Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.081
Filter
1.
Food Chem ; 462: 140986, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208737

ABSTRACT

Harvest season exerts great influence on tea quality. Herein, the variations in non-volatile flavor substances in spring and summer fresh tea leaves of four varieties were comprehensively investigated by integrating UHPLC-Q-Exactive based lipidomics and metabolomics. A total of 327 lipids and 99 metabolites were detected, among which, 221 and 58 molecules were significantly differential. The molecular species of phospholipids, glycolipids and acylglycerolipids showed most prominent and structure-dependent seasonal changes, relating to polar head, unsaturation and total acyl length. Particularly, spring tea contained higher amount in aroma precursors of highly unsaturated glycolipids and phosphatidic acids. The contents of umami-enhancing amino acids and phenolic acids, e.g., theanine, theogallin and gallotannins, were increased in spring. Besides, catechins, theaflavins, theasinensins and flavone/flavonol glycosides showed diverse changes. These phytochemical differences covered key aroma precursors, tastants and colorants, and may confer superior flavor of black tea processed using spring leaves, which was verified by sensory evaluation.


Subject(s)
Camellia sinensis , Flavoring Agents , Lipidomics , Mass Spectrometry , Metabolomics , Plant Leaves , Seasons , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Chromatography, High Pressure Liquid , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Humans , Taste , Odorants/analysis , Lipids/analysis , Lipids/chemistry
2.
Physiol Plant ; 176(5): e14556, 2024.
Article in English | MEDLINE | ID: mdl-39356004

ABSTRACT

Nigrospora oryzae, a newly identified pathogen, is responsible for poplar leaf blight, causing significant harm to poplar growth. Here, we describe, for the first time, a biological control method for the control of poplar leaf blight via the applications of 3 dominant Trichoderma strains/species. In this study, dominant Trichoderma species/strains with the potential for biocontrol were identified and then further characterised via dual culture assays, volatile organic compounds (VOCs), and culture filtrates. The biocontrol efficacy of these strains against N. oryzae was found to exceed 60%. Furthermore, the reactive oxygen species (ROS) content in Populus davidiana × P. alba var. pyramidalis (PdPap) leaves pretreated with these Trichoderma strains significantly decreased. Furthermore, pretreatment of PdPap with a combination of these Trichoderma (Tcom) resulted in 9.71-fold and 1.95-fold increases in peroxidase (POD) and superoxide dismutase (SOD) activity, respectively, and 3.87-fold decrease in the MDA content compared to controls. Moreover, Tcom pretreatment activated the salicylic acid (SA) and jasmonic acid (JA) pathway-dependent defence responses of poplar, upregulating pathogenesis-related protein (PR) and MYC proto-oncogene (MYC-R) by more than 12-fold and 17.32-fold, respectively. In addition, Trichoderma treatments significantly increased the number of lateral roots, aboveground biomass, and stomata number and density of PdPap, and Tcom was superior to the single pretreatments. The soil pH also became weakly acidic in these pretreatments, which is beneficial for the growth of PdPap seedlings. These findings indicate that these dominant Trichoderma strains can effectively increase biocontrol and poplar growth promotion.


Subject(s)
Ascomycota , Plant Diseases , Plant Leaves , Populus , Populus/microbiology , Populus/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Ascomycota/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Trichoderma/physiology , Oxylipins/metabolism , Cyclopentanes/metabolism , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Volatile Organic Compounds/metabolism , Biological Control Agents
3.
PeerJ ; 12: e18119, 2024.
Article in English | MEDLINE | ID: mdl-39351367

ABSTRACT

Atmospheric particulate matter (PM) pollution has become a major environmental risk, and green plants can mitigate air pollution by regulating their enzymatic activity, osmoregulatory substances, photosynthetic pigments, and other biochemical characteristics. The present investigation aims to evaluate the mitigation potential of five common evergreen tree species (Photinia serrulata, Ligustrum lucidum, Eriobotrya japonica, Euonymus japonicus, Pittosporum tobira) against air pollution and to assess the effect of dust retention on plant physiological functions exposed to three different pollution levels (road, campus, and park). The results found that the amount of dust retained per unit leaf area of the plants was proportional to the mass concentration of atmospheric particulate matter in the environment, and that dust accumulation was higher on the road and campus than in the park. There were significant differences in dust retention among the five tree species, with the highest leaf dust accumulation observed for E. japonica (5.45 g·m-2), and the lowest for P. tobira (1.53 g·m-2). In addition, the increase in PM adsorption by different plants was uneven with increasing pollution levels, with significant decreases in chlorophyll content, photosynthetic and transpiration rate. From a physiological perspective, P. tobira exhibited greater potential to respond to PM pollution. Biochemical indicators suggested that PM pollution caused changes in plant protective enzyme activities, with a decrease in superoxide dismutase (SOD) and peroxidase (POD) activities, as well as promoting membrane lipid peroxidation, and appropriate stress also enables plants to counteract oxidative damage. In particular, PM exposure also induced stomatal constriction. Overall, PM retention was significantly associated with physiological and photosynthetic traits. In conclusion, our study contributes to the understanding of the effects of PM on plant physiology. Furthermore, it also provides insights into the selection of plants that are tolerant to PM pollution.


Subject(s)
Air Pollutants , Particulate Matter , Photosynthesis , Particulate Matter/adverse effects , Particulate Matter/toxicity , China , Photosynthesis/drug effects , Air Pollutants/adverse effects , Air Pollutants/analysis , Chlorophyll/metabolism , Trees/drug effects , Trees/metabolism , Ligustrum/chemistry , Euonymus/metabolism , Euonymus/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/chemistry , Dust/analysis , Air Pollution/adverse effects
4.
Nat Commun ; 15(1): 8496, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39353951

ABSTRACT

Host defenses can have broader ecological roles, but how they shape natural microbiome recruitment is poorly understood. Aliphatic glucosinolates (GLSs) are secondary defense metabolites in Brassicaceae plant leaves. Their genetically defined structure shapes interactions with pests in Arabidopsis thaliana leaves, and here we find that it also shapes bacterial recruitment. In model genotype Col-0, GLSs (mostly 4-methylsulfinylbutyl-GLS) have no clear effect on natural leaf bacterial recruitment. In a genotype from a wild population, however, GLSs (mostly allyl-GLS) enrich specific taxa, mostly Comamonadaceae and Oxalobacteraceae. Consistently, Comamonadaceae are also enriched in wild A. thaliana, and Oxalobacteraceae are enriched from wild plants on allyl-GLS as carbon source, but not on 4-methylsulfinylbutyl-GLS. Recruitment differences between GLS structures most likely arise from bacterial myrosinase specificity. Community recruitment is then defined by metabolic cross-feeding among bacteria. The link of genetically defined metabolites to recruitment could lead to new strategies to shape plant microbiome balance.


Subject(s)
Arabidopsis , Glucosinolates , Microbiota , Plant Leaves , Glucosinolates/metabolism , Plant Leaves/metabolism , Arabidopsis/metabolism , Arabidopsis/microbiology , Metabolic Networks and Pathways , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Genotype , Glycoside Hydrolases/metabolism
5.
Sci Rep ; 14(1): 22824, 2024 10 01.
Article in English | MEDLINE | ID: mdl-39354093

ABSTRACT

Nitrogen deficiency in low organic matter soils significantly reduces crop yield and plant health. The effects of foliar applications of indole acetic acid (IAA), trehalose (TA), and nanoparticles-coated urea (NPCU) on the growth and physiological attributes of tomatoes in nitrogen-deficient soil are not well documented in the literature. This study aims to explore the influence of IAA, TA, and NPCU on tomato plants in nitrogen-deficient soil. Treatments included control, 2mM IAA, 0.1% TA, and 2mM IAA + 0.1% TA, applied with and without NPCU. Results showed that 2mM IAA + 0.1% TA with NPCU significantly improved shoot length (~ 30%), root length (~ 63%), plant fresh (~ 48%) and dry weight (~ 48%), number of leaves (~ 38%), and leaf area (~ 58%) compared to control (NPCU only). Additionally, significant improvements in chlorophyll content, total protein, and total soluble sugar, along with a decrease in antioxidant activity (POD, SOD, CAT, and APX), validated the effectiveness of 2mM IAA + 0.1% TA with NPCU. The combined application of 2mM IAA + 0.1% TA with NPCU can be recommended as an effective strategy to enhance tomato growth and yield in nitrogen-deficient soils. This approach can be integrated into current agricultural practices to improve crop resilience and productivity, especially in regions with poor soil fertility. To confirm the efficacy of 2mM IAA + 0.1% TA with NPCU in various crops and climatic conditions, additional field studies are required.


Subject(s)
Indoleacetic Acids , Nitrogen , Soil , Solanum lycopersicum , Trehalose , Urea , Zinc Oxide , Solanum lycopersicum/growth & development , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism , Nitrogen/metabolism , Soil/chemistry , Trehalose/pharmacology , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Nanoparticles/chemistry , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Plant Leaves/growth & development , Plant Leaves/drug effects , Plant Leaves/metabolism , Fertilizers
6.
BMC Plant Biol ; 24(1): 920, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39354343

ABSTRACT

Populus cathayana × canadansis 'Xinlin 1' ('P.'xin lin 1') with the characteristics of rapid growth and high yield, is frequently attacked by herbivorous insects. However, little is known about how it defenses against Hyphantria cunea (H. cunea) at molecular and biochemical levels. Differences in the transcriptome and metabolome were analyzed after 'P. 'xin lin 1' leaves were fed to H. cunea for 0h, 2h, 4h, 8h, 16h and 24h. In the five comparison groups including 2h vs. CK, 4h vs. CK, 8h vs. CK, 16h vs. CK, and 24h vs. CK, a total of 8925 genes and 842 metabolites were differentially expressed. A total of 825 transcription factors (TFs) were identified, which encoded 56 TF families. The results showed that the top four families with the highest number of TFs were AP2/ERF, MYB, C2C2, bHLH. Analyses of leaves which were fed to H. cunea showed that the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were significantly enriched in plant hormone signal transduction pathway, MAPK signaling pathway, flavonoid, flavone and flavonol and anthocyanin biosynthesis pathway. Additionally, there were a number of genes significantly up-regulated in MAPK signaling pathway. Some compounds involved in plant hormone signal transduction and flavonoid/flavone and flavonol/ anthocyanin pathways such as jasmonic acid (JA), jasmonoyl-L-Isoleucine (JA-Ile), kaempferol and cyanidin-3-O-glucoside were induced in infested 'P.'xin lin 1'. This study provides a new understanding for exploring the dynamic response mechanism of poplar to the infestation of H. cunea.


Subject(s)
Populus , Transcriptome , Populus/genetics , Populus/metabolism , Herbivory , Animals , Metabolome , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Leaves/genetics , Gene Expression Profiling , Metabolomics , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
7.
Sci Rep ; 14(1): 23186, 2024 10 05.
Article in English | MEDLINE | ID: mdl-39369059

ABSTRACT

This study extends our prior research on drought responses in three date palm cultivars (Khalas, Reziz, and Sheshi) under controlled conditions. Here, we investigated their drought stress adaptive strategies under ambient environment. Under natural field drought conditions, three date palm cultivars experienced significantly (p ≤ 0.05) varying regulations in their physiological attributes. Specifically, chlorophyll content, leaf RWC, photosynthesis, stomatal conductance, and transpiration reduced significantly, while intercellular CO2 concentration and water use efficiency increased. Through suppression subtraction hybridization (SSH), a rich repertoire (1026) of drought-responsive expressed sequence tags (ESTs) were identified: 300 in Khalas, 343 in Reziz, and 383 in Sheshi. Functional analysis of ESTs, including gene annotation and KEGG pathways elucidation, unveiled that these cultivars withstand drought by leveraging indigenous and multifaceted pathways. While some pathways aligned with previously reported drought resilience mechanism observed under controlled conditions, several new indigenous pathways were noted, pinpointing cultivar-specific adaptations. ESTs identified in three date palm cultivars were enriched through GSEA analysis. Khalas exhibited enrichment in cellular and metabolic processes, catalytic activity, and metal ion binding. Reziz showed enrichment in biological regulation, metabolic processes, signaling, and nuclear functions. Conversely, Sheshi displayed enrichment in organelle, photosynthetic, and ribosomal components. Notably, ca. 50% of the ESTs were unique and novel, underlining the complexity of their adaptive genetic toolkit. Overall, Khalas displayed superior drought tolerance, followed by Reziz and Sheshi, highlighting cultivar-specific variability in adaptation. Conclusively, date palm cultivars exhibited diverse genetic and physiological strategies to cope with drought, demonstrating greater complexity in their resilience compared to controlled settings.


Subject(s)
Droughts , Expressed Sequence Tags , Gene Expression Regulation, Plant , Phoeniceae , Photosynthesis , Phoeniceae/genetics , Phoeniceae/physiology , Photosynthesis/genetics , Stress, Physiological/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Chlorophyll/metabolism , Adaptation, Physiological/genetics
8.
Physiol Plant ; 176(5): e14552, 2024.
Article in English | MEDLINE | ID: mdl-39377134

ABSTRACT

The biosynthesis and accumulation of secondary metabolites play a vital role in determining the quality of medicinal plants, with carbohydrate metabolism often influencing secondary metabolism. To understand the potential regulatory mechanism, exogenous sugars (sucrose, glucose/fructose) were applied to the leaves of Cyclocarya paliurus, a highly valued and multiple function tree species. The results showed that exogenous sugars enhanced the accumulation of soluble sugar and starch while increasing the enzyme activity related to carbohydrate metabolism. In addition, the plant height was increased by a mixture of exogenous mixed sugars, the addition of sucrose promoted the net photosynthetic rate, while all types of exogenous sugars facilitated the accumulation of flavonoids and terpenoids. Based on weighted gene co-expression network analysis (WGCNA), two key gene modules and four candidate transcription factors (TFs) related to carbohydrate metabolism and secondary metabolite biosynthesis were identified. A correlation analysis between transcriptome and metabolome data showed that exogenous sugar up-regulated the expression of key structural genes in the flavonoid and terpenoid biosynthetic pathway. The expression levels of the four candidate TFs, TIFY 10A, WRKY 7, EIL 3 and RF2a, were induced by exogenous sugar and were strongly correlated with the key structural genes, which enhanced the synthesis of specific secondary metabolites and some plant hormone signal pathways. Our results provide a comprehensive understanding of key factors in the quality formation of medicinal plants and a potential approach to improve the quality.


Subject(s)
Gene Expression Regulation, Plant , Juglandaceae , Secondary Metabolism , Juglandaceae/metabolism , Juglandaceae/genetics , Gene Expression Regulation, Plant/drug effects , Secondary Metabolism/genetics , Flavonoids/metabolism , Flavonoids/biosynthesis , Plant Leaves/metabolism , Plant Leaves/genetics , Sugars/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Carbohydrate Metabolism , Terpenes/metabolism , Sucrose/metabolism , Transcriptome/genetics , Photosynthesis , Metabolome/drug effects , Starch/metabolism
9.
BMC Genomics ; 25(1): 924, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363277

ABSTRACT

Heterosis, recognized for improving crop performance, especially in the first filial (F1) generation, remains an area of significant study in the tobacco industry. The low utilization of leaf veins in tobacco contributes to economic inefficiency and resource waste. Despite the positive impacts of heterosis on crop genetics, investigations into leaf-vein ratio heterosis in tobacco have been lacking. Understanding the mechanisms underlying negative heterosis in leaf vein ratio at the molecular level is crucial for advancing low vein ratio leaf breeding research. This study involved 12 hybrid combinations and their parental lines to explore heterosis associated with leaf vein ratios. The hybrids displayed diverse patterns of positive or negative leaf vein ratio heterosis across different developmental stages. Notably, the F1 hybrid (G70 × Qinggeng) consistently exhibited substantial negative heterosis, reaching a maximum of -19.79% 80 days after transplanting. A comparative transcriptome analysis revealed that a significant proportion of differentially expressed genes (DEGs), approximately 39.04% and 23.73%, exhibited dominant and over-dominant expression patterns, respectively. These findings highlight the critical role of non-additive gene expression, particularly the dominance pattern, in governing leaf vein ratio heterosis. The non-additive genes, largely associated with various GO terms such as response to abiotic stimuli, galactose metabolic process, plant-type cell wall organization, auxin-activated signaling pathway, hydrolase activity, and UDP-glycosyltransferase activity, were identified. Furthermore, KEGG enrichment analysis unveiled their involvement in phenylpropanoid biosynthesis, galactose metabolism, plant hormone signal transduction, glutathione metabolism, MAPK signaling pathway, starch, and sucrose metabolism. Among the non-additive genes, we identified some genes related to leaf development, leaf size, leaf senescence, and cell wall extensibility that showed significantly lower expression in F1 than in its parents. These results indicate that the non-additive expression of genes plays a key role in the heterosis of the leaf vein ratio in tobacco. This study marks the first exploration into the molecular mechanisms governing leaf vein ratio heterosis at the transcriptome level. These findings significantly contribute to understanding leaf vein ratios in tobacco breeding strategies.


Subject(s)
Hybrid Vigor , Nicotiana , Plant Leaves , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Hybrid Vigor/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , Transcriptome
10.
BMC Plant Biol ; 24(1): 928, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367330

ABSTRACT

Dinanath grass (Pennisetum pedicellatum Trin.) is an extensively grown forage grass known for its significant drought resilience. In order to comprehensively grasp the adaptive mechanism of Dinanath grass in response to water deficient conditions, transcriptomic and metabolomics were applied in the leaves of Dinanath grass exposed to two distinct drought intensities (48-hour and 96-hour). Transcriptomic analysis of Dinanath grass leaves revealed that a total of 218 and 704 genes were differentially expressed under 48- and 96-hour drought conditions, respectively. The genes that were expressed differently (DEGs) and the metabolites that accumulated in response to 48-hour drought stress mainly showed enrichment in the biosynthesis of secondary metabolites, particularly phenolics and flavonoids. Conversely, under 96-hour drought conditions, the enriched pathways predominantly involved lipid metabolism, specifically sterol lipids. In particular, phenylpropanoid pathway and brassinosteroid signaling played a crucial role in drought response to 48- and 96-hour water deficit conditions, respectively. This variation in drought response indicates that the adaptation mechanism in Dinanath grass is highly dependent on the intensity of drought stress. In addition, different genes associated with phenylpropanoid and fatty acid biosynthesis, as well as signal transduction pathways namely phenylalanine ammonia-lyase, putrescine hydroxycinnamoyl transferase, abscisic acid 8'-hydroxylase 2, syntaxin-61, lipoxygenase 5, calcium-dependent protein kinase and phospholipase D alpha one, positively regulated with drought tolerance. Combined transcriptomic and metabolomic analyses highlights the outstanding involvement of regulatory pathways related to secondary cell wall thickening and lignin biosynthesis in imparting drought tolerance to Dinanath grass leaves. These findings collectively contribute to an enhanced understanding of candidate genes and key metabolites relevant to drought response in Dinanath grass. Furthermore, they establish a groundwork for the creation of a transcriptome database aimed at developing abiotic stress-tolerant grasses and major crop varieties through both transgenic and genome editing approaches.


Subject(s)
Droughts , Gene Expression Profiling , Pennisetum , Transcriptome , Pennisetum/genetics , Pennisetum/physiology , Pennisetum/metabolism , Metabolomics , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Adaptation, Physiological/genetics , Metabolome , Stress, Physiological/genetics
11.
Cell Mol Biol (Noisy-le-grand) ; 70(9): 170-175, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39380262

ABSTRACT

The effect of methyl jasmonate (MeJA) foliar spray on the activity of antioxidant enzymes-Superoxide dismutase (SOD), Catalase (CAT), Ascorbate peroxidase (APX), and Guaiacol peroxidase (GPX)-along with assessments of total phenolic and flavonoid contents and antioxidant activity (IC50), was examined in Prickly lettuce (Lactuca serriola L.). The study involved treating plants with three MeJA solutions (0, 200, and 400 µM) and harvesting samples at four distinct time intervals. Varied MeJA concentrations and time intervals resulted in a substantial increase in the activity of all the antioxidant enzymes investigated in this study. Both concentration levels and time courses exhibited progressive outcomes. Moreover, MeJA treatment led to elevated levels of total phenolic and flavonoid contents, reaching peaks of 17.02 (mg GAL/g DW) and 8.3 (mg QUE/g DW), respectively, particularly in response to the 400 µM concentration. However, the total flavonoid content did not show any significant variation between the two concentrations. Based on the half-maximal inhibitory concentration (IC50) values, the antioxidant activity in MeJA-treated plants was found to be lower compared to the controls. However, our findings suggest that, under specific conditions discussed in this study, MeJA has the potential to enhance the nutritional value of L. serriola.


Subject(s)
Acetates , Antioxidants , Catalase , Cyclopentanes , Flavonoids , Lactuca , Oxylipins , Superoxide Dismutase , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Acetates/pharmacology , Antioxidants/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Lactuca/drug effects , Lactuca/metabolism , Superoxide Dismutase/metabolism , Catalase/metabolism , Phenols/metabolism , Ascorbate Peroxidases/metabolism , Peroxidase/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/chemistry
12.
Biotechnol Bioeng ; 121(10): 3319-3328, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39382055

ABSTRACT

Plant molecular farming is currently operating a transition from soil-based cultures toward hydroponic systems. In this study, we designed a whole-plant NFT (nutrient film technique) platform for the transient expression of influenza virus-like particles harboring hemagglutinin H1 proteins in Nicotiana benthamiana. In particular, we examined the effects of plant density during the post-infiltration expression phase on plant growth and H1 yield in relation to the daily light integral (DLI) received by the crop and the exogenous application of 6-BAP cytokinin (CK). We expected from previous work that high DLI and CK treatments would stimulate the development of highly productive leaves on axillary (secondary) stems and thereby improve the H1 yield at the whole-plant scale. Increasing plant density from 35.7 to 61 plants m-2 during the post-infiltration phase significantly decreased the proportion of axillary leaf biomass by 30% and H1 yield per plant by 39%, resulting in no additional yield gain on a whole-crop area basis. Adding CK to the recirculated nutrient solution decreased the harvested leaf biomass by 31% and did not enhance the relative proportion of S leaves of the plants as previously reported with foliar CK application. There was a 36% increase in H1 yield when doubling the DLI from 14 to 28 mol m-2 s-1, and up to 71% yield gain when combining such an increase in DLI with the hydroponic CK treatment. Contrary to our expectations, leaves located on the main stem, particularly those from the upper half of the plant (i.e., eighth leaf and above), contributed about 80% of total H1 yield. Our study highlights the significantly different phenotype (~30% less secondary leaf biomass) and divergent responses to light and CK treatments of NFT-grown N. benthamiana plants compared to previous studies conducted on potted plants.


Subject(s)
Cytokinins , Hydroponics , Light , Nicotiana , Recombinant Proteins , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Cytokinins/pharmacology , Cytokinins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plant Leaves/metabolism , Plant Leaves/growth & development
13.
Physiol Plant ; 176(5): e14566, 2024.
Article in English | MEDLINE | ID: mdl-39385348

ABSTRACT

In subtropical regions, April to June represents a temporary moisture stress for mango trees, leading to huge economic loss. Although water is available in the deep root zone, the upper soil surface, which has fibrous roots, is dry, and the tree transpiration rate is high. Moisture stress causes an increased oxidation state, which is detrimental to fruit growth and development. Finding substitutes for moisture stress management is important for sustainable mango production. To manage this moisture stress in mango, we tested if foliar application of 20, 50, 100 and 150 µM melatonin helped to maintain a reduced oxidation state in the cells. Applications were made at three phenological stages of fruit development (marble, egg and mature fruit stages) in 16-year-old trees and the same plants for each treatment were followed over three years. Melatonin application indeed improved the fruit yield of mango. Moisture stress decreased yield by 55.94% compared to irrigated trees but only by 7.5% in melatonin treatment. Also, more 'A' grade fruits were harvested in irrigated and melatonin-treated conditions than in non-irrigated and non-treated conditions. Indeed, the total chlorophyll content in the leaves of moisture-stressed melatonin-treated trees (12.58 mg.g-1 fresh weight) was well above non-treated trees (6.77 mg.g-1) and similar to irrigated trees (12.50 mg.g-1). A dose-dependent increase in the chlorophyll content of melatonin-treated plants was found. Similarly, the activities of catalase, peroxidase, superoxidase dismutase enzymes in leaves of irrigated and melatonin-treated trees were lower than in non-irrigated condition, and superoxide free radial formation was lower in moisture-stressed melatonin-treated trees (0.77 nmol H2O2.mg-1 protein) and irrigated trees (0.65) than moisture-stressed non-treated trees (4.27). Significant variations was found in antioxidants (total, reduced and oxidized glutathione and ascorbate) content and antioxidant enzymes' activities (i.e., glutathione reductase and ascorbate peroxidase) in irrigated, melatonin-treated and non-irrigated conditions. Overall, 150 µM exogenous melatonin applied three times at different fruit development stages may be a sustainable and useful approach to manage transient moisture stress in mango trees thanks to its positive action on the antioxidant system.


Subject(s)
Mangifera , Melatonin , Oxidative Stress , Mangifera/drug effects , Mangifera/physiology , Mangifera/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Oxidative Stress/drug effects , Fruit/drug effects , Fruit/physiology , Fruit/growth & development , Water/metabolism , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Leaves/metabolism , Antioxidants/metabolism , Chlorophyll/metabolism , Stress, Physiological/drug effects
14.
Plant Cell Rep ; 43(11): 258, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384635

ABSTRACT

KEY MESSAGE: Hydrogen peroxide promoted leaf senescence by sulfenylating the magnesium chelating protease I subunit (CHLI1) in the chlorophyll synthesis pathway, and inhibited its activity to reduce chlorophyll synthesis. Leaf senescence is the final and crucial stage of plant growth and development, during which chlorophyll experiences varying degrees of destruction. It is well-known that the higher ROS accumulation is a key factor for leaf senescence, but whether and how ROS regulates chlorophyll synthesis in the process are unknown. Here, we report that H2O2 inhibits chlorophyll synthesis during leaf senescence via the I subunit of magnesium-chelatase (CHLI1). During leaf senescence, the decrease of chlorophyll content is accompanied by the increase of H2O2 accumulation, as well as the inhibition of catalase (CAT) genes expression. The mutant cat2-1, with increased H2O2 shows an accelerated senescence phenotype and decreased CHLI1 activity compared with the wild type. H2O2 inhibits CHLI1 activity by sulfenylating CHLI1 during leaf senescence. Consistent with this, the chli1 knockout mutant displays the same premature leaf senescence symptom as cat2-1, while overexpression of CHLI1 in cat2-1 can partially restore its early senescence phenotype. Taken together, these results illustrate that CAT2-mediated H2O2 accumulation during leaf senescence represses chlorophyll synthesis through sulfenylating CHLI1, and thus inhibits its activity, providing a new insight into the pivotal role of chlorophyll synthesis as a participant in orchestrating the leaf senescence.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Catalase , Chlorophyll , Gene Expression Regulation, Plant , Hydrogen Peroxide , Plant Leaves , Plant Senescence , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/drug effects , Plant Leaves/growth & development , Chlorophyll/metabolism , Hydrogen Peroxide/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Senescence/genetics , Gene Expression Regulation, Plant/drug effects , Catalase/metabolism , Reactive Oxygen Species/metabolism , Lyases
15.
Sci Rep ; 14(1): 23633, 2024 10 09.
Article in English | MEDLINE | ID: mdl-39384837

ABSTRACT

Defoliation is a primary agronomic traits, its variation depends on different plant species or cultivars. The present article assess the leaf morphological responses, oxidative metabolites and enzymatic activities at sheath base of sugarcane cultivars during defoliation stage of plant leaves. The mature leaf sheath of GT47 strongly wrapped to the stem, and no stem was exposed. The upper and lower edges of the immature fusing abscission zone were parallel, and slightly lower browning area (+ 3 to + 7 leaf position). The ROC22 cultivar was monitored highest leaf sheath-based cellulose and lignin content, followed by GT60 and GT47. Peroxidase activity was higher in leaf sheath base edge (ROC22) as compare to other cultivars. The malondialdehyde content was found highest in GT60, followed by ROC22, and GT47. The exo-ß-1,4-glucanase/ cellobiohydrolase activity was found highest in the margin of GT47 than lateral and medial axis of ROC22 and GT60. The axis activity increased exponentially, and ROC22 gradually decreased from the periphery of the mid-axis and lower than GT47 and GT60 in the lateral and mid-axis of leaf. In conclusion, the mature leaves are easy to defoliate mainly loose leaf sheaths, large leaf sheath inclination angles, more deformation during the growth period of the abscission zone, early with large cracks, and slow browning process. Leaf sheaths with high fibre and lignin content showed significant hardness and thickness. The sugarcane cultivars showed positive correlation between peroxidase and malondialdehyde content with the browning process at the base of mature leaf sheaths.


Subject(s)
Phenotype , Plant Leaves , Plant Stems , Saccharum , Saccharum/metabolism , Saccharum/physiology , Saccharum/growth & development , Plant Leaves/metabolism , Plant Stems/metabolism , Malondialdehyde/metabolism , Lignin/metabolism , Cellulose/metabolism , Peroxidase/metabolism
16.
BMC Plant Biol ; 24(1): 940, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385091

ABSTRACT

BACKGROUND: Nectar is offered by numerous flowering plants to attract pollinators. To date, the production and secretion of nectar have been analyzed mainly in eudicots, particularly rosids such as Arabidopsis. However, due to the enormous diversity of flowering plants, further research on other plant species, especially monocots, is needed. Ananas comosus (monocot) is an economically important species that is ideal for such analyses because it produces easily accessible nectar in sufficient quantities. In addition, the analyses were also carried out with Nicotiana tabacum (dicot, asterids) for comparison. RESULTS: We performed transcriptome sequencing (RNA-Seq) analyses of the nectaries of Ananas comosus and Nicotiana tabacum, to test whether the mechanisms described for nectar production and secretion in Arabidopsis are also present in these plant species. The focus of these analyses is on carbohydrate metabolism and transport (e.g., sucrose-phosphate synthases, invertases, sucrose synthases, SWEETs and further sugar transporters). In addition, the metabolites were analyzed in the nectar, nectaries and leaves of both plant species to address the question of whether concentration gradients for different metabolites exist between the nectaries and nectar The nectar of N. tabacum contains large amounts of glucose, fructose and sucrose, and the sucrose concentration in the nectar appears to be similar to the sucrose concentration in the nectaries. Nectar production and secretion in this species closely resemble corresponding processes in some other dicots, including sucrose synthesis in nectaries and sucrose secretion by SWEET9. The nectar of A. comosus also contains large amounts of glucose, fructose and sucrose and in this species the sucrose concentration in the nectar appears to be higher than the sucrose concentration in the nectaries. Furthermore, orthologs of SWEET9 generally appear to be absent in A. comosus and other monocots. Therefore, sucrose export by SWEETs from nectaries into nectar can be excluded; rather, other mechanisms, such as active sugar export or exocytosis, are more likely. CONCLUSION: The mechanisms of nectar production and secretion in N. tabacum appear to be largely similar to those in other dicots, whereas in the monocotyledonous species A. comosus, different synthesis and transport processes are involved.


Subject(s)
Gene Expression Profiling , Nicotiana , Plant Nectar , Plant Nectar/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Transcriptome , Carbohydrate Metabolism/genetics , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Leaves/genetics
17.
BMC Plant Biol ; 24(1): 941, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385111

ABSTRACT

Rapeseed (Brassica napus L.) is a major oilseed crop in the middle and lower reaches of the Yangtze River in China. However, it is susceptible to waterlogging stress. This study aimed to investigate the physiological characteristics, cellular changes, and gene expression patterns of rapeseed under waterlogging stress, with the goal of providing a foundation for breeding waterlogging-tolerant rapeseed. The results revealed that waterlogging-tolerant rapeseed exhibited higher levels of soluble sugars and antioxidant enzyme activity, particularly in the roots. Conversely, waterlogging-sensitive rapeseed displayed greater changes in malondialdehyde, proline, and hydrogen peroxide levels. Cellular observations showed that after experiencing waterlogging stress, the intercellular space of rapeseed leaf cells expanded, leading to disintegration of mitochondria and chloroplasts. Moreover, the area of the root xylem increased, the number of vessels grew, and there were signs of mitochondrial disintegration and vacuole shrinkage, with more pronounced changes observed in waterlogging-sensitive rapeseed. Furthermore, significant differences were found in the transcription levels of genes related to anaerobic respiration and flavonoid biosynthesis, and different varieties demonstrated varied responses to waterlogging stress. In conclusion, there are differences in the response of different varieties to waterlogging stress at the levels of morphology, physiological characteristics, cell structure, and gene transcription. Waterlogging-tolerant rapeseed responds to waterlogging stress by regulating its antioxidant defense system. This study provides valuable insights for the development of waterlogging-tolerant rapeseed varieties.


Subject(s)
Brassica napus , Stress, Physiological , Brassica napus/physiology , Brassica napus/genetics , Brassica napus/metabolism , Stress, Physiological/physiology , Water/metabolism , Gene Expression Regulation, Plant , Plant Roots/physiology , Plant Roots/metabolism , Plant Leaves/physiology , Plant Leaves/metabolism , China , Antioxidants/metabolism
18.
PLoS One ; 19(10): e0308959, 2024.
Article in English | MEDLINE | ID: mdl-39388395

ABSTRACT

During the period from 2019 to 2021, a series of experiments were carried out to study the uptake of tritium by crops in an area heavily contaminated with atmospheric tritium oxide (HTO), at the former Semipalatinsk test site in Kazakhstan. A quantitative assessment is given of the tritium uptake by typical crops (lettuce, tomatoes, peppers and beans) cultivated all over Kazakhstan in the case of a short-term tritium oxide vapor exposure. The plant samples were collected during and after exposure and analyzed for the tritium concentration in two chemical forms: tissue-free water tritium (TFWT) and organically bound tritium (OBT). During the entire series of experiments, the tritium concentration in free water from leaves and ambient air was of the same order of magnitude. The tissue water tritium concentrations of stems and edible parts was 1 to 2 orders of magnitude lower than in the surrounding air. The average value of the TFWT/HTOatm ratio in the leaves and the edible part was (0.73±0.2) and (0.04±0.002), respectively. The organically-bound tritium concentration is 1-2 orders of magnitude lower than the tissue water tritium and ambient air concentrations. Under aerial tritium oxide uptake, the distribution of tritium in non-leafy crops was as follows: leaf-stem-fruit (in decreasing order). After exposure, a non-significant amount of tritium is firmly retained in plants for a long time. The tissue water tritium concentrations correlate closely with atmospheric tritium oxid (r = 0.76), correlate weakly with temperature (r = 0.43) and relative humidity (r = -0.43), and correlate moderately with solar radiation intensity (r = 0.56). There was no reliable correlation between the concentration of tritium in organic matter and in ambient air. The concentration of tritium in the free water of leaves is closely correlated with the concentration in the free water of the stems (r = 0.95) and fruits (r = 0.78). The organically-bound tritium concentration in leaves is closely correlated with the organically-bound tritium concentration in stems (r = 0.99) and fruits (r = 98). The results of the study should be considered when evaluating the impact of tritium oxide emissions on the population living near nuclear power.


Subject(s)
Crops, Agricultural , Tritium , Tritium/analysis , Kazakhstan , Crops, Agricultural/metabolism , Crops, Agricultural/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry , Atmosphere/chemistry , Oxides/analysis , Oxides/chemistry , Solanum lycopersicum/metabolism , Solanum lycopersicum/chemistry , Capsicum/metabolism , Capsicum/chemistry
19.
Sci Rep ; 14(1): 23744, 2024 10 10.
Article in English | MEDLINE | ID: mdl-39389999

ABSTRACT

Green processes for synthesizing nanocomposites are a hot area of research today as traditional processes are expensive, inefficient, harmful for synthesizing organic and inorganic molecules, and unsuitable for large-scale operations. The present study investigates the capacity of green synthesized Calcium oxide nanoparticles (CaO NPs) for efficiently removing Rhodamine B. Chemical reduction was replaced with Mulberry (Morus nigera) leaf extract as an environmentally friendly reaction mechanism. CaO NPs are characterized by various analytical techniques including EDX, BET, SEM, FTIR, TGA, Zeta Potential, Point of Zero Charge (PZC), and XRD. Maximum adsorption of Rhodamine B by CaO NPs is revealed at an initial concentration of Rhodamine B of 80 ppm, a temperature of 343 K, and contact time of 60 min, 0.4 g of adsorbent at a pH value of 7. Maximum removal of Rhodamine B by CaO NPs was found to be 98.2% which is promising with this small amount of adsorbent (0.4 g). Diverse Kinetic and adsorption isotherms are employed in this study to determine the requirement and significance of the adsorption process. Various adsorption isotherms such as Freundlich, Temkin, Dubinin-Radushkevich (D-R), and Langmuir models have been employed. Among the kinetic adsorption isotherms Elovich, Intraparticle kinetic model, pseudo 1st order, and pseudo 2nd order models were applied. The current study investigates the thorough understanding of the Rhodamine B adsorption process including the mechanism of adsorption using condition optimization, characterization, and model applications. The proposed adsorbent can be employed for the green removal of Rhodamine B from wastewater of industry with maximum efficiency and favorable regeneration properties.


Subject(s)
Calcium Compounds , Morus , Nanoparticles , Oxides , Plant Extracts , Plant Leaves , Rhodamines , Rhodamines/chemistry , Morus/chemistry , Calcium Compounds/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Extracts/chemistry , Adsorption , Oxides/chemistry , Nanoparticles/chemistry , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry , Green Chemistry Technology/methods , Water Purification/methods
20.
Glob Chang Biol ; 30(10): e17529, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39400458

ABSTRACT

Leaf respiratory carbon loss decreases independent of temperature as the night progresses. Detailed nighttime measurements needed to quantify cumulative respiratory carbon loss at night are challenging under both lab and field conditions. We provide a simple yet accurate approach to represent variation in nighttime temperature-independent leaf respiratory CO2 efflux in environments with both stable and fluctuating temperatures, which requires no detailed measurements throughout the night. We demonstrate that the inter- and intraspecific variation in the cumulative leaf respiratory CO2 efflux at constant temperature, at any length of night, scales linearly with the inter- and intraspecific variation in initial measurement of leaf respiratory CO2 efflux at the same temperature at the beginning of the night. This approach informs large-scale predictions of cumulative leaf respiratory CO2 efflux, which is needed to understand plant carbon economy in global change studies as well as in global modeling and eddy covariance monitoring of the land-atmosphere exchange of CO2.


Subject(s)
Carbon Dioxide , Plant Leaves , Temperature , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Plant Leaves/metabolism , Climate Change
SELECTION OF CITATIONS
SEARCH DETAIL