibility tests, and application in diverse populations, could enhance its utility as a valuable biotechnological solution for diseases surveillance.


Subject(s)
Antibodies, Viral , Baculoviridae , COVID-19 , Enzyme-Linked Immunosorbent Assay , Recombinant Proteins , SARS-CoV-2 , Enzyme-Linked Immunosorbent Assay/methods , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Baculoviridae/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , COVID-19/diagnosis , COVID-19/blood , COVID-19/immunology , Animals , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/genetics , COVID-19 Serological Testing/methods , Sf9 Cells , Antigens, Viral/immunology , Antigens, Viral/genetics , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/genetics , Sensitivity and Specificity , Immunoglobulin G/blood , Immunoglobulin G/immunology , Phosphoproteins/immunology , Phosphoproteins/genetics
19.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793544

ABSTRACT

The continuing mutability of the SARS-CoV-2 virus can result in failures of diagnostic assays. To address this, we describe a generalizable bioinformatics-to-biology pipeline developed for the calibration and quality assurance of inactivated SARS-CoV-2 variant panels provided to Radical Acceleration of Diagnostics programs (RADx)-radical program awardees. A heuristic genetic analysis based on variant-defining mutations demonstrated the lowest genetic variance in the Nucleocapsid protein (Np)-C-terminal domain (CTD) across all SARS-CoV-2 variants. We then employed the Shannon entropy method on (Np) sequences collected from the major variants, verifying the CTD with lower entropy (less prone to mutations) than other Np regions. Polyclonal and monoclonal antibodies were raised against this target CTD antigen and used to develop an Enzyme-linked immunoassay (ELISA) test for SARS-CoV-2. Blinded Viral Quality Assurance (VQA) panels comprised of UV-inactivated SARS-CoV-2 variants (XBB.1.5, BF.7, BA.1, B.1.617.2, and WA1) and distractor respiratory viruses (CoV 229E, CoV OC43, RSV A2, RSV B, IAV H1N1, and IBV) were assembled by the RADx-rad Diagnostics core and tested using the ELISA described here. The assay tested positive for all variants with high sensitivity (limit of detection: 1.72-8.78 ng/mL) and negative for the distractor virus panel. Epitope mapping for the monoclonal antibodies identified a 20 amino acid antigenic peptide on the Np-CTD that an in-silico program also predicted for the highest antigenicity. This work provides a template for a bioinformatics pipeline to select genetic regions with a low propensity for mutation (low Shannon entropy) to develop robust 'pan-variant' antigen-based assays for viruses prone to high mutational rates.


Subject(s)
Antigens, Viral , COVID-19 , Coronavirus Nucleocapsid Proteins , Phosphoproteins , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Humans , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/genetics , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Antigens, Viral/immunology , Antigens, Viral/genetics , Phosphoproteins/immunology , Phosphoproteins/genetics , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/standards , Antibodies, Viral/immunology , Antibodies, Monoclonal/immunology , Computational Biology/methods , Mutation , Animals
20.
ACS Sens ; 9(6): 3150-3157, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38717584

ABSTRACT

Tracking trace protein analytes in precision diagnostics is an ongoing challenge. Here, we developed an ultrasensitive detection method for the detection of SARS-CoV-2 nucleocapsid (N) protein by combining enzyme-linked immunosorbent assay (ELISA) with the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) system. First, the SARS-CoV-2 N protein bound by the capture antibody adsorbed on the well plate was sequentially coupled with the primary antibody, biotinylated secondary antibody, and streptavidin (SA), followed by biotin primer binding to SA. Subsequently, rolling circle amplification was initiated to generate ssDNA strands, which were targeted by CRISPR/Cas12a to cleave the FAM-ssDNA-BHQ1 probe in trans to generate fluorescence signals. We observed a linear relationship between fluorescence intensity and the logarithm of N protein concentration ranging from 3 fg/mL to 3 × 107 fg/mL. The limit of detection (LOD) was 1 fg/mL, with approximately nine molecules in 1 µL of the sample. This detection sensitivity was 4 orders magnitude higher than that of commercially available ELISA kits (LOD: 5.7 × 104 fg/mL). This method was highly specific and sensitive and could accurately detect SARS-CoV-2 pseudovirus and clinical samples, providing a new approach for ultrasensitive immunoassay of protein biomarkers.


Subject(s)
Coronavirus Nucleocapsid Proteins , Limit of Detection , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Humans , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/analysis , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay/methods , COVID-19/diagnosis , COVID-19/virology , CRISPR-Cas Systems/genetics , Phosphoproteins/immunology , Phosphoproteins/chemistry , CRISPR-Associated Proteins/chemistry , Endodeoxyribonucleases/chemistry , Nucleocapsid Proteins/immunology , Bacterial Proteins
SELECTION OF CITATIONS
SEARCH DETAIL