Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 659
Filter
1.
Rev Bras Parasitol Vet ; 33(3): e007624, 2024.
Article in English | MEDLINE | ID: mdl-39292067

ABSTRACT

Piper aduncum L., a Brazilian medicinal plant, is known for its bioactive properties, including repellent and insecticidal effects. This study investigated the insecticidal potential of essential oils (EOs) from P. aduncum, collected during the dry and rainy seasons, against fleas (Ctenocephalides felis felis Bouché, 1835) in egg and adult stages. The EOs were obtained by hydrodistillation using a modified Clevenger apparatus for 2 h. Qualitative and quantitative analysis were performed via gas chromatography. The findings revealed that dillapiole was the predominant substance in both EOs, accounting for 77.6% (rainy) and 85.5% (dry) of the EOs. These EOs exhibited high efficacy against the parasite C. felis felis, resulting in 100% egg mortality at a concentration of 100 µg/mL and 100% mortality for adult fleas starting from 1,000 µg/mL. Dillapiole standard was also effective but at a relatively high concentration. This finding suggested that EOs from P. aduncum exhibit cytotoxicity against these pests and might hold potential for commercial production, offering practical applications for such bioprospecting. This study uniquely revealed that the EOs from P. aduncum, which is rich in dillapiole, demonstrated pulicidal activity against the parasite C. felis felis, particularly in inhibiting the hatching of the eggs of these parasites.


Subject(s)
Ctenocephalides , Insecticides , Oils, Volatile , Piper , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Piper/chemistry , Insecticides/pharmacology , Ctenocephalides/drug effects , Plant Oils/pharmacology , Insect Control
2.
Molecules ; 29(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39274856

ABSTRACT

High-quality Piper laetispicum (Piper laetispicum C. DC) is the key to the development of foods, natural medicines, and cosmetics. Its crude fat, ash, piperine, protein, and aroma compounds were determined in this experiment. Principal component (PCA) and hierarchical cluster analyses (HCA) were used to evaluate the aroma compounds at different developmental stages. The main aroma compounds identified using steam distillation combined with GC-MS were sabinene (34.83-76.14%), α-copaene (5.11-19.51%), linalool (2.42-15.70%), trans-caryophyllene (2.37-6.57%), α-pinene (1.51-4.31%), and germacrene D (1.30-4.10%). The aroma metabolites at different developmental stages were analysed using non-targeted metabolomes, and linalool was found to be the most abundant. Based on the experimental results, there were more nutrient compounds in young Piper laetispicum than in the last three developmental stages. The aromatic metabolites contributed the most to PC1. There were also more different metabolites of aroma between the young and expanding stages. Therefore, regarding quality, young fruits have great potential.


Subject(s)
Fruit , Piper , Fruit/chemistry , Fruit/growth & development , Fruit/metabolism , Piper/chemistry , Piper/growth & development , Piper/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Gas Chromatography-Mass Spectrometry , Principal Component Analysis , Odorants/analysis
3.
Molecules ; 29(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39274963

ABSTRACT

This study aimed to evaluate the toxicity of Piper hispidinervum essential oil (PHEO) against 11 Brazilian populations of Sitophilus zeamais (Coleoptera: Curculionidae). The effects of sublethal doses of PHEO on the behavior (walking and flying), respiration, and population growth (ri) of the insect populations were investigated. PHEO toxicity was determined through concentration-mortality bioassays, with mortality curves established using increasing PHEO concentrations ranging from 140.00 to 1000.00 µL kg-1. Behavior was evaluated based on walking distance, walking time, walking speed, walking time proportion, flight height, and flight takeoff success. Respiration was measured via the respiratory rate, while population growth (ri) was assessed through the instantaneous growth rate. All 11 populations of S. zeamais were susceptible to PHEO, showing no signs of resistance. The populations exhibited varying behavioral and physiological responses to sublethal exposure to PHEO, indicating different mitigation strategies. The results confirm that PHEO possesses insecticidal potential for controlling S. zeamais populations. However, the observed behavioral and physiological responses should be considered when establishing control measures in pest management programs for stored products.


Subject(s)
Insecticides , Oils, Volatile , Piper , Weevils , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Weevils/drug effects , Weevils/physiology , Piper/chemistry , Insecticides/pharmacology , Insecticides/toxicity , Behavior, Animal/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry
4.
Inflammopharmacology ; 32(5): 3411-3428, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39126574

ABSTRACT

The present study aims to investigate the anti-inflammatory potential of the leaf hydroalcoholic extract of Piper betleoides C. DC., also known as "Jangli Paan" in Northeast India, using lipopolysaccharide (LPS)-treated both cell culture (RAW264.7, macrophage cells) and animal (albino rat) model of inflammation. Treatment with leaf hydroalcoholic extract of Piper betleoides (PBtE) dose-dependently (5, 10, and 20 µg/mL) decreased the secretion of pro-inflammatory (TNF-α, IL-6, and MCP-1) and increased anti-inflammatory (IL-4 and IL-10) cytokines in LPS-treated macrophages. Similarly, treatment with PBtE also prevented the alternation in mRNA expression of inflammatory markers (TNF-α, CCL-2, IL-6, and IL-10) in LPS-treated macrophages. Dose-dependent supplementation with PBtE further reduced the production of intracellular ROS and increased the phagocytosis efficacies in LPS-treated cells. Further in vivo studies demonstrated that treatment with PBtE dose-dependently (50, 100, and 200 mg/kg body weight) prevented the dysregulation of the secretion of inflammatory cytokines (TNF-α, IL-4, IL-6, and IL-10) and reduced the circulatory levels of prostaglandin (PGE2) and nitric oxide products (nitrite) in LPS-treated animals. In addition, alternation of blood cell profiling and the liver as well as kidney dysfunctions were also prevented by the treatment with PBtE in LPS-treated rats. The anti-inflammatory potential of PBtE was comparable to those seen in sodium diclofenac (positive control) treated group. LC-MS analyses showed piperine, piperlongumine, piperolactam-A, and dehydropipernonaline and GC-MS analyses demonstrated phytol, caryophyllene, and falcarinol as the phytochemicals present in Piper betleoides, which might play an important role in preventing inflammation and associated pathophysiology. Different treatments didn't cause any toxicity in cell culture and animal models. This study for the first time demonstrated the promising anti-inflammatory potential of the leaf hydroalcoholic extract of Piper betleoides.


Subject(s)
Anti-Inflammatory Agents , Cytokines , Inflammation , Lipopolysaccharides , Macrophages , Piper , Plant Extracts , Animals , Mice , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Rats , India , RAW 264.7 Cells , Cytokines/metabolism , Piper/chemistry , Lipopolysaccharides/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Male , Macrophages/drug effects , Macrophages/metabolism , Plant Leaves/chemistry , Dose-Response Relationship, Drug , Rats, Wistar , Reactive Oxygen Species/metabolism , Piper betle/chemistry
5.
Trop Biomed ; 41(2): 166-175, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-39154269

ABSTRACT

Nsp1 in SARS-CoV-2 is a key protein that increases the virus's pathogenicity and virulence by binding to the host ribosome and blocks the 40S ribosomal subunit channel, which effectively impedes the mRNA translation as well as crippling the host immune system. Previous studies revealed that the N-terminal in Nsp1 is part and parcel of Nsp1 efficiency, and mutations in its core residues have weakened the protein's. This knowledge persuades us to carry out the in silico screening on plant compounds of Piper sarmentosum Roxb. against the five target residues which are Glu36, Glu37, Arg99, Arg124 and Lys125. Potential compounds were tested for their druggability. As a result, we identified five out of 112 compounds including stigmasterol, N-feruloyltyramine, beta-Sitosterol, 13-(1,3-benzodioxol-5-yl)- N-(2methylpropyl) trideca-2,4,12-trienamide and N-(2-methylpropyl) octadeca-2-4dienamide in Piper sarmentosum Roxb. as potential inhibitors for Nsp1. These compounds formed at least a hydrophobic, hydrogen bonding or π-cation interactions with the protein. Furthermore, SwissADME analysis and the number of bindings to the target residues suggest that N-feruloyltyramine is the ideal inhibitor candidate against SARS-CoV-2 at its N-terminal of Nsp1. Lastly, the interaction with N-feruloyltyramine increased flexibility in the loop regions of N-terminal Nsp1, especially residues 54 to 70, with residue 59 showing the highest fluctuation, potentially affecting the protein's stability and function due to the correlation between RMSF and protein function.


Subject(s)
Molecular Docking Simulation , Piper , SARS-CoV-2 , Viral Nonstructural Proteins , Piper/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans
6.
Article in English | MEDLINE | ID: mdl-39178608

ABSTRACT

Piper colubrinum Link. is an underexplored crop regarding its metabolites and therapeutic attributes. Current study aimed to identify the possible volatile and non-volatile metabolites of P. colubrinum fruit and studied its metabolite diversity with medicinally valued Piper species viz. P. nigrum L., P. longum L. and P. chaba Hunter. The volatile constituents of P. colubrinum essential oil by GC-MS revealed the presence of sesquiterpenes as the major contribution. The sesquiterpenes α-muurolol (12.5 %) and ß-caryophyllene (11.3 %) were the predominant volatile components. Few aliphatic compounds like n-heptadecane and trace amounts of monoterpenes (α- and ß-pinene and α-terpineol) were also identified from this crop. The fatty acid profiling by GC-MS revealed mainly oleic acid (41.3 %) followed by palmitic and linoleic acids. HPLC analysis demonstrated that the major pungent alkaloid piperine was found to be trace (0.04 %) in P. colubrinum. The LC-QTOF-MS/MS profiling of the chloroform extract of the P. colubrinum revealed the presence of non-volatile constituents including phenolic and alkaloid compounds. Ferulic acid, rosmarinic acid, salicylic acid, kaempferol-5-glucoside, 5-methoxysalicylic acid, apigenin-7-galactoside, kaempferide-3-glucoside, luteolin, kaempferol, apigenin and scutellarein-4'-methyl ether were the phenolic compounds whereas piperlonguminine was the alkaloid compound identified. Finally, the biochemical parameters of this crop were compared with that of P. nigrum, P. longum and P. chaba and average linkage cluster dendrogram revealed that P. colubrinum was biochemically distinct from other three Piper species.


Subject(s)
Gas Chromatography-Mass Spectrometry , Piper , Gas Chromatography-Mass Spectrometry/methods , Piper/chemistry , Piper/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Oils, Volatile/chemistry , Oils, Volatile/metabolism , Oils, Volatile/analysis , Chromatography, High Pressure Liquid/methods , Fatty Acids/analysis , Fatty Acids/metabolism , Fatty Acids/chemistry , Metabolome
7.
Int J Med Sci ; 21(10): 1915-1928, 2024.
Article in English | MEDLINE | ID: mdl-39113883

ABSTRACT

Introduction: Lung cancer, characterized by uncontrolled cellular proliferation within the lung tissues, is the predominant cause of cancer-related fatalities worldwide. The traditional medicinal herb Piper longum has emerged as a significant contender in oncological research because of its documented anticancer attributes, suggesting its potential for novel therapeutic development. Methods: This study adopted network pharmacology and omics methodology to elucidate the anti-lung cancer potential of P. longum by identifying its bioactive constituents and their corresponding molecular targets. Results: Through a comprehensive literature review and the Integrated Medicinal Plant Phytochemistry and Therapeutics database (IMPPAT), we identified 33 bioactive molecules from P. longum. Subsequent analyses employing tools such as SwissTargetPrediction, SuperPred, and DIGEP-Pred facilitated the isolation of 676 potential targets, among which 72 intersected with 666 lung cancer-associated genetic markers identified through databases including the Therapeutic Target Database (TTD), Online Mendelian Inheritance in Man (OMIM), and GeneCards. Further validation through protein-protein interaction (PPI) networks, gene ontology, pathway analyses, boxplots, and overall survival metrics underscored the therapeutic potential of compounds such as 7-epi-eudesm-4(15)-ene-1ß, demethoxypiplartine, methyl 3,4,5-trimethoxycinnamate, 6-alpha-diol, and aristolodione. Notably, our findings reaffirm the relevance of lung cancer genes, such as CTNNB1, STAT3, HIF1A, HSP90AA1, and ERBB2, integral to various cellular processes and pivotal in cancer genesis and advancement. Molecular docking assessments revealed pronounced affinity between 6-alpha-diol and HIF1A, underscoring their potential as therapeutic agents for lung cancer. Conclusion: This study not only highlights the bioactive compounds of P. longum but also reinforces the molecular underpinnings of its anticancer mechanism, paving the way for future lung cancer therapeutics.


Subject(s)
Lung Neoplasms , Molecular Docking Simulation , Network Pharmacology , Piper , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Piper/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/chemistry , Protein Interaction Maps/drug effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/chemistry , Plants, Medicinal/chemistry
8.
Braz J Biol ; 84: e282198, 2024.
Article in English | MEDLINE | ID: mdl-39166687

ABSTRACT

Cutaneous leishmaniasis (CL) is considered a public health problem. Current treatments have disadvantages because they are invasive and have serious side effects, and thus there is a need for research into new, more effective pharmacological alternatives. Plants are promising sources of bioactive substances, and new analogues can be obtained through chemical reactions. The present study aimed to evaluate the antileishmanial effects of the analog dillapiole n-butyl ether (DBE) extracted from Piper aduncum leaves. The cytotoxic potential of DBE was evaluated at concentrations of 15.62 to 500 µM in peritoneal macrophages for 48 h, and in RAW 264.7 macrophages for 72 h using a dose-response method. The antileishmanial activity in L. amazonensis promastigotes used concentrations of 0.2 to 4.5 µM for 24, 48 and 72 h and the quantification of the cellular infection rate used a concentration of 4.5 µM of DBE against the amastigote forms internalized in macrophages for 24 h and 48 h. Nitric oxide was quantified from macrophages previously treated with DBE for 24 h and 48 h. The dosage of reactive oxygen species used a concentration of 4.5 µM of DBE incubated together with dichlorofluorescein acetate for 1, 3, 6, and 24 h. For the molecular modeling of DBE, the Leishmania protein, available in the "Protein Data Bank" database, was used. The studied molecule was not toxic to cells and presented a CC50 of 413 µM in peritoneal macrophages and 373.5 µM in RAW 264.7. The analogue inhibited promastigote forms of L. amazonensis with an IC50 of 1.6 µM for 72 h. DBE presented an infection rate of 17% and 12%, dillapiole of 24% and 14% and Pentacarinat® of 10% and 9% over 48 h. DBE demonstrated a binding energy of -7.8 for the U53 enzyme. It is concluded that the analogue showed promising antileishmanial activity for future in vivo tests.


Subject(s)
Antiprotozoal Agents , Macrophages, Peritoneal , Piper , Plant Extracts , Animals , Mice , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Piper/chemistry , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nitric Oxide , Mice, Inbred BALB C , Leishmania/drug effects , Time Factors , RAW 264.7 Cells , Dose-Response Relationship, Drug , Plant Leaves/chemistry , Leishmaniasis, Cutaneous/drug therapy
9.
J Chromatogr A ; 1732: 465208, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39088897

ABSTRACT

Piper gaudichaudianum Kunth essential oil (EO) is a natural source of bioactive components, having multiple therapeutic applications. Its chemical composition is highly variable, and strictly depends on abiotic factors, resulting in various biological activities. The present study details the utilization of multiple gas chromatographic techniques alongside nuclear magnetic resonance (NMR) spectroscopy to characterize the essential oil of Piper gaudichaudianum Kunth from Brazil. Seventy-six components were identified using GC-MS analysis, while enantio­selective multidimensional gas chromatography elucidated the enantiomeric distribution of eight chiral components, for the first time in the literature. Following GC-MS analysis, an unidentified component, constituting approximately 27 % of the total oil, prompted an isolation step through preparative gas chromatography. Through the combined use of nuclear magnetic resonance, GC-Fourier transform infrared spectroscopy (FTIR), and mass spectrometry (MS), the unknown molecule was structurally identified as 4-[(3E)­dec-3-en-1-yl]phenol. Remarkably, it was identified as a known molecule, gibbilimbol B, and not previously listed in any MS database. Subsequently, the spectrum was included in a commercial library, specifically the FFNSC 4.0 MS database, for the first time.


Subject(s)
Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Oils, Volatile , Piper , Piper/chemistry , Oils, Volatile/chemistry , Oils, Volatile/analysis , Brazil , Gas Chromatography-Mass Spectrometry/methods , Spectroscopy, Fourier Transform Infrared/methods , Plant Oils/chemistry , Chromatography, Gas/methods
10.
Drug Des Devel Ther ; 18: 2531-2553, 2024.
Article in English | MEDLINE | ID: mdl-38952486

ABSTRACT

The WHO Global Status Report on Oral Health 2022 reveals that oral diseases caused by infection with oral pathogenic microorganisms affect nearly 3.5 billion people worldwide. Oral health problems are caused by the presence of S. mutans, S. sanguinis, E. faecalis and C. albicans in the oral cavity. Synthetic anti-infective drugs have been widely used to treat oral infections, but have been reported to cause side effects and resistance. Various strategies have been implemented to overcome this problem. Synthetic anti-infective drugs have been widely used to treat oral infections, but they have been reported to cause side effects and resistance. Therefore, it is important to look for safe anti-infective alternatives. Ethnobotanical and ethnopharmacological studies suggest that Red Betel leaf (Piper crocatum Ruiz & Pav) could be a potential source of oral anti-infectives. This review aims to discuss the pathogenesis mechanism of several microorganisms that play an important role in causing health problems, the mechanism of action of synthetic oral anti-infective drugs in inhibiting microbial growth in the oral cavity, and the potential of red betel leaf (Piper crocatum Ruiz & Pav) as an herbal oral anti-infective drug. This study emphasises the importance of researching natural components as an alternative treatment for oral infections that is more effective and can meet global needs.


Subject(s)
Piper , Humans , Piper/chemistry , Mouth Diseases/drug therapy , Mouth Diseases/microbiology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Mouth/microbiology
11.
Cell Biochem Funct ; 42(5): e4095, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39004810

ABSTRACT

This study aimed to investigate the effects of the n-hexane fraction of the ethanolic seed extract of PG (NFESEPG) on hypertension induced by Nω-nitro-L-arginine methyl ester (L-NAME) in rats. Specifically, the study examined the impact of NFESEPG on blood pressure, oxidative stress markers, NO concentration, angiotensin-converting enzyme (ACE) and arginase activities, and cardiac biomarkers in hypertensive rats. The study involved collecting, identifying, and processing the PG plant to obtain the ethanolic seed extract. The extract was then partitioned with solvents to isolate the n-hexane fraction. Hypertension was induced in rats by oral administration of L-NAME for 10 days, while concurrent treatment with NFESEPG at two doses (200 and 400 mg/kg/day) was administered orally. Blood pressure was measured using a noninvasive tail-cuff method, and various biochemical parameters were assessed. Treatment with both doses of NFESEPG significantly reduced systolic and diastolic blood pressure in L-NAME-induced hypertensive rats. Additionally, NFESEPG administration increased NO concentration and decreased ACE and arginase activities, malondialdehyde (MDA) levels, and cardiac biomarkers in hypertensive rats. The findings indicate that NFESEPG effectively lowered blood pressure in hypertensive rats induced by L-NAME, potentially through mechanisms involving the modulation of oxidative stress, NO bioavailability, and cardiac biomarkers. These results suggest the therapeutic potential of NFESEPG in managing hypertension and related cardiovascular complications.


Subject(s)
Hexanes , Hypertension , NG-Nitroarginine Methyl Ester , Piper , Plant Extracts , Seeds , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hypertension/drug therapy , Hypertension/chemically induced , Hypertension/metabolism , Rats , NG-Nitroarginine Methyl Ester/pharmacology , Male , Seeds/chemistry , Hexanes/chemistry , Piper/chemistry , Blood Pressure/drug effects , Oxidative Stress/drug effects , Rats, Wistar , Nitric Oxide/metabolism , Arginase/metabolism , Peptidyl-Dipeptidase A/metabolism
12.
Environ Pollut ; 360: 124584, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39032548

ABSTRACT

Atmospheric pollution due to anthropogenic activities is a complex mixture of gasses and particulate matter (PM) that is currently one of the main causes of premature death in the world. Similarly, it is also capable of directly interfering with plant species by reducing their photosynthetic capacity and growth and killing cells. This work is about an observational study conducted in a region with two industries: a mine and an automobile parts manufacturer. Mining rocks is a source of PM in the air like that caused by other industrial activities. Twenty-five people that work or live in the industrial region cited (area A) and 25 people that live further away (area B) were selected to evaluate their vital signs and conduct a transthoracic echocardiogram. Leaves of Piper gaudichaudianum (Piperaceae), a native plant species, were also collected in both areas and evaluated in a laboratory. The PM accumulated on the leaves was evaluated using scanning electron microscopy (SEM) and inductively coupled plasma-optical emission spectrometry (ICP-OES). A statistical difference (P < 0.05) was verified for the levels of systolic blood pressure (SBP), diastolic blood pressure (DBP), and left ventricular mass index by echocardiography; the values were greater in people in area A. For the plant analysis, there was a statistical difference for all characters evaluated, chlorophyll levels, fresh mass, dry mass and leaf area were reduced, and thickness was greater in area A (P < 0.001). The PM analysis revealed a predominance of silicon, iron, and aluminum chemical elements. The present study suggests that particulate matter pollution is harmful to both humans and the flora.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter , Piper , Humans , Particulate Matter/analysis , Air Pollution/statistics & numerical data , Air Pollutants/analysis , Air Pollutants/toxicity , Piper/chemistry , Plant Leaves/chemistry , Biological Monitoring , Blood Pressure/drug effects , Environmental Monitoring/methods , Adult , Male , Middle Aged
13.
Planta Med ; 90(10): 792-800, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39013429

ABSTRACT

This work investigated interactions ascribed to the administration of phytomedicines containing Valeriana officinalis and Piper methysticum with conventional drugs. The phytomedicines were characterized by HPLC and administered per os to male Wistar rats, either concomitantly or not with the CYP3A substrate midazolam. To distinguish between the presystemic or systemic effect, midazolam was given orally and intravenously. The effects on the P-gp substrate fexofenadine uptake by Caco-2 cells were examined. The valerenic acid content was 1.6 ± 0.1 mg per tablet, whereas kavain was 13.7 ± 0.3 mg/capsule. Valerian and kava-kava extracts increased the maximum plasma concentration (Cmax) of midazolam 2- and 4-fold compared to the control, respectively. The area under the plasma concentrations versus time curve (AUC(0-∞)) was enhanced from 994.3 ± 152.3 ng.h/mL (control) to 3041 ± 398 ng.h/mL (valerian) and 4139 ± 373 ng.h/mL (kava-kava). The half-life of midazolam was not affected. These changes were attributed to the inhibition of midazolam metabolism by the enteric CYP3A since the i. v. pharmacokinetic of midazolam remained unchanged. The kava-kava extract augmented the uptake of fexofenadine by 3.5-fold compared to the control. Although Valeriana increased the uptake of fexofenadine, it was not statistically significant to that of the control (12.5 ± 3.7 ng/mg protein vs. 5.4 ± 0.3 ng/mg protein, respectively). Therefore, phytomedicines containing V. officinalis or P. methysticum inhibited the intestinal metabolism of midazolam in rats. Conversely, the P-gp-mediated transport of fexofenadine was preferably affected by kava-kava.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Cytochrome P-450 CYP3A , Kava , Midazolam , Plant Extracts , Rats, Wistar , Terfenadine , Valerian , Animals , Valerian/chemistry , Midazolam/pharmacokinetics , Midazolam/pharmacology , Male , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects , Terfenadine/analogs & derivatives , Terfenadine/pharmacokinetics , Humans , Caco-2 Cells , Rats , Kava/chemistry , Herb-Drug Interactions , Piper/chemistry , Indenes , Pyrones , Sesquiterpenes
14.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998933

ABSTRACT

Piper attenuatum Buch-Ham, a perennial woody vine belonging to the Piperaceae family, is traditionally used in Southeast Asia for treating various ailments such as malaria, headache, and hepatitis. This study described the isolation and identification of three new compounds, piperamides I-III (1-3), which belong to the maleimide-type alkaloid skeletons, along with fifteen known compounds (4-18) from the methanol extract of the aerial parts of P. attnuatum. Their chemical structures were elucidated using spectroscopic methods (UV, IR, ESI-Q-TOF-MS, and 1D/2D NMR). All the isolates were evaluated for their ability to inhibit IL-6 activity in the human embryonic kidney-Blue™ IL-6 cell line and their cytotoxic activity against ovarian cancer cell lines (SKOV3/SKOV3-TR) and chemotherapy-resistant variants (cisplatin-resistant A2780/paclitaxel-resistant SKOV3). The compounds 3, 4, 11, 12, 17, and 18 exhibited IL-6 inhibition comparable to that of the positive control bazedoxifene. Notably, compound 12 displayed the most potent anticancer effect against all the tested cancer cell lines. These findings highlight the importance of researching the diverse activities of both known and newly discovered natural products to fully unlock their potential therapeutic benefits.


Subject(s)
Antineoplastic Agents, Phytogenic , Interleukin-6 , Ovarian Neoplasms , Piper , Plant Components, Aerial , Plant Extracts , Humans , Interleukin-6/metabolism , Piper/chemistry , Female , Cell Line, Tumor , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Plant Components, Aerial/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Cell Proliferation/drug effects
15.
Fitoterapia ; 177: 106090, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906388

ABSTRACT

A chemical investigation of the aerial parts of Piper sarmentosum resulted in the isolation and identification of 14 amide alkaloids, including three new amide alkaloids, pipersarmenoids A - C (1-3), three new natural amide alkaloids, pipersarmenoids D - F (4-6), and 8 known analogues, N-p-coumaroyltyramine (7), piperlotine C (8), piperlotine D (9), pellitorine (10), sarmentine (11), aurantiamide acetate (12), 1-cinnamoyl pyrrolidine (13) and sarmentamide B (14). Their structures were determined by spectroscopic analysis including HRESIMS and 1D and 2D NMR. The cytotoxicity, neuroinflammation-inhibiting and acetylcholinesterase (AChE) inhibitory activities of those compounds were tested. Compounds 1, 2 and 12 inhibited NO production induced by LPS in BV2 cells with IC50 values of 9.36, 12.53 and 10.77 µM, respectively. Moreover, 1, 2, 7 and 11 showed moderate inhibitory activity on AChE with IC50 values ranging from 37.56 to 48.84 µM.


Subject(s)
Alkaloids , Cholinesterase Inhibitors , Phytochemicals , Piper , Plant Components, Aerial , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemistry , Piper/chemistry , Molecular Structure , Animals , Mice , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/isolation & purification , Plant Components, Aerial/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Cell Line , Amides/pharmacology , Amides/isolation & purification , Amides/chemistry , Nitric Oxide/metabolism , China , Microglia/drug effects , Fatty Acids, Unsaturated , Polyunsaturated Alkamides
16.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791458

ABSTRACT

Amblyomma sculptum is a species of tick in the family Ixodidae, with equids and capybaras among its preferred hosts. In this study, the acaricidal activity of the essential oil (EO) from Piper aduncum and its main component, Dillapiole, were evaluated against larvae of A. sculptum to establish lethal concentration values and assess the effects of these compounds on tick enzymes. Dillapiole exhibited slightly greater activity (LC50 = 3.38 mg/mL; 95% CI = 3.24 to 3.54) than P. aduncum EO (LC50 = 3.49 mg/mL; 95% CI = 3.36 to 3.62) against ticks. The activities of α-esterase (α-EST), ß-esterase (ß-EST), and glutathione-S-transferase (GST) enzymes in A. sculptum larvae treated with Dillapiole showed a significant increase compared to the control at all concentrations (LC5, LC25, LC50 and LC75), similar results were obtained with P. aduncum EO, except for α-EST, which did not differ from the control at the highest concentration (LC75). The results of the acetylcholinesterase (AChE) activity show an increase in enzyme activity at the two lower concentrations (LC5 and LC25) and a reduction in activity at the two higher, lethal concentrations (LC50 and LC75) compared to the control. These results suggest potential mechanisms of action for these natural acaricides and can provide guidance for the future development of potential plant-derived formulations.


Subject(s)
Acaricides , Acetylcholinesterase , Amblyomma , Oils, Volatile , Piper , Animals , Acaricides/pharmacology , Acetylcholinesterase/metabolism , Allyl Compounds , Amblyomma/drug effects , Amblyomma/growth & development , Benzodioxoles/pharmacology , Cholinesterase Inhibitors/pharmacology , Dioxoles , Esterases/metabolism , Glutathione Transferase/metabolism , Inactivation, Metabolic , Larva/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Piper/chemistry
17.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675573

ABSTRACT

The repellent capacity against Sitophilus zeamais and the in vitro inhibition on AChE of 11 essential oils, isolated from six plants of the northern region of Colombia, were assessed using a modified tunnel-type device and the Ellman colorimetric method, respectively. The results were as follows: (i) the degree of repellency (DR) of the EOs against S. zeamais was 20-68% (2 h) and 28-74% (4 h); (ii) the IC50 values on AChE were 5-36 µg/mL; likewise, the %inh. on AChE (1 µg/cm3 per EO) did not show any effect in 91% of the EO tested; (iii) six EOs (Bursera graveolens-bark, B. graveolens-leaves, B. simaruba-bark, Peperomia pellucida-leaves, Piper holtonii (1b*)-leaves, and P. reticulatum-leaves) exhibited a DR (53-74%) ≥ C+ (chlorpyrifos-61%), while all EOs were less active (8-60-fold) on AChE compared to chlorpyrifos (IC50 of 0.59 µg/mL). Based on the ANOVA/linear regression and multivariate analysis of data, some differences/similarities could be established, as well as identifying the most active EOs (five: B. simaruba-bark, Pep. Pellucida-leaves, P. holtonii (1b*)-leaves, B. graveolens-bark, and B. graveolens-leaves). Finally, these EOs were constituted by spathulenol (24%)/ß-selinene (18%)/caryophyllene oxide (10%)-B. simaruba; carotol (44%)/dillapiole (21%)-Pep. pellucida; dillapiole (81% confirmed by 1H-/13C-NMR)-P. holtonii; mint furanone derivative (14%)/mint furanone (14%)-B. graveolens-bark; limonene (17%)/carvone (10%)-B. graveolens-leaves.


Subject(s)
Cholinesterase Inhibitors , Insect Repellents , Oils, Volatile , Polycyclic Sesquiterpenes , Animals , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Colombia , Insect Repellents/pharmacology , Insect Repellents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Piper/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/pharmacology , Weevils/enzymology , Weevils/drug effects , Sesquiterpenes, Eudesmane/chemistry , Sesquiterpenes, Eudesmane/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology
18.
Fitoterapia ; 175: 105951, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583637

ABSTRACT

Four undescribed amide alkaloids hongkongensines A-C and 1-(1-oxo-6-hydroxy-2E,4E-dodecadienyl)-piperidine, five known amide alkaloids, and three known neolignans were isolated from the aerial part of Piper hongkongense. The planar structures of these compounds were determined by detailed analyses of HR-ESI-MS and NMR data. The absolute configurations of hongkongensines A-C were elucidated by single-crystal X-ray diffraction analysis and ECD calculations. Moreover, the inhibitory activities of PCSK9 expression in vitro for all compounds were assessed by PCSK9 AlphaLISA screening. Kadsurenone (10) displayed a significant inhibitory activity at 5 µM with an inhibition rate of 51.98%, compared with 55.55% of berberine (BBR 5 µM).


Subject(s)
Alkaloids , Lignans , PCSK9 Inhibitors , Phytochemicals , Piper , Plant Components, Aerial , Piper/chemistry , Molecular Structure , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemistry , Lignans/pharmacology , Lignans/isolation & purification , Humans , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Plant Components, Aerial/chemistry , Amides/pharmacology , Amides/isolation & purification , Amides/chemistry , Proprotein Convertase 9/metabolism , China
19.
Environ Sci Pollut Res Int ; 31(23): 33454-33463, 2024 May.
Article in English | MEDLINE | ID: mdl-38684608

ABSTRACT

Synthetic insecticides have been the primary approach in controlling Aedes aegypti; however, their indiscriminate use has led to the development of resistance and toxicity to non-target animals. In contrast, essential oils (EOs) are alternatives for vector control. This study investigated the mechanism of larvicidal action of the EO and ß-caryophyllene from Piper tuberculatum against A. aegypti larvae, as well as evaluated the toxicity of both on non-target animals. The EO extracted from P. tuberculatum leaves was majority constituted of ß-caryophyllene (54.8%). Both demonstrated larvicidal activity (LC50 of 48.61 and 57.20 ppm, p < 0.05), acetylcholinesterase inhibition (IC50 of 57.78 and 71.97 ppm), and an increase in the production of reactive oxygen and nitrogen species in larvae after exposure to the EO and ß-caryophyllene. Furthermore, EO and ß-caryophyllene demonstrate no toxicity to non-target animals Toxorhynchites haemorrhoidalis, Anisops bouvieri, and Diplonychus indicus (100% of survival rate), while the insecticide α-cypermethrin was highly toxic (100% of death). The results demonstrate that the EO from P. tuberculatum and ß-caryophyllene are important larvicidal agents.


Subject(s)
Aedes , Insecticides , Larva , Oils, Volatile , Piper , Polycyclic Sesquiterpenes , Animals , Aedes/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Piper/chemistry , Larva/drug effects , Plant Leaves/chemistry
20.
J Ethnopharmacol ; 330: 118254, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38670409

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gout, a painful joint disease with a prevalence ranging from 0.86% to 2.2% in China over the past decade. Traditional medicine has long utilized the medicinal and edible Piper longum L. (PL) fruit spikes for treating gout and other joint conditions like rheumatoid arthritis. However, the exact mechanisms behind its effectiveness remain unclear. AIM OF THE STUDY: This study aimed to investigate the potential of alcoholic extracts from PL fruit spikes as a safe and effective treatment for gout. We used a combined network pharmacology and experimental validation approach to evaluate the mechanisms behind the anti-gout properties of PL. MATERIALS AND METHODS: UPLC-Q/TOF-MS analysis determined the major components of PL. Subsequently, network pharmacology analysis predicted potential molecular targets and related signaling pathways for the anti-gout activity of PL. Molecular docking simulations further explored the interactions between PL compounds and proteins and characterized the properties of potential bioactive secondary metabolites. Mouse models of air pouch inflammation and hyperuricemia were further established, and the anti-gout mechanism of PL was confirmed by examining the expression of proteins related to the MAPK and PI3K-AKT pathways in the tissue. RESULTS: Our analysis revealed 220 bioactive secondary metabolites within PL extracts. Network pharmacology and molecular docking results indicated that these metabolites primarily combat gout by modulating the PI3K-AKT and MAPK signaling pathways. In vivo experiments have also proven that PL at a dose of 100 mg/kg can optimally reduce acute inflammation of gout and kidney damage caused by high uric acid. The anti-gout mechanism involves the PI3K-AKT/MAPK signaling pathway and its downstream NF-κB pathway. CONCLUSION: This study provides compelling evidence for PL's therapeutic potential in gout management by modulating key inflammatory pathways. The findings offer a strong foundation for future clinical exploration of PL as a gout treatment option.


Subject(s)
Gout , Phosphatidylinositol 3-Kinases , Piper , Plant Extracts , Proto-Oncogene Proteins c-akt , Animals , Piper/chemistry , Gout/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Mice , Male , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Signal Transduction/drug effects , Network Pharmacology , Hyperuricemia/drug therapy , Mice, Inbred C57BL , Gout Suppressants/pharmacology , Gout Suppressants/therapeutic use , Gout Suppressants/isolation & purification , Fruit/chemistry , Disease Models, Animal , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL